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Abstract

We propose DuoRC, a novel dataset for
Reading Comprehension (RC) that moti-
vates several new challenges for neural
approaches in language understanding be-
yond those offered by existing RC datasets.
DuoRC contains 186,089 unique question-
answer pairs created from a collection of
7680 pairs of movie plots where each pair
in the collection reflects two versions of the
same movie - one from Wikipedia and the
other from IMDb - written by two different
authors. We asked crowdsourced workers
to create questions from one version of the
plot and a different set of workers to extract
or synthesize answers from the other ver-
sion. This unique characteristic of DuoRC
where questions and answers are created
from different versions of a document nar-
rating the same underlying story, ensures
by design, that there is very little lexical
overlap between the questions created from
one version and the segments containing
the answer in the other version. Further,
since the two versions have different levels
of plot detail, narration style, vocabulary,
etc., answering questions from the second
version requires deeper language under-
standing and incorporating external back-
ground knowledge. Additionally, the nar-
rative style of passages arising from movie
plots (as opposed to typical descriptive pas-
sages in existing datasets) exhibits the need
to perform complex reasoning over events
across multiple sentences. Indeed, we ob-
serve that state-of-the-art neural RC models
which have achieved near human perfor-
mance on the SQuAD dataset (Rajpurkar
et al., 2016b), even when coupled with tra-

ditional NLP techniques to address the chal-
lenges presented in DuoRC exhibit very
poor performance (F1 score of 37.42% on
DuoRC v/s 86% on SQuAD dataset). This
opens up several interesting research av-
enues wherein DuoRC could complement
other RC datasets to explore novel neural
approaches for studying language under-
standing.

1 Introduction
Natural Language Understanding is widely ac-
cepted to be one of the key capabilities required for
AI systems. Scientific progress on this endeavor
is measured through multiple tasks such as ma-
chine translation, reading comprehension, question-
answering, and others, each of which requires the
machine to demonstrate the ability to “comprehend”
the given textual input (apart from other aspects)
and achieve their task-specific goals. In particular,
Reading Comprehension (RC) systems are required
to “understand” a given text passage as input and
then answer questions based on it. It is therefore
critical, that the dataset benchmarks established
for the RC task keep progressing in complexity to
reflect the challenges that arise in true language
understanding, thereby enabling the development
of models and techniques to solve these challenges.

For RC in particular, there has been significant
progress over the recent years with several bench-
mark datasets, the most popular of which are the
SQuAD dataset (Rajpurkar et al., 2016a), TriviaQA
(Joshi et al., 2017), MS MARCO (Nguyen et al.,
2016), MovieQA (Tapaswi et al., 2016) and cloze-
style datasets (Mostafazadeh et al., 2016; Onishi
et al., 2016; Hermann et al., 2015). However, these
benchmarks, owing to both the nature of the pas-
sages and the QA pairs to evaluate the RC task,
have 2 primary limitations in studying language
understanding: (i) Other than MovieQA, which is
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a small dataset of 15K QA pairs, all other large-
scale RC datasets deal only with factual descriptive
passages and not narratives (involving events with
causality linkages that require reasoning and back-
ground knowledge) which is the case with a lot
of real-world content such as story books, movies,
news reports, etc. (ii) their questions possess a
large lexical overlap with segments of the passage,
or have a high noise level in QA pairs themselves.
As demonstrated by recent work, this makes it easy
for even simple keyword matching algorithms to
achieve high accuracy (Weissenborn et al., 2017).
In fact, these models have been shown to perform
poorly in the presence of adversarially inserted sen-
tences which have a high word overlap with the
question but do not contain the answer (Jia and
Liang, 2017). While this problem does not exist in
TriviaQA it is admittedly noisy because of the use
of distant supervision. Similarly, for cloze-style
datasets, due to the automatic question generation
process, it is very easy for current models to reach
near human performance (Cui, 2017). This there-
fore limits the complexity in language understand-
ing that a machine is required to demonstrate to do
well on the RC task.

Motivated by these shortcomings and to push the
state-of-the-art in language understanding in RC,
in this paper we propose DuoRC, which specifi-
cally presents the following challenges beyond the
existing datasets:

1. DuoRC is especially designed to contain a large
number of questions with low lexical overlap
between questions and their corresponding pas-
sages.

2. It requires the use of background and common-
sense knowledge to arrive at the answer and go
beyond the content of the passage itself.

3. It contains narrative passages from movie plots
that require complex reasoning across multiple
sentences to infer the answer.

4. Several of the questions in DuoRC, while seem-
ing relevant, cannot actually be answered from
the given passage, thereby requiring the ma-
chine to detect the unanswerability of questions.

In order to capture these four challenges, DuoRC
contains QA pairs created from pairs of documents
describing movie plots which were gathered as fol-
lows. Each document in a pair is a different version
of the same movie plot written by different authors;
one version of the plot is taken from the Wikipedia
page of the movie whereas the other from its IMDb

page (see Fig. 1 for portions of an example pair
of plots from the movie “Twelve Monkeys”). We
first showed crowd workers on Amazon Mechan-
ical Turk (AMT) the first version of the plot and
asked them to create QA pairs from it. We then
showed the second version of the plot along with
the questions created from the first version to a
different set of workers on AMT and asked them
to provide answers by reading the second version
only. Since the two versions contain different levels
of plot detail, narration style, vocabulary, etc., an-
swering questions from the second version exhibits
all of the four challenges mentioned above.

We now make several interesting observations
from the example in Fig. 1. For 4 out of the 8 ques-
tions (Q1, Q2, Q4, and Q7), though the answers
extracted from the two plots are exactly the same,
the analysis required to arrive at this answer is very
different in the two cases. In particular, for Q1 even
though there is no explicit mention of the prisoner
living in a subterranean shelter and hence no lex-
ical overlap with the question, the workers were
still able to infer that the answer is Philadelphia
because that is the city to which James Cole travels
to for his mission. Another interesting characteris-
tic of this dataset is that for a few questions (Q6,
Q8) alternative but valid answers are obtained from
the second plot. Further, note the kind of complex
reasoning required for answering Q8 where the ma-
chine needs to resolve coreferences over multiple
sentences (that man refers to Dr. Peters) and use
common sense knowledge that if an item clears an
airport screening, then a person can likely board
the plane with it. To re-emphasize, these exam-
ples exhibit the need for machines to demonstrate
new capabilities in RC such as: (i) employing a
knowledge graph (e.g. to know that Philadelphia is
a city in Q1), (ii) common-sense knowledge (e.g.,
clearing airport security implies boarding) (iii)
paraphrase/semantic understanding (e.g. revolver
is a type of handgun in Q7) (iv) multiple-sentence
inferencing across events in the passage including
coreference resolution of named entities and nouns,
and (v) educated guesswork when the question is
not directly answerable but there are subtle hints
in the passage (as in Q1). Finally, for quite a few
questions, there wasn’t sufficient information in the
second plot to obtain their answers. In such cases,
the workers marked the question as “unanswer-
able”. This brings out a very important challenge
for machines (detect unanswerability of questions)
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Figure 1: Example QA pairs obtained from the original movie plot and the paraphrased plot. The relevant spans needed for
answering the corresponding question are highlighted in blue and red with the respective question numbers. Note that the span
highlighting shown here is for illustrative purposes only and is not available in the dataset.

because a practical system should be able to know
when it is not possible for it to answer a question
given the data available to it, and in such cases,
possibly delegate the task to a human instead.

Current RC systems built using existing datasets
are far from possessing these capabilities to solve
the above challenges. In Section 4, we seek to es-
tablish solid baselines for DuoRC employing state-
of-the-art RC models coupled with a collection
of standard NLP techniques to address few of the
above challenges. Proposing novel neural models
that solve all of the challenges in DuoRC is out of
the scope of this paper. Our experiments demon-
strate that when the existing state-of-the-art RC
systems are trained and evaluated on DuoRC they
perform poorly leaving a lot of scope for improve-
ment and open new avenues for research in RC. Do
note that this dataset is not a substitute for existing
RC datasets but can be coupled with them to collec-
tively address a large set of challenges in language
understanding with RC (the more the merrier).

2 Related Work
Over the past few years, there has been a surge
in datasets for Reading Comprehension. Most
of these datasets differ in the manner in which
questions and answers are created. For example,
in SQuAD (Rajpurkar et al., 2016a), NewsQA
(Trischler et al., 2016), TriviaQA (Joshi et al.,

2017) and MovieQA (Tapaswi et al., 2016) the
answers correspond to a span in the document. MS-
MARCO uses web queries as questions and the
answers are synthesized by workers from docu-
ments relevant to the query. On the other hand,
in most cloze-style datasets (Mostafazadeh et al.,
2016; Onishi et al., 2016) the questions are created
automatically by deleting a word/entity from a sen-
tence. There are also some datasets for RC with
multiple choice questions (Richardson et al., 2013;
Berant et al., 2014; Lai et al., 2017) where the task
is to select one among k given candidate answers.

Another notable RC Dataset is Narra-
tiveQA(s Koˇ ciský et al., 2018) which contains
40K QA pairs created from plot summaries of
movies. It poses two tasks, where the first task
involves reading the plot summaries from which
the QA pairs were annotated and the second task
is read the entire book or movie script (which is
usually 60K words long) instead of the summary
to answer the question. As acknowledged by the
authors, while the first task is similar in scope to
the previous datasets, the second task is at present,
intractable for existing neural models, owing to
the length of the passage. Due to the kind of the
challenges presented by their second task, it is
not comparable to our dataset and is much more
futuristic in nature.
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Given that there are already a few datasets for
RC, a natural question to ask is “Do we really need
any more datasets?”. We believe that the answer to
this question is yes. Each new dataset brings in new
challenges and contributes towards building better
QA systems. It keeps researchers on their toes and
prevents research from stagnating once state-of-the-
art results are achieved on one dataset. A classic
example of this is the CoNLL NER dataset (Tjong
Kim Sang and De Meulder, 2003). While several
NER systems (Passos et al., 2014) gave close to
human performance on this dataset, NER on gen-
eral web text, domain specific text, noisy social
media text is still an unsolved problem (mainly due
to the lack of representative datasets which cover
the real-world challenges of NER). In this context,
DuoRC presents 4 new challenges mentioned ear-
lier which are not exhibited in existing RC datasets
and would thus enable exploring novel neural ap-
proaches in complex language understanding. The
hope is that all these datasets (including ours) will
collectively help in addressing a wide range of chal-
lenges in QA and prevent stagnation via overfitting
on a single dataset.

3 Dataset
In this section, we elaborate on the three phases of
our dataset collection process.
Extracting parallel movie plots: We first col-
lected top 40K movies from IMDb across different
genres (crime, drama, comedy, etc.) whose plot
synopsis were crawled from Wikipedia as well as
IMDb. We retained only 7680 movies for which
both the plots were available and longer than 100
words. In general, we found that the IMDb plots
were usually longer (avg. length 926 words) and
more descriptive than the Wikipedia plots (avg.
length 580 words). To make sure that the content
between the two plots are indeed different and one
is not just a subset of another, we calculated word-
level jaccard distance between them i.e. the ratio of
intersection to union of the bag-of-words in the two
plots and found it to be 26%. This indicates that
one of the plots is usually longer and descriptive,
and, the two plots are infact quite different, even
though the information content is very similar.
Collecting QA pairs from shorter version of the
plot (SelfRC): As mentioned earlier, on average
the longer version of the plot is almost double the
size of the shorter version which is itself usually
500 words long. Intuitively, the longer version
should have more details and the questions asked

from the shorter version should be answerable from
the longer one. Hence, we first showed the shorter
version of the plot to workers on AMT and asked
them to create QA pairs from it. The instructions
given to the workers for this phase are as follows:
(i) the answer must preferably be a single word or
a short phrase, (ii) subjective questions (like asking
for opinion) are not allowed, (iii) questions should
be answerable only from the passage and not re-
quire any external knowledge, and (iv) questions
and answers should be well formed and grammati-
cally correct. The workers were also given freedom
to either pick an answer which directly matches a
span in the document or synthesize the answer from
scratch. This option allowed them to be creative
and ask hard questions where possible. We found
that in 70% of the cases the workers picked an an-
swer directly from the document and in 30% of
the cases they synthesized the answer. We thus
collected 85,773 such QA pairs along with their
corresponding documents. We refer to this as the
SelfRC dataset because the answers were derived
from the same document from which the questions
were asked.
Collecting answers from longer version of the
plot (ParaphraseRC): We then paired the ques-
tions from the SelfRC dataset with the correspond-
ing longer version of the plot and showed it to a
different set of AMT workers asking them to an-
swer these questions from the longer version of the
plot. They now have the option to either (i) select
an answer which matches a span in the longer ver-
sion, (ii) synthesize the answer from scratch, or (iii)
mark the question not-answerable because of lack
of information in the given passage. One trick we
used to reduce the fatigue of workers (caused by
reading long pieces of text), and thus maintain the
answer quality is to split the long plots into multiple
segments. Every question obtained from the first
phase of annotation is paired separately with each
of these segments and each (question, segment)
pair is posted as a different job. With this approach,
we essentially get multiple answers to the same
question, if it is answerable from more than one
segment. However, on an average we get approxi-
mately one unique answer for each question. We
found that in 50% of the cases the workers selected
an answer which matched a span in the document,
whereas in 37% cases they synthesized the answer
and in 13% cases they said that question was not
answerable. The workers were strictly instructed to
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keep the answers short, derive the answer from the
plot and use general knowledge or logic to answer
the questions. They were not allowed to rely on
personal knowledge about the movie (in any case
given the large number of movies in our dataset
the chance of a worker remembering all the plot
details for a given movie is very less). For qual-
ity assessment purposes, various levels of manual
and semi-automated inspections were done, espe-
cially in the second phase of annotation, such as:(i)
weeding out annotators who mark majority of an-
swers as non-answerable, by taking into account
their response time, and (ii) annotators for whom
a high percentage of answers have no entity (or
noun phrase) overlap with the entire passage were
subjected to strict manual inspection and black-
listed if necessary. Further, a wait period of 2-3
weeks was deliberately introduced between the two
phases of data collection to ensure the availability
of a fresh pool of workers as well as to reduce in-
formation bias among workers common to both the
tasks. Overall 2559 workers took part in the first
phase of the annotation, and 8021 workers in the
second phase. Only 703 workers were common
between the phases.

We refer to this dataset, where the questions are
taken from one version of the document and the an-
swers are obtained from a different version, as Para-
phraseRC which contains 100,316 such {question,
answer, document} triplets. Overall, 62% of the
questions in SelfRC and ParaphraseRC have partial
overlap in their answers, which is indicative of the
fact that quality is reasonable. The remaining 38%
where there is no overlap can be attributed to non-
answerablity of the question from the bigger plot,
information gap, or paraphrasing of information
between the two plots.

Figure 2: Analysis of the Question Types

Note that the number of unique questions in the
ParaphraseRC dataset is the same as that in SelfRC
because we do not create any new questions from
the longer version of the plot. We end up with a
greater number of {question, answer, document}

triplets in ParaphraseRC as compared to SelfRC
(100,316 v/s 85,773) since movies that are remakes
of a previous movie had very little difference in
their Wikipedia plots. Therefore, we did not sep-
arately collect questions from the Wikipedia plot
of the remake. However, the IMDb plots of the
two movies are very different and so we have two
different longer versions of the movie (one for the
original and one for the remake). We can thus pair
the questions created from the Wikipedia plot with
both the IMDb versions of the plot thus augmenting
the {question, answer, document} triplets.

Another notable observation is that in many
cases the answers to the same question are different
in the two versions. Specifically, only 40.7% of the
questions have the same answer in the two docu-
ments. For around 37.8% of the questions there is
no overlap between the words in the two answers.
For the remaining 21% of the questions there is a
partial overlap between the two answers. For e.g.,
the answer derived from the shorter version could
be “using his wife’s gun” and from the longer ver-
sion could be “with Dana’s handgun” where Dana
is the name of the wife. In Appendix A, we provide
a few randomly picked examples from our dataset
which should convince the reader of the difficulty
of ParaphraseRC and its differences with SelfRC.
We refer to this combined dataset containing a total

Metrics for Comparative
Analysis

Movie
QA

NarrativeQA
over plot-
summaries

Self-
RC

Paraph-
raseRC

Avg. word distance 20.67 24.94 13.4 45.3
Avg. sentence distance 1.67 1.95 1.34 2.7
Number of sentences for in-
ferencing

2.3 1.95 1.51 2.47

% of instances where both
Query & Answer entities
were found in passage

67.96 59.4 58.79 12.25

% of instances where Only
Query entities were found
in passage

59.61 61.77 63.39 47.05

% Length of the Longest
Common sequence of non-
stop words in Query (w.r.t
Query Length) and Plot

25 26.26 38 21

Table 1: Comparison between various RC datasets

of 186,089 instances as DuoRC1. Fig. 2 shows the
distribution of different Wh-type questions in our
dataset. Some interesting comparative analysis are
presented in Table 1 and also in Appendix B. In
Table 1, we compare various RC datasets with two
embodiments of our dataset i.e. the SelfRC and
ParaphraseRC. We use NER and noun phrase/verb
phrase extraction over the entire dataset to iden-

1The dataset is available at https://duorc.github.io

https://duorc.github.io
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tify key entities in the question, plot and answer
which is in turn used to compute the metrics men-
tioned in the table. The metrics “Avg word dis-
tance” and “Avg sentence distance” indicate the
average distance (in terms of words/sentences) be-
tween the occurrence of the question entities and
closest occurrence of the answer entities in the pas-
sage. “Number of sentences for inferencing” is
indicative of the minimum number of sentences
required to cover all the question and answer en-
tities. It is evident that tackling ParaphraseRC is
much harder than the others on account of (i) larger
distance between the query and answer, (ii) low
word-overlap between query & passage, and (iii)
higher number of sentences required to infer an
answer.

4 Models
In this section, we describe in detail the various
state-of-the-art RC and language generation mod-
els along with a collection of traditional NLP tech-
niques employed together that will serve to estab-
lish baseline performance on the DuoRC dataset.

Most of the current state-of-the-art models for
RC assume that the answer corresponds to a span
in the document and the task of the model is to pre-
dict this span. This is indeed true for the SQuAD,
TriviaQA and NewsQA datasets. However, in our
dataset, in many cases the answers do not corre-
spond to an exact span in the document but are
synthesized by humans. Specifically, for the Sel-
fRC version of the dataset around 30% of the an-
swers are synthesized and do not match a span
in the document whereas for the ParaphraseRC
task this number is 50%. Nevertheless, we could
still leverage the advances made on the SQuAD
dataset and adapt these span prediction models for
our task. To do so, we propose to use two models.
The first model is a basic span prediction model
which we train and evaluate using only those in-
stances in our dataset where the answer matches a
span in the document. The purpose of this model
is to establish whether even for instances where
the answer matches a span in the document, our
dataset is harder than the SQuAD dataset or not.
Specifically, we want to explore the performance
of state-of-the-art models (such as DCN (Xiong
et al., 2016)), which exhibit near human results
on the SQuAD dataset, on DuoRC (especially, in
the ParaphraseRC setup). To do so, we seek to
employ a good span prediction model for which (i)
the performance is within 3-5% of the top perform-

ing model on the SQuAD leaderboard (Rajpurkar
et al., 2016b) and (ii) the results are reproducible
based on the code released by the authors of the
paper. Note that the second criteria is important to
ensure that the poor performance of the model is
not due to incorrect implementation. The Bidirec-
tional Attention Flow (BiDAF) model (Seo et al.,
2016) satisfies these criteria and hence we employ
this model. Due to space constraints, we do not
provide details of the BiDAF model here and sim-
ply refer the reader to the original paper. In the
remainder of this paper we will refer to this model
as the SpanModel.

The second model that we employ is a two stage
process which first predicts the span and then syn-
thesizes the answers from the span. Here again,
for the first step (i.e., span prediction) we use
the BiDAF model (Seo et al., 2016). The job of
the second model is to then take the span (mini-
document) and question (query) as input and gener-
ate the answer. For this, we employ a state-of-the-
art query based abstractive summarization model
(Nema et al., 2017) as this task is very similar to our
task. Specifically, in query based abstractive sum-
marization the training data is of the form {query,
document, generated summary} and in our case the
training data is of the form {query, mini-document,
generated answer}. Once again we refer the reader
to the original paper (Nema et al., 2017) for details
of the model. We refer to this two stage model as
the GenModel.

Note that (Tan et al., 2017) recently proposed
an answer generation model for the MS MARCO
dataset. However, the authors have not released
their code and therefore, in the interest of repro-
ducibility of our work, we omit incorporating this
model in this paper.

Additional NLP pre-processing: Referring
back to the example cited in Fig. 1, we reiterate
that ideally a good model for ParaphraseRC
would require: (i) employing a knowledge
graph, (ii) common-sense knowledge (iii)
paraphrase/semantic understanding (iv) multiple-
sentence inferencing across events in the passage
including coreference resolution of named entities
and nouns, and (v) educated guesswork when the
question is not directly answerable but there are
subtle hints in the passage. While addressing all
of these challenges in their entirety is beyond the
scope of a single paper, in the interest of establish-
ing a good baseline for DuoRC, we additionally
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seek to address some of these challenges to a
certain extent by using standard NLP techniques.
Specifically, we look at the problems of paraphrase
understanding, coreference resolution and handling
long passages.

To do so, we prune the document and extract
only those sentences which are most relevant to the
question, so that the span detector does not need
to look at the entire 900-word long ParaphraseRC
plot. Now, since these relevant sentences are ob-
tained not from the original but the paraphrased
version of the document, they may have a very
small word overlap with the question. For example,
the question might contain the word “hand gun”
and the relevant sentence in the document may
contain the word “revolver”. Further some of the
named entities in the question may not be exactly
present in the relevant sentence but may simply be
co-referenced. To resolve these coreferences, we
first employ the Stanford coreference resolution on
the entire document. We then compute the fraction
of words in a sentence which match a query word
(ignoring stop words). Two words are considered
to match if (a) they have the same surface form,
or (b) one words is an inflected form of the word
(e.g., river and rivers), or (c) the Glove (Pennington
et al., 2014) and Skip-thought (Kiros et al., 2015)
embeddings of the two words are very close to each
other (two word vectors are considered to be close
if one appears within the top 50 neighbors of the
other), or (d) the two words appear in the same
synset in Wordnet. We consider a sentence to be
relevant for the question if at least 50% of the query
words (ignoring stop words) match the words in the
sentence. If none of the sentences in the document
have atleast 50% overlap with the question, then we
pick sentences having atleast a 30% overlap with
the question. The selection of this threshold was
based on manual observation of a small sample set.
This observation gave us an idea of what a decent
threshold value should be, that can have a reason-
able precision and recall on the relevant snippet
extraction step. Since this step was rule-based we
could only employ such qualitative inspections to
set this parameter. Also, since this step was tar-
geted to have high recall, we relaxed the threshold
to 30% if no match was found.

5 Experimental Setup
In the following sub-sections we describe (i) the
evaluation metrics, and (ii) the choices considered
for augmenting the training data for the answer

generation model. Note that when creating the
train, validation and test set, we ensure that the
test set does not contain QA pairs for any movie
that was seen during training. We split the movies
in such a way that the resulting train, valid, test
sets respectively contain 70%, 15% and 15% of the
total number of QA pairs.

Span-Based Test Set and Full Test Set As men-
tioned earlier, the SpanModel only predicts the span
in the document whereas the GenModel generates
the answer after predicting the span. Ideally, the
SpanModel should only be evaluated on those in-
stances in the test set where the answer matches
a span in the document. We refer to this subset
of the test set as the Span-based Test Set. Though
not ideal, we also evaluate the SpanModel model
on the entire test set. This is not ideal because
there are many answers in the test set which do not
correspond to a span in the document whereas the
model was only trained to predict spans. We refer
to this as the Full Test Set. We also evaluate the
GenModel on both the test sets.

Training Data for the GenModel As men-
tioned earlier, the GenModel contains two stages;
the first stage predicts the span and the second stage
then generates an answer from the predicted span.
For the first step we plug-in the best performing
SpanModel from our earlier exploration. To train
the second stage we need training data of the form
{x = span, y= answer} which comes from two
types of instances: one where the answer matches
a span and the other where the answer is synthe-
sized and the span corresponding to it is not known.
In the first case x=y and there is nothing interesting
for the model to learn (except for copying the input
to the output). In the second case x is not known.
To overcome this problem, for the second type of
instances, we consider various approaches for find-
ing the approximate span from which the answer
could have been generated, and augment the train-
ing data with {x = approx span, y= answer}.
The easiest method was to simply treat the entire
document as the true span from which the answer
was generated (x = document, y = answer). The
second alternative that we tried was to first extract
the named entities, noun phrases and verb phrases
from the question and create a lucene query from
these components. We then used the lucene search
engine to extract the most relevant portions of the
document given this query. We then considered
this portion of the document as the true span (as
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opposed to treating the entire document as the true
span). Note that lucene could return multiple rel-
evant spans in which case we treat all these {x
= approx span, y= answer} as training instances.
Another alternative was to find the longest com-
mon subsequence (LCS) between the document
and the question and treat this subsequence as the
span from which the answer was generated. Of
these, we found that the model trained using {x =
approx span, y= answer} pairs created using the
LCS based method gave the best results. We report
numbers only for this model.

Evaluation Metrics Similar to (Rajpurkar et al.,
2016a) we use Accuracy and F-score as the evalua-
tion metrics. We also report the BLEU scores for
each task. While accuracy, being a stricter metric,
considers a predicted answer to be correct only if it
exactly matches the true answer, F-score and BLEU
also give credit to predictions partially overlapping
with the true answer.

6 Results and Discussions
The results of our experiments are summarized in
Tables 2 to 4 which we discuss in the following
sub-sections.

Preprocessing step of Relevant Subplot
Extraction

Plot Com-
pression

Answer
Recall

WordNet synonym + Glove based paraphrase 30% 66.51%
WordNet synonym + Glove based paraphrase
on Coref resolved plots

50% 84.10%

WordNet synonym + Glove + Skip-thought
based paraphrase on Coref resolved plots

48% 85%

Table 2: Performance of the preprocessing. Plot compression
is the % size of the extracted plot w.r.t the original plot size

SelfRC Span Test Full Test
Acc. F1 BLEU Acc. F1 BLEU

SpanModel 46.14 57.49 22.98 37.53 50.56 7.47
GenModel (with aug-
mented training data)

16.45 26.97 7.61 15.31 24.05 5.50

ParaphraseRC Span Test Full Test
Acc. F1 BLEU Acc. F1 BLEU

SpanModel 17.93 26.27 9.39 9.78 16.33 2.60
SpanModel with Pre-
processed Data

27.49 35.10 12.78 14.92 21.53 2.75

GenModel (with aug-
mented training data)

12.66 19.48 4.41 5.42 9.64 1.75

Table 3: Performance of the SpanModel and GenModel on
the Span Test subset and the Full Test Set of the Self and
ParaphraseRC.

SpanModel v/s GenModel: Comparing the first
two rows (SelfRC) and the last two rows (Para-
phraseRC) of Table 3 we see that the SpanModel
clearly outperforms the GenModel. This is not very
surprising for two reasons. First, around 70% (and

Span Test Full Test
Train Test Acc. F1 BLEU Acc. F1 BLEU

SelfRC
SelfRC 46.14 57.49 22.98 37.53 50.56 7.47
ParaRC 27.85 36.82 14.48 15.16 22.70 3.90
SelfRC+
ParaRC

37.79 48.05 18.72 25.05 35.01 5.34

ParaRC
SelfRC 34.85 45.71 16.01 28.25 40.16 5.15
Para RC 19.74 27.57 9.84 10.78 17.13 2.75
SelfRC+
ParaRC

27.94 37.42 13.00 18.50 27.31 3.75

SelfRC
+
ParaRC

SelfRC 49.66 61.45 25.87 40.24 54.04 8.42
ParaRC 29.88 39.34 16.22 16.33 24.25 4.21
SelfRC+
ParaRC

40.62 51.35 21.18 26.90 37.42 5.94

Table 4: Combined and Cross-Testing between Self and Para-
phraseRC Dataset, by taking the best performing SpanModel
from Table 3.ParaRC is an abbreviation of ParaphraseRC

50%) of the answers in SelfRC (and ParaphraseRC)
respectively, match an exact span in the document
so the SpanModel still has scope to do well on
these answers. On the other hand, even if the first
stage of the GenModel predicts the span correctly,
the second stage could make an error in generating
the correct answer from it because generation is
a harder problem. For the second stage, it is ex-
pected that the GenModel should learn to copy the
predicted span to produce the answer output (as
is required in most cases) and only occasionally
where necessary, generate an answer. However,
surprisingly the GenModel fails to even do this.
Manual inspection of the generated answers shows
that in many cases the generator ends up generat-
ing either more or fewer words compared the true
answer. This demonstrates the clear scope for the
GenModel to perform better.
SelfRC v/s ParaphraseRC: Comparing the SelfRC
and ParaphraseRC numbers in Table 3, we observe
that the performance of the models clearly drops
for the latter task, thus validating our hypothesis
that ParaphraseRC is a indeed a much harder task.
Effect of NLP pre-processing: As mentioned in
Section 4, for ParaphraseRC, we first perform a
few pre-processing steps to identify relevant sen-
tences in the longer document. In order to evaluate
whether the pre-processing method is effective, we
compute: (i) the percentage of the document that
gets pruned, and (ii) whether the true answer is
present in the pruned document (i.e., average recall
of the answer). We can compute the recall only
for the span-based subset of the data since for the
remaining data we do not know the true span. In
Table 2, we report these two quantities for the span-
based subset using different pruning strategies. Fi-
nally, comparing the SpanModel with and without
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Paraphrasing in Table 3 for ParaphraseRC, we ob-
serve that the pre-processing step indeed improves
the performance of the Span Detection Model.
Effect of oracle pre-processing: As noted in Sec-
tion 3, the ParaphraseRC plot is almost double
in length in comparison to the SelfRC plot, which
while adding to the complexities of the former task,
is clearly not the primary reason of the model’s
poor performance on that. To empirically validate
this, we perform an Oracle pre-processing step,
where, starting with the knowledge of the span con-
taining the true answer, we extract a subplot around
it such that the span is randomly located within
that subplot and the average length of the subplot
is similar to the SelfRC plots. The SpanModel
with this Oracle preprocessed data exhibits a minor
improvement in performance over that with rule-
based preprocessing (1.6% in Accuracy and 4.3%
in F1 over the Span Test), still failing to bridge
the wide performance gap between the SelfRC and
ParaphraseRC task.
Cross Testing We wanted to examine whether a
model trained on SelfRC performs well on Para-
phraseRC and vice-versa. We also wanted to eval-
uate if merging the two datasets improves the per-
formance of the model. For this we experimented
with various combinations of train and test data.
The results of these experiments for the SpanModel
are summarized in Table 4. The best performance
is obtained when the model is trained on both (Sel-
fRC) and ParaphraseRC and tested on SelfRC and
the performance is poorest when ParaphraseRC is
used for both. We believe this is because learning
with the ParaphraseRC is more difficult given the
wide range of challenges in this dataset.

Based on our experiments and empirical obser-
vations we believe that the DuoRC dataset indeed
holds a lot of potential for advancing the horizon
of complex language understanding by exposing
newer challenges in this area.

7 Conclusion
In this paper we introduced DuoRC, a large scale
RC dataset of 186K human-generated QA pairs cre-
ated from 7680 pairs of parallel movie-plots, each
pair taken from Wikipedia and IMDb. We then
showed that this dataset, by design, ensures very
little or no lexical overlap between the questions
created from one version and segments containing
answers in the other version. With this, we hope to
introduce the RC community to new research chal-
lenges on QA requiring external knowledge and

common-sense driven reasoning, deeper language
understanding and multiple-sentence inferencing.
Through our experiments, we show how the state-
of-the-art RC models, which have achieved near
human performance on the SQuAD dataset, per-
form poorly on our dataset, thus emphasizing the
need to explore further avenues for research.
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