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Abstract

The transfer or share of knowledge be-
tween languages is a popular solution to
resource scarcity in NLP. However, the ef-
fectiveness of cross-lingual transfer can
be challenged by variation in syntactic
structures. Frameworks such as Univer-
sal Dependencies (UD) are designed to be
cross-lingually consistent, but even in care-
fully designed resources trees representing
equivalent sentences may not always over-
lap. In this paper, we measure cross-lingual
syntactic variation, or anisomorphism, in
the UD treebank collection, considering
both morphological and structural prop-
erties. We show that reducing the level
of anisomorphism yields consistent gains
in cross-lingual transfer tasks. We intro-
duce a source language selection procedure
that facilitates effective cross-lingual parser
transfer, and propose a typologically driven
method for syntactic tree processing which
reduces anisomorphism. Our results show
the effectiveness of this method for both
machine translation and cross-lingual sen-
tence similarity, demonstrating the impor-
tance of syntactic structure compatibility
for boosting cross-lingual transfer in NLP.

1 Introduction

Linguistic information can be transferred from
resource-rich to resource-poor languages using
approaches such as annotation projection, model
transfer, and/or translation (Agić et al., 2014). Such
cross-lingual transfer may rely on syntactic infor-
mation. Structured and more cross-lingually con-
sistent than linear sequences (Ponti, 2016), syntac-
tic information has proved useful for cross-lingual
parsing (Tiedemann, 2015; Rasooli and Collins,

2017), multilingual representation learning (Vulić
and Korhonen, 2016; Vulić, 2017), causal relation
identification (Ponti and Korhonen, 2017), and neu-
ral machine translation (Eriguchi et al., 2016; Aha-
roni and Goldberg, 2017). It can also guide the
generation of synthetic data for multilingual tasks
(Wang and Eisner, 2016).

Universal Dependencies (UD) (Nivre et al.,
2016) is a collection of treebanks for a variety of
languages, annotated with a scheme optimised for
knowledge transfer. The tag sets are language-
independent and there are direct links between
content words. This reduces the variation of de-
pendency trees, because content words are cross-
lingually more stable than function words (Croft
et al., 2017), and benefits semantically-oriented
applications (de Marneffe et al., 2014)1. Impor-
tantly, although UD is tailored to offer support to
cross-lingual transfer, it also supports monolingual
applications with a quality comparable to language-
specific annotations (Vincze et al., 2017, inter alia).

Despite the careful design of this resource, there
are still substantial variations in morphological rich-
ness and strategies employed to express the same
syntactic constructions across languages. These
variations posit challenges for syntax-based knowl-
edge transfer. The first challenge is how to match
the source and target languages so that differences
are minimised. The common criteria are based on
the typology of word order (Naseem et al., 2012;
Täckström et al., 2013; Zhang and Barzilay, 2015)
or part-of-speech n-grams (Rosa and Zabokrtsky,
2015; Agić, 2017). The second one is how to make
knowledge transfer effective by harmonising syn-
tactic trees (Smith and Eisner, 2009; Vilares et al.,
2016) as to enable a better correspondence between
source and target nodes.

1It is controversial whether it improves parsing: e.g., Groß
and Osborne (2015, inter alia) argue against whereas Attardi
et al. (2015, inter alia) argue in favour.
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In this paper we address these two challenges.
We propose the concept of isomorphism (i.e., iden-
tity of shapes: syntactic structures) and its opposite,
anisomorphism, as a probe to measuring quantita-
tively the extent to which syntactic tree pairs are
cross-lingually compatible. We assess the variation
of syntactic constructions by a) the average Zhang
and Shasha (1989)’s tree edit distance between UD
treebanks, and b) the variation in morphology by
the Jaccard index of morphological feature sets. We
show that these metrics are strong indicators for
source language selection, and even preferable over
widespread metrics such as genealogical language
relatedness.

Moreover, the concept of isomorphism facilitates
the process of reshaping trees to make them com-
patible across languages via operations of deletion,
addition, and relabeling. To this end, we propose a
tree processing method which increases the level
of isomorphism between trees of cross-lingually
compatible sentences. This method leads to consis-
tent improvements on cross-lingual tasks achieved
through transfer.

To verify the relevance of isomorphism for cross-
lingual transfer in NLP, we perform experiments
on three tasks. Firstly, we use the Jaccard index
of morphological feature sets to choose source lan-
guages for cross-lingual dependency parsing. Sec-
ondly, we use syntactic trees harmonised by our
method in syntax-based neural machine translation
of two typologically distant language pairs (Ara-
bic to Dutch; Indonesian to Portuguese). Finally,
we evaluate cross-lingual sentence similarity in a
real-life resource-lean scenario where the target lan-
guage has no annotated data. In all experiments, we
enhance performance compared to baselines where
the source shows a lower degree of isomorphism.

In §2, we define the concept of (an)isomorphism,
propose novel metrics for measuring it quantita-
tively, and introduce the tree processing algorithm.
We then desribe the data (§3), methods (§4), and
experimental results (§5). Related work is sum-
marised in §6 and conclusions are drawn in §7.

2 Anisomorphism

The ideal situation for knowledge transfer from
one (syntactic) structure into another is when these
structures are equivalent. In graph theory, there
is isomorphism between the nodes VS of graph S
and the nodes VT of graph T if there exists a bijec-
tion f(VS) → VT such that ∀si, sj ∈ VS , it holds

that: si sj ⇔ f(si) f(sj), where the symbol
stands for adjacency between nodes. In sim-

ple words, the mapping must preserve adjacencies
between corresponding nodes.

Syntactic trees are a special case of such graphs.
However, vocabularies (the words in their nodes)
are peculiar to each language, making their compar-
ison impractical across languages. In this work, we
probe isomorphism on delexicalised trees, where
each node is the (cross-lingually consistent) depen-
dency relation of the word in that position. Even so,
however, isomorphic bijection is often impossible
between trees of equivalent sentences in different
languages owing to typological variation (see §2.1).

Adopting the term from Ambati (2008), we de-
fine this property as anisomorphism, which can be
quantified as the extent to which two structures dif-
fer in their morphological and syntactic properties
(§2.2). We present a tree processing method to mit-
igate anisomorphism in §2.3. Afterwards, in §§3-5
we show how the concepts defined in this section
facilitate cross-lingual transfer in three NLP tasks.

2.1 Sources of Anisomorphism
Two main causes underpin anisomorphism. The
first cause is the morphological type of a language:
the same grammatical function may be expressed
via morphemes, via separate words (so-called func-
tion words), or may not be expressed at all (Bybee,
1985, ch. 2). For instance, consider the following
Latin-English example:

(1) Crimen
crime.NOM

er-it
be-FUT.3SG

super-is
god-DAT.PL

et
also

me
me

fec-isse
make-INF.PST

nocent-em.
guilty-ACC

‘It will be a reproach to the gods, that they have
made even me guilty.’

The future tense is expressed by inflecting the verb
erit in Latin, whereas English has the auxiliary verb
will. In addition, Latin can express the English
preposition to with the dative case -is. This varia-
tion has systematic impact on UD annotation. On
one hand, Latin would display the attribute-value
pairs TENSE=FUTURE and CASE=DATIVE among
the features of erit and superis. On the other hand,
in English the function words (will and to) add
nodes to the dependency structure, modifying the
equivalent words (be and gods). This pattern is not
unique to English and Latin: there are similar cor-
respondences between specific function words and
morphological features in many other languages.
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(a) Jaccard index of the morphological feature sets.
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(b) Average tree edit distance.

Figure 1: Heatmaps of anisomorphism metrics for UD language pairs. The colours range from blue (low
values) to red (high values).

The other source of anisomorphism are construc-
tion strategies: the same syntactic construction
is expressed through different types of strategies
(Croft et al., 2017), which results in different kinds
of subtrees in UD. An example construction is pred-
icative possession, which conveys the ownership
of an item by a possessor through the predicate of
a clause (Stassen, 2009). Consider these examples
in Dutch and Arabic, respectively:

(2) Ik
I

heb
have.1SG

een
a

filmidee
film+idea

‘I have an idea for a movie.’

(3) Laday-himā
at-them

‘ašyā-‘u
thing-NOM.PL

muštarakat-un
common-NOM.PL

‘They have things in common.’

In Dutch (Example 2), the owner Ik is the subject
and the item filmidee is the object of a transitive
verb (hab). However, in Arabic (Example 3) the
owner is a predicate with a locative prefix (laday-
himā), the item ‘ašyā‘u is the subject, and there is
no verb. These are called transitive and locative
strategies, respectively. Each strategy results in a
different (delexicalised) subtree, as shown in Fig-
ure 2b: this simple example with one construction
already suggests that the variation in syntactic con-
structions affects the compatibility of cross-lingual
trees pervasively.2

2Other strategies for predicative possession include topic,
conjunctional and genitive. More examples of constructions
are available in the supplemental material.

2.2 Measures of Anisomorphism
How can the differences described in §2.1 translate
into quantitative metrics of compatibility between
sentences in different languages? As the first an-
swer to this question, we propose to measure the
affinity in morphological type by considering the
sets of morphological features attested within each
of the UD treebanks.3 Particularly, for each pair
of a source language set MS and a target language
set MT , we estimate their Jaccard index, which is
defined for two sets as the cardinality of their inter-
section divided by the cardinality of their union, as
shown in Equation (4).

J(MS ,MT ) =
||MS ∩MT ||
||MS ∪MT ||

(4)

The values of the Jaccard index lie in [0, 1] A
heatmap is displayed in Figure 1a: the morpho-
logical similarity between language pairs varies
considerably, ranging from low (0.07 in Chinese-
Uyghur), mild (0.48 in Latvian-Tamil), to high
(0.72 in Bulgarian-Ukrainian). Note that the Jac-
card index 1 is an artifact for languages with no
expression of grammatical function (in Vietnamese,
among others) or lacking morphological annota-
tion (in Japanese). This metric exhibits other dis-
advantages: it does not take into account another
source of variation, the construction strategies, and
is based on general properties of a grammar rather

3The full list of features can be consulted at http://
universaldependencies.org/u/feat/

http://universaldependencies.org/u/feat/
http://universaldependencies.org/u/feat/
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Figure 2: Tree processing steps that transform the locative strategy for predicative possession in an Arabic
sentence into a transitive strategy. Tree processing is always applied on source language constructions.

than specific individual sentences.
Hence, we propose an approach to measure ani-

somorphism between individual sentences. We
parse the texts of the multi-parallel Bible corpus
(Christodouloupoulos and Steedman, 2015) with
the SyntaxNet parser (see §4). The language pairs
taken into account are limited to those present both
in our UD sample and in the Bible corpus, and
sentence-aligned by book, chapter and verse in-
dices. For a given language pair, we estimate the
tree edit distance between every corresponding pair
of sentence trees S and T with the Zhang-Sasha
algorithm (Zhang and Shasha, 1989) and then aver-
age over the number of trees.4

This tree edit distance operates on ordered trees
with node (but not edge) labels, hence it is suited
for delexicalised dependencies. In particular, it
is defined over a map M , which is a list of node
pairs where the former belongs to S or ε (empty
node), and the latter belongs to T or ε. If both are
non-empty, they trigger an operation of relabeling;
if the latter is ε, it is deletion; if the former is ε,
it is addition. The edit distance is the number of
operations required for a complete transformation
weighted by the factor γ.5 The following equation
summarises the tree edit distance measure:

γ(M,S, T ) =
∑

i,j∈M

γ(Si → Tj) + γ(Si → ε) + γ(ε→ Tj)

The possible values of this metric are non-negative
real numbers. We opted for this metric in particular
because it allows the insertion of internal nodes but
not transpositions. The former criterion allows to

4We implement this algorithm with the zs Python
package, available at https://github.com/timtadh/
zhang-shasha.

5For simplicity, we set γ = 1.

capture complex transformations without rebuild-
ing entire subtrees, the latter is aimed at taking into
account also variations in word order. In order to
evaluate pure syntactic isomorphism one should al-
low for transpositions and/or operate on unordered
trees.6

A heatmap of tree edit distances is shown in Fig-
ure 1b. The values reflect the typological affinity
of the language pairs: e.g., Spanish is very close
to French (both are Romance languages), mildly
similar to Polish (Slavic language, but still part of
the Indo-European family), but remote from He-
brew (from a different family, Semitic). The values
agree in part with the metrics of Figure 1a, where
the Jaccard indices of Hebrew (0.26), Polish (0.46),
and French (0.59) mirror the same relationships.

In §4, we show how these metrics can benefit
the source selection for knowledge transfer, some-
times even outranking established criteria such as
genealogical closeness. However, they have also
weaknesses: the Jaccard index of feature sets is
not reliable for languages with a limited number of
morphologically expressed grammatical categories.
On the other hand, the tree edit distance measure
requires resources (such as treebanks and parallel
corpora) that are not available for many languages.

2.3 Reduction of Anisomorphism
The measures of anisomorphism reveal which lan-
guages are structurally similar, which is directly
useful for source selection. However, the data avail-
able for many tasks are often limited to distant lan-
guages. Hence, it is necessary to increase their
affinity by gearing one towards the other. We pro-
pose to process source dependency trees with an
algorithm inspired by the same rules of the tree edit

6For a survey on tree edit distances, see Bille (2005).

https://github.com/timtadh/zhang-shasha
https://github.com/timtadh/zhang-shasha
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distance described in §2.2.
We leverage the readily available documenta-

tion in typological databases (e.g., World Atlas of
Language Structures: WALS) (Dryer and Haspel-
math, 2013).7 Given a source and a target language,
the documentation informs about their respective
strategies. For each strategy, we manually define
a ‘template’, i.e. the subtree it corresponds to, in
terms of morpho-syntactic features. For instance,
see the dashed circles in Figure 2b: note that tem-
plates are limited to a head and its immediate de-
pendents.

Then we explore source trees in a top-down
breadth-first fashion, and if a template for a source
strategy is identified, it is mapped to the correspond-
ing target template. In order to preserve semantic
information, contrary to Zhang and Shasha (1989),
the mapping operates on lexicalised edge-labeled
trees. Hence, ADD and CHANGE affect both words
(nodes) and edges (dependency relations). The
whole process is summarised in Algorithm 1.

Algorithm 1 Tree processing with rules
1: strategiess←WALSs . Define templates
2: strategiest←WALSt

3: function CHANGE(s, t(l)) . Define operations
4: s← t(l)

5: function DELETE(s)
6: s← ε
7: function ADD(t(l))
8: ε← t(l)

9: function MAPPING(rs, strategiest) . Define mapping
10: assert(rs ∈ strategiess)

return {CHANGE, DELETE, ADD}*
11: for subtree in trees do . Explore tree
12: if subtree ∈ strategiess then
13: list← MAPPING(subtree)
14: for ns, nt in list do . Perform operations
15: if ns 6= ε ∧ nt 6= ε then
16: CHANGE(ns, nt)
17: else if nt = ε then
18: DELETE(ns)
19: else if ns = ε then
20: ADD(nt)

For instance, consider the transformation from the
locative strategy for predicative possession in Ara-
bic from Example 3 into a transitive strategy. By
exploring its dependency graph (Figure 2a), the Al-
gorithm identifies a subtree corresponding to one
of the source strategies (left side of Figure 2b).
This subtree is mapped to the target template (right

7In particular, we take into account the following relevant
WALS features: 116 (polar questions), 122-123 (relativisa-
tion on subjects and obliques), 117 (predicative possession),
113-115 (negation), 107 (passive), 37-38 (articles), and 85
(prepositions).

side of Figure 2b) with the following operations:
it CHANGEs the root noun ladayhimā (the posses-
sor) with a dummy node (the verb). The same
noun is re-ADDed as a dependent with a new label
nsubj. Finally, the dependency relation of the other
noun ‘ašyā-‘u is CHANGEd from nsubj to dobj.
The resulting tree uses the source language vocabu-
lary, but target language construction strategies, as
shown in Figure 2c.

3 Data

In order to validate the usefulness of anisomor-
phism reduction through guided source selection
and tree processing, we experiment with three
different cross-lingual tasks: cross-lingual depen-
dency parsing, neural machine translation (NMT),
and cross-lingual sentence similarity (STS). In this
section, we present the data used in these tasks.

The data for dependency parsing are sourced
from Universal Dependencies v1.4.8 We sample
a group of 21 treebanks ensuring their representa-
tiveness by balancing them by family. We filter out
all languages but two belonging to same branches
of the Indo-European family, and keep those of all
the other families.9 We take into account only the
language-independent components of the annota-
tion: coarse POS tags, morphological features, and
dependency relations.

Regarding NMT data, English is ubiquitous in
the current datasets, overshadowing the wide spec-
trum of existing morphological types and syntac-
tic strategies. To address this limitation, we cre-
ate a new NMT dataset that matches typologically
distant languages directly without the need of a
bridge/pivot language. We extract aligned sen-
tences from the Open Subtitles 2016 tokenised
corpus (Tiedemann, 2009)10 for Arabic-Dutch and
Indonesian-Portuguese. This choice was made
based on their volume of parallel data in order to
produce evaluation data similar in size to those of
NMT datasets in shared tasks such as WMT16 (Bo-
jar et al., 2016). Training and test sets consist of 3M
and 5K sentences, respectively. These sentences
come automatically annotated by SyntaxNet.

The data for cross-lingual STS are chosen to re-
semble a real-world scenario with a resource-poor
target language. The training data (9,709 sentence

8http://universaldependencies.org/
9Language names are substituted in this work by their

corresponding ISO 639-1 codes. A table of names and codes
is provided in the supplemental material.

10http://opus.nlpl.eu/OpenSubtitles.php

http://universaldependencies.org/
http://opus.nlpl.eu/OpenSubtitles.php
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pairs) are in English, taken from the STS bench-
mark, the ensemble of all the datasets from Se-
mEval 2012-2017 STS tasks. The test data (250
sentence pairs) come from Task 1 of SemEval 2017
(Cer et al., 2017); target language is Arabic.11 All
the sentence pairs are associated with a label rang-
ing from 0 (dissimilarity) to 5 (equivalence).

4 Methodology

Cross-lingual Dependency Parsing. To assess
if the anisomorphism metrics devised in §2.2 are
reliable in finding compatible languages for knowl-
edge transfer, we use the Jaccard index of the mor-
phological feature sets as a criterion to choose
source languages for cross-lingual parser transfer.
We adopt the variant of delexicalised model trans-
fer (Zeman and Resnik, 2008) for this task. This
technique ignores lexicalised features and leverages
only language-independent features instead.

For each language from a sample of 7 (typologi-
cally diverse) targets, we report LAS scores using
three different source languages: (1) the highest-
ranked source according to the Jaccard index; (2) a
source sampled from the middle of the list ranked
by the Jaccard indices; (3) a very dissimilar lan-
guage sampled from the bottom of the ranked list.
The total number of sentences used for training
corresponds to the smallest of the three source lan-
guage treebanks in order to isolate the effect of
treebank size on the final transfer results.

We conduct experiments with two well-known
transition-based parsers (Nivre, 2006): (1) DeSR
(Attardi et al., 2007) and (2) SyntaxNet (Andor
et al., 2016; Alberti et al., 2017). The two were se-
lected as they represent two different architectures:
the former is an SVM-based model with a polyno-
mial kernel, whereas the latter is a feed-forward
neural network with beam search based on condi-
tional random fields. The results are evaluated in
terms of LAS and UAS scores.

Neural Machine Translation. For NMT, we ex-
amine whether the tree processing procedure from
§2.3 can reduce anisomorphism between source
and target language syntactic structures. We thus
run NMT models in two settings: with and without
the anisomorphism reduction procedure.

For this experiment we rely on a state-of-the-art
syntax-aware NMT architecture. We report its per-
formance by BLEU scores (Papineni et al., 2002).

11http://alt.qcri.org/semeval2017/
task1/

In particular, we use an attentional encoder-decoder
network that jointly learns to translate and align
words (Bahdanau et al., 2015) implemented in the
Nematus suite12 (Sennrich et al., 2017). The en-
coder is a bidirectional gated recurrent network.
For each step i, the decoder predicts the next word
in output by taking as input the current hidden
state hi, the previous word wi−1 and a context vec-
tor, i.e., a weighted sum of all the hidden states∑n

j=1wj · h1. The weights are learned by a multi-
layer perceptron that estimates the likelihood of the
alignment between the predicted word and each of
the input words: wi,j = P (a|yi, xj).

This model is enriched with additional linguistic
features on input, as proposed by Sennrich and Had-
dow (2016). In particular, we select the following
which are proven as useful in prior work, and also
relevant to our experiment: word form, POS tag,
and dependency relations. These features are con-
catenated and fed to the encoder. Tree processing
from §2.3 affects these features (and consequently
the sentence representation) by changing the initial
tree structure. For instance, the original tree in Fig-
ure 2a and the processed one in Figure 2c would
correspond to these feature sets:

Original Preprocessed
ladayhimā ⊕ N ⊕ ROOT himā ⊕ N ⊕ NSUBJ

DUMMY ⊕ V ⊕ ROOT
‘ašyā‘u ⊕ N ⊕ NSUBJ ‘ašyā‘u ⊕ N ⊕ DOBJ
muštarakatun ⊕ A ⊕
Amod

muštarakatun ⊕ A ⊕
Amod

Cross-lingual STS. We use cross-lingual STS as
another evaluation task to validate if the anisomor-
phism reduction algorithm from §2.3 generalises
beyond the initial application in NMT. The state-of-
art approach to this task in the monolingual setting
encodes trees of sentence pairs with a TreeLSTM

architecture (Tai et al., 2015). The hidden represen-
tations of the tree roots of both sentences in each
pair are then concatenated and fed to a multi-layer
perceptron classifier, which yields a probability dis-
tribution over the six classes (from 0=dissimilarity
to 5=equivalence).

The following TreeLSTM has been implemented
in PyTorch. The parameters of an LSTM model are
the matrix weightsWq for inputs and Uq for hidden
representations, and a bias bq. q corresponds to an
input gate it, a forget gate ft, an output gate ot, or
a memory cell ct at time step t. The hidden state ht

12https://github.com/EdinburghNLP/
nematus

http://alt.qcri.org/semeval2017/task1/
http://alt.qcri.org/semeval2017/task1/
https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus
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Figure 3: Results of delexicalised cross-lingual transfer using DeSR. Results with SyntaxNet are omitted
as they show very similar patterns. The numbers in parentheses denote the amount of training sentences.

is derived from the equations below. To extend this
model to dependency trees, we consider ht−1 to
equal the sum of the hidden states of the children of
a node

∑
k∈C(xt)

hk, and provide a different forget
gate ftk for each child.

qt = σ (Wqxt + Uqht−1 + bq) (5)
ct = ft � ct−1 + it � tanh (Wcxt + Ucht−1 + bc) (6)
ht = ot � tanh(ct) (7)

In our resource-lean cross-lingual scenario the lan-
guage of the training data (English) differs from
that of the target (Arabic). Since TreeLSTM is a
lexicalised model, we employ multilingual word
embeddings, such that the words of both languages
lie in the shared cross-lingual semantic space. In
particular, we map English into Arabic through the
iterative Procustes method devised by Artetxe et al.
(2017). The results are evaluated through the Pear-
son correlation and the Mean Squared Error (MSE)
between predicted and golden labels.

Hyperparameters. DeSR has degree 2, γ 0.18,
C 0.4, coef0 0.4, and ε 1.0. The hyper-parameters
for the deep models are shown in Table 1: we have
followed the training setup suggestions from prior
work for all the models used in our experiments.

5 Results and Discussion

Source Selection. The results for cross-lingual
parser transfer with the DeSR parser are provided
in Figure 3, while the results with SyntaxNet are
provided as supplemental material as they follow
the same trends. The selection of the source for

SyntaxNet
(Parsing)

Nematus
(NMT)

TreeLSTM
(STS)

Hidden layers 2 2 1
Hidden size 512 1000 300
Input size 160 280 512
Batch size 256 80 25
Epochs 12 (greed);

10 (beam)
Early stop-
ping

5

Learning rate 0.8 1−4 1−2

Optimiser Adam AdaDelta SGD
Dropout 0.2 / 0.3 0.1 / 0.2 0

Table 1: Hyper-parameters of the models.

delexicalised cross-lingual parsing based on the
proposed Jaccard index measure shows than se-
lecting a source language with a lower degree of
anisomorphism is crucial for knowledge transfer.
The values for the selected languages are listed in
Table 2.

Target High Mid Low

Danish 0.49 0.39 0.19
Spanish 0.59 0.46 0.26
Finnish 0.44 0.23 0.15
Hebrew 0.31 0.24 0.15
Croatian 0.62 0.46 0.25
Tamil 0.48 0.43 0.38
Vietnamese 1.00 0.02 0.01

Table 2: Jaccard indices of source-target pairs.

The high-similarity source always outperforms
the alternatives with both DeSR and SyntaxNet,
and with respect to both LAS and UAS scores. For
instance, Swedish is the best source for Danish,
Estonian for Finnish, and Bulgarian for Croatian.
Similarly, the preference for medium- over low-
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AR-NL ID-PT
Baseline 7.01 14.79
+Syntax 14.40 23.70
++Preprocessing 15.40 24.12

Table 3: NMT results: BLEU scores of a joint
translator and aligner (Baseline), fed with linguistic
features (+Syntax), and with processed trees to
reduce anisomorphism (++Preprocessing).

Pearson MSE
Mono-lingual 77.9 0.94
Cross-lingual 44.7 1.82
+Preprocessing 48.0 1.64

Table 4: Cross-lingual STS results: Pearson and
MSE scores of the TreeLSTM architecture with orig-
inal and processed trees.

ranking languages is pronounced, too, as it holds
for 6 groups out of 7. For instance, Slovak is a
better source choice for Danish than Basque, Polish
is a better source choice for Spanish than Hebrew.

Most notably, our findings generalise even to
cases when the top-ranking language (e.g. Farsi)
does not belong to the language family of the target
(e.g. Hebrew) whereas the language with a medium
overlap does (e.g. Arabic).

Tree Processing. The results of the experiments
also corroborate the idea that tree harmonisation
informed by linguistic typology, and implemented
through our anisomorphism reduction procedure
can assist model transfer in cross-lingual tasks.
The BLEU scores for Neural Machine Translation,
shown in Table 3, reveal consistent improvements.
The model enriched with syntactic features out-
performs the baseline with joint translation and
alignment without syntactic features by 7.39 BLEU

points in Arabic-Dutch and 8.91 BLEU points in
Indonesian-Portuguese. Importantly, our extension
which reduces anisomorphism by processing syn-
tactic trees in the source language leads to further
improvements for both language pairs: it surpasses
the model with syntactic features by 1.0 BLEU

points in Arabic-Dutch, and 0.42 BLEU points in
Indonesian-Portuguese.

These results support our hypotheses: a) syn-
tax is pivotal in NMT, confirming findings from
prior work (Sennrich et al., 2017); b) the tree pro-
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Figure 4: Hidden representations of original (red
circles) and processed (blue triangles) sentences.

cessing algorithm from §2.3 facilitates the align-
ment between source and target words, and also
grants the encoder-decoder architecture a better
leverage of dependency features. This lends sup-
port to our argument that anisomorphism limits
the ability of models to generalise beyond single
languages, and reducing it can help cross-lingual
syntax-aware NLP tasks.

A similar conclusion can be reached by compar-
ing the performance of TreeLSTM-based models on
the cross-lingual STS task, reported in Table 4. In
particular, the Pearson correlation score increases
by 3.3 points and MSE decreases by 0.18 points
when our tree processing algorithm is applied. We
inspect the hidden representations of both original
and processed sentences with t-SNE dimensionality
reduction in Figure 4. The impact of the algorithm
becomes evident as their clusters are completely
separate. However, the comparison against the
monolingual STS score obtained on the English
test set shows that there is still a wide gap to be
bridged by cross-lingual knowledge transfer.

Note that our tree processing algorithm is guided
by typological knowledge in WALS. The results
of the NMT and cross-lingual STS tasks suggest
that existing knowledge in such large typological
databases (O’Horan et al., 2016; Bender, 2016) can
be readily used to support cross-lingual transfer
tasks in NLP, as well as the interpretation of poly-
glot neural models (Ponti et al., 2017). We hope
that our work will spark further research on the use
of typology in cross-lingual NLP applications.
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6 Related Work

The need to account for discrepancies in tree struc-
tures emerged early in the domain of Information
Theory: in particular, the tree edit distance turned
out to be useful for correcting programming scripts
(Tai, 1979), evolution studies, and most notably ac-
counting for transformations in constituency trees
(Selkow, 1977). Although previous works were
aware of the problem of anisomorphism in the con-
text of syntax-based NLP applications (Ambati,
2008), to our knowledge we are the first to quantify
it formally and to leverage it in cross-lingual NLP.

For source selection, similarity metrics from
prior work mostly relied on information stored
in typological databases (Naseem et al., 2012;
Täckström et al., 2013; Zhang and Barzilay, 2015;
Deri and Knight, 2016). Otherwise, the metrics
were derived empirically: they mostly concerned
linear-order properties such as part-of-speech n-
grams (Rosa and Zabokrtsky, 2015; Agić, 2017).
In domain adaptation, the selection also hinges
upon topic models (Plank and Van Noord, 2011)
or Bayesian Optimisation (Ruder and Plank, 2017).
The metrics we defined in §2.2 are instead based
on configurational properties of languages, and add
another piece to the puzzle of source selection.

The idea of tree processing dates back to the
attempts to steer source towards target syntactic
structures in statistical MT, although they were
mostly limited to simple reordering steps.

Gildea (2003) proposed cloning operations to
relocate subtrees. Other works learned rewrite pat-
terns in an automatic fashion to minimize differ-
ences in the order of chunks (Zhang et al., 2007)
or labeled dependencies (Habash, 2007). Instead,
Smith and Eisner (2009) proposed to learn jointly a
translation and a loose alignment of nodes, in order
to avoid enforcing the bias of the source structure.
Reviving these approaches within the framework
of deep learning seems crucial as far as state-of-art
models depend on syntactic information (Eriguchi
et al., 2016; Dyer et al., 2016).

In general, our approach aims at developing and
evaluating models focused on specific construc-
tions rather than languages as a whole (Rimell et al.,
2009; Bender, 2011; Rimell et al., 2016). The gist
is that current models have reached a plateau in
performance because they excel with frequent and
simple phenomena, but they still lag behind with
respect to rarer or more complex constructions.

7 Conclusions and Future Work

We have demonstrated that syntactic structures dif-
fer across languages even in well-developed annota-
tion schemes such as Universal Dependencies. This
variation stems from morphological and syntactic
differences across languages. This phenomenon,
which we have labeled as anismorphism, can chal-
lenge the transfer of knowledge from one language
to another. We have proposed novel methodology
which reduces the degree of anisomorphism cross-
lingually 1) by selecting the most compatible lan-
guages for transfer, and 2) by editing the syntactic
structures (i.e., trees) themselves.

First, we have provided two measures of aniso-
morphism based on Jaccard distance of morpho-
logical feature sets, as well as average tree edit
distance of parallel sentences. These can provide
reliable indicators for language compatibility for
source selection in cross-lingual parsing.

Second, we have proposed a new method for
fine-tuning source dependency trees to resemble
target language trees in order to reduce anisomor-
phism. The method does not depend on parallel
data, and it leverages readily available information
in typological databases. It boosts the performance
of standard frameworks in two downstream applica-
tions, obtaining competitive or state-of-art results
for 1) NMT on a new dataset of Arabic-Dutch and
Indonesian-Portuguese and 2) cross-lingual sen-
tence similarity.

Future work will look into automating the tree
processing procedure. A parametrised model could
be trained to imitate the operations performed by
Zhang and Shasha (1989)’s algorithm on multi-
parallel texts, conditioned on the tree features and
previous operations. Another possible research di-
rection is learning the mapping between structures
from parallel texts jointly with a main task, in the
spirit of quasi-synchronous grammars (Smith and
Eisner, 2009). Finally, a wider range of syntactic
constructions could be covered by inferring typo-
logical strategies from texts (Östling, 2015; Coke
et al., 2016).

The data for NMT, and the code for our cross-
lingual STS are available at the following link:
github.com/ducdauge/isotransf.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of the
2016 Conference on Machine Translation. In Pro-
ceedings of WMT, volume 2, pages 131–198.

Joan L Bybee. 1985. Morphology: A study of the re-
lation between meaning and form, volume 9. John
Benjamins Publishing.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
SEMEVAL, pages 1–14.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: The Bible in
100 languages. Language Resources and Evalua-
tion, 49(2):375–395.

Reed Coke, Ben King, and Dragomir R. Radev. 2016.
Classifying syntactic regularities for hundreds of lan-
guages. CoRR, abs/1603.08016.

William Croft, Dawn Nordquist, Katherine Looney,
and Michael Regan. 2017. Linguistic typology
meets Universal Dependencies. In Proceedings of
the 15th International Workshop on Treebanks and
Linguistic Theories (TLT15), pages 63–75.

Aliya Deri and Kevin Knight. 2016. Grapheme-to-
phoneme models for (almost) any language. In Pro-
ceedings of ACL, pages 399–408.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT, pages
199–209.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of ACL, pages
823—-833.

Daniel Gildea. 2003. Loosely tree-based alignment for
machine translation. In Proceedings of ACL, pages
80–87.

Thomas Groß and Timothy Osborne. 2015. The de-
pendency status of function words: Auxiliaries. In
Proceedings of the International Conference on De-
pendency Linguistics (DepLing), pages 111–120.

Nizar Habash. 2007. Syntactic preprocessing for statis-
tical machine translation. Proceedings of MT SUM-
MIT.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typol-
ogy. In Proceedings of LREC, pages 4585–4592.

http://aclweb.org/anthology/W/W17/W17-0401.pdf
http://aclweb.org/anthology/W/W17/W17-0401.pdf
http://www.aclweb.org/anthology/W14-4203
http://www.aclweb.org/anthology/W14-4203
https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/P17-2021
http://arxiv.org/abs/1703.04929
http://www.cs.cmu.edu/~vamshi/publications/DependencyMT_report.pdf
http://www.cs.cmu.edu/~vamshi/publications/DependencyMT_report.pdf
http://www.aclweb.org/anthology/P16-1231
http://www.aclweb.org/anthology/P16-1231
http://aclweb.org/anthology/P17-1042
http://aclweb.org/anthology/P17-1042
http://www.aclweb.org/anthology/D/D07/D07-1119
http://www.aclweb.org/anthology/D/D07/D07-1119
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://journals.linguisticsociety.org/elanguage/lilt/article/view/2624/2603.html
https://journals.linguisticsociety.org/elanguage/lilt/article/view/2624/2603.html
https://www.degruyter.com/view/j/lity.2016.20.issue-3/lingty-2016-0035/lingty-2016-0035.xml
https://www.degruyter.com/view/j/lity.2016.20.issue-3/lingty-2016-0035/lingty-2016-0035.xml
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/j.tcs.2004.12.030
http://www.aclweb.org/anthology/W16-2301
http://www.aclweb.org/anthology/W16-2301
http://wals.info/refdb/record/Bybee-1985
http://wals.info/refdb/record/Bybee-1985
http://www.aclweb.org/anthology/S17-2001
http://www.aclweb.org/anthology/S17-2001
http://www.aclweb.org/anthology/S17-2001
https://link.springer.com/article/10.1007/s10579-014-9287-y
https://link.springer.com/article/10.1007/s10579-014-9287-y
http://arxiv.org/abs/1603.08016
http://arxiv.org/abs/1603.08016
http://ceur-ws.org/Vol-1779/05croft.pdf
http://ceur-ws.org/Vol-1779/05croft.pdf
http://www.aclweb.org/anthology/P16-1038
http://www.aclweb.org/anthology/P16-1038
http://wals.info/
http://www.aclweb.org/anthology/N16-1024
http://www.aclweb.org/anthology/N16-1024
http://www.aclweb.org/anthology/P16-1078
http://www.aclweb.org/anthology/P16-1078
http://www.aclweb.org/anthology/P03-1011
http://www.aclweb.org/anthology/P03-1011
http://www.aclweb.org/anthology/W15-2114
http://www.aclweb.org/anthology/W15-2114
https://pdfs.semanticscholar.org/3425/2edd8d7a6996b32cde69317bae067809a4a3.pdf
https://pdfs.semanticscholar.org/3425/2edd8d7a6996b32cde69317bae067809a4a3.pdf
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1062.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1062.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1062.html


1541

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of ACL, pages 629–637.

Joakim Nivre. 2006. Inductive dependency parsing.
Springer.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal Dependen-
cies v1: A multilingual treebank collection. In Pro-
ceedings of LREC, pages 1659–1666.

Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Re-
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2017. Decoding sentiment from distributed repre-
sentations of sentences. In Proceedings of *SEM,
pages 22–32.

Mohammad Sadegh Rasooli and Michael Collins. 2017.
Cross-lingual syntactic transfer with limited re-
sources. Transactions of the ACL, 5:279–293.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proceedings of EMNLP, pages 813–
821.

Laura Rimell, Jean Maillard, Tamara Polajnar, and
Stephen Clark. 2016. RELPRON: A relative clause
evaluation data set for compositional distributional
semantics. Computational Linguistics, 42(4):661–
701.

Rudolf Rosa and Zdenek Zabokrtsky. 2015. KLcpos3
- a language similarity measure for delexicalized
parser transfer. In Proceedings of ACL, pages 243–
249.

Sebastian Ruder and Barbara Plank. 2017. Learning
to select data for transfer learning with bayesian op-
timization. In Proceedings of EMNLP, pages 372–
382.

Stanley M. Selkow. 1977. The tree-to-tree editing prob-
lem. Information Processing Letters, 6(6):184–186.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
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