
Forest-Based Neural Machine Translation

Chunpeng Ma1,3∗Akihiro Tamura2 Masao Utiyama3 Tiejun Zhao1†Eiichiro Sumita3

1Harbin Institute of Technology, Harbin, China
2Ehime University, Matsuyama, Japan

3National Institute of Information and Communications Technology, Kyoto, Japan
{cpma, tjzhao}@hit.edu.cn tamura@cs.ehime-u.ac.jp

{mutiyama, eiichiro.sumita}@nict.go.jp

Abstract

Tree-based neural machine translation
(NMT) approaches, although achieved im-
pressive performance, suffer from a ma-
jor drawback: they only use the 1-
best parse tree to direct the translation,
which potentially introduces translation
mistakes due to parsing errors. For sta-
tistical machine translation (SMT), forest-
based methods have been proven to be
effective for solving this problem, while
for NMT this kind of approach has not
been attempted. This paper proposes a
forest-based NMT method that translates
a linearized packed forest under a simple
sequence-to-sequence framework (i.e., a
forest-to-string NMT model). The BLEU
score of the proposed method is higher
than that of the string-to-string NMT, tree-
based NMT, and forest-based SMT sys-
tems.

1 Introduction

NMT has witnessed promising improvements re-
cently. Depending on the types of input and out-
put, these efforts can be divided into three cate-
gories: string-to-string systems (Sutskever et al.,
2014; Bahdanau et al., 2014); tree-to-string sys-
tems (Eriguchi et al., 2016, 2017); and string-to-
tree systems (Aharoni and Goldberg, 2017; Nade-
jde et al., 2017). Compared with string-to-string
systems, tree-to-string and string-to-tree systems
(henceforth, tree-based systems) offer some attrac-
tive features. They can use more syntactic infor-
mation (Li et al., 2017), and can conveniently in-
corporate prior knowledge (Zhang et al., 2017).

∗ Contribution during internship at National Institute of
Information and Communications Technology.

†Corresponding author

Because of these advantages, tree-based methods
become the focus of many researches of NMT
nowadays.

Based on how to represent trees, there are two
main categories of tree-based NMT methods: rep-
resenting trees by a tree-structured neural network
(Eriguchi et al., 2016; Zaremoodi and Haffari,
2017), representing trees by linearization (Vinyals
et al., 2015; Dyer et al., 2016; Ma et al., 2017).
Compared with the former, the latter method has a
relatively simple model structure, so that a larger
corpus can be used for training and the model can
be trained within reasonable time, hence is pre-
ferred from the viewpoint of computation. There-
fore we focus on this kind of methods in this paper.

In spite of impressive performance of tree-based
NMT systems, they suffer from a major draw-
back: they only use the 1-best parse tree to di-
rect the translation, which potentially introduces
translation mistakes due to parsing errors (Quirk
and Corston-Oliver, 2006). For SMT, forest-based
methods have employed a packed forest to address
this problem (Huang, 2008), which represents ex-
ponentially many parse trees rather than just the
1-best one (Mi et al., 2008; Mi and Huang, 2008).
But for NMT, (computationally efficient) forest-
based methods are still being explored1.

Because of the structural complexity of forests,
the inexistence of appropriate topological or-
dering, and the hyperedge-attachment nature of
weights (see Section 3.1 for details), it is not trivial
to linearize a forest. This hinders the development
of forest-based NMT to some extent.

Inspired by the tree-based NMT methods based
on linearization, we propose an efficient forest-
based NMT approach (Section 3), which can en-

1Zaremoodi and Haffari (2017) have proposed a forest-
based NMT method based on a forest-structured neural net-
work recently, but it is computationally inefficient (see Sec-
tion 5).

code the syntactic information of a packed for-
est on the basis of a novel weighted lineariza-
tion method for a packed forest (Section 3.1), and
can decode the linearized packed forest under the
simple sequence-to-sequence framework (Section
3.2). Experiments demonstrate the effectiveness
of our method (Section 4).

2 Preliminaries

We first review the general sequence-to-sequence
model (Section 2.1), then describe tree-based
NMT systems based on linearization (Section 2.2),
and finally introduce the packed forest, through
which exponentially many trees can be repre-
sented in a compact manner (Section 2.3).

2.1 Sequence-to-sequence model

Current NMT systems usually resort to a sim-
ple framework, i.e., the sequence-to-sequence
model (Cho et al., 2014; Sutskever et al., 2014).
Given a source sequence (x0, . . . , xT), in order
to find a target sequence (y0, . . . , yT ′) that max-
imizes the conditional probability p(y0, . . . , yT ′ |
x0, . . . , xT), the sequence-to-sequence model
uses one RNN to encode the source sequence into
a fixed-length context vector c and a second RNN
to decode this vector and generate the target se-
quence. Formally, the probability of the target se-
quence can be calculated as follows:

p(y0, . . . ,yT ′ | x0, . . . , xT)

=

T ′∏
t=0

p(yt | c, y0, . . . , yt−1),
(1)

where

p(yt | c, y0, . . . , yt−1) = g(yt−1, st, c), (2)

st = f(st−1, yt−1, c), (3)

c = q(h0, . . . , hT), (4)

ht = f(et, ht−1). (5)

Here, g, f , and q are nonlinear functions; ht and
st are the hidden states of the source-side RNN
and target-side RNN, respectively, c is the context
vector, and et is the embedding of xt.

Bahdanau et al. (2014) introduced an attention
mechanism to deal with the issues related to long
sequences (Cho et al., 2014). Instead of encoding
the source sequence into a fixed vector c, the at-
tention model uses different ci-s when calculating

the target-side output yi at time step i:

ci =
T∑

j=0

αijhj , (6)

αij =
exp(a(si−1, hj))∑T
k=0 exp(a(si−1, hk))

. (7)

The function a(si−1, hj) can be regarded as repre-
senting the soft alignment between the target-side
RNN hidden state si−1 and the source-side RNN
hidden state hj .

By changing the format of the source/target
sequences, this framework can be regarded as
a string-to-string NMT system (Sutskever et al.,
2014), a tree-to-string NMT system (Li et al.,
2017), or a string-to-tree NMT system (Aharoni
and Goldberg, 2017).

2.2 Linear-structured tree-based NMT
systems

Regarding the linearization adopted for tree-to-
string NMT (i.e., linearization of the source side),
Sennrich and Haddow (2016) encoded the se-
quence of dependency labels and the sequence of
words simultaneously, partially utilizing the syn-
tax information, while Li et al. (2017) traversed
the constituent tree of the source sentence and
combined this with the word sequence, utilizing
the syntax information completely.

Regarding the linearization used for string-to-
tree NMT (i.e., linearization of the target side),
Nadejde et al. (2017) used a CCG supertag se-
quence as the target sequence, while Aharoni and
Goldberg (2017) applied a linearization method
in a top-down manner, generating a sequence en-
semble for the annotated tree in the Penn Tree-
bank (Marcus et al., 1993). Wu et al. (2017) used
transition actions to linearize a dependency tree,
and employed the sequence-to-sequence frame-
work for NMT.

It can be seen all current tree-based NMT sys-
tems use only one tree for encoding or decoding.
In contrast, we hope to utilize multiple trees (i.e., a
forest). This is not trivial, on account of the lack of
a fixed traversal order and the need for a compact
representation.

2.3 Packed forest

The packed forest gives a representation of expo-
nentially many parsing trees, and can compactly
encode many more candidates than the n-best list

John

S0,5

NP0,1

VP1,4

.4,5

NP2,4

NNP0,1 VBZ1,2

has

DT2,3

a dog

NN3,4

.

NP2,4

S2,4

-3.9490 4.7280 5.0983

-1.3092

-6.7403 -18.1946

5.8665

[1]

[2]

[3] [4] [5]

[6] [7]

[8]

[9]

[10]

[11]

(a) Packed forest

John

S

NP VP .

NPNNP VBZ

has DT

a dog

NN

.

(b) Correct constituent tree, score = −46.2389

John

S

NP VP .

SNNP VBZ

has

DT

a dog

NN

.

NP

(c) Incorrect constituent tree, score = −58.6321

Figure 1: An example of (a) a packed forest. The numbers in the brackets located at the upper-left corner
of each node in the packed forest show one correct topological ordering of the nodes. The packed forest
is a compact representation of two trees: (b) the correct constituent tree, and (c) an incorrect constituent
tree. Note that the terminal nodes (i.e., words in the sentence) in the packed forest are shown only for
illustration, and they do not belong to the packed forest.

(Huang, 2008). Figure 1a shows a packed forest,
which can be unpacked into two constituent trees
(Figure 1b and Figure 1c).

Formally, a packed forest is a pair 〈V,E〉, where
V is the set of nodes and E is the set of hy-
peredges. Each v ∈ V can be represented as
Xi,j , where X is a constituent label and i, j ∈
[0, n] are indices of words, showing that the node
spans the words ranging from i (inclusive) to j
(exclusive). Here, n is the length of the in-
put sentence. Each e ∈ E is a three-tuple
〈head(e), tails(e), score(e)〉, where head(e) ∈
V is similar to the head node in a constituent tree,
and tails(e) ∈ V ∗ is similar to the set of child
nodes in a constituent tree. score(e) ∈ R is the
logarithm of the probability that tails(e) repre-
sents the tails of head(e) calculated by the parser.
Based on score(e), the score of a constituent tree
T can be calculated as follows:

score(T) = −λn+
∑

e∈E(T)

score(e), (8)

where E(T) is the set of hyperedges appearing in
tree T , and λ is a regularization coefficient for the
sentence length2.

2Following the configuration of Charniak and Johnson

3 Forest-based NMT

We first propose a linearization method for the
packed forest (Section 3.1), then describe how to
encode the linearized forest (Section 3.2), which
can then be translated by the conventional decoder
(see Section 2.1).

3.1 Forest linearization

Recently, several studies have focused on the lin-
earization methods of a syntax tree, both in the
area of tree-based NMT (Section 2.2) and in the
area of parsing (Vinyals et al., 2015; Dyer et al.,
2016; Ma et al., 2017). Basically, these meth-
ods follow a fixed traversal order (e.g., depth-
first), which does not exist for the packed forest (a
directed acyclic graph (DAG)). Furthermore, the
weights are attached to edges of a packed forest
instead of the nodes, which further increase the
difficulty.

Topological ordering algorithms for DAG
(Kahn, 1962; Tarjan, 1976) are not good solutions,
because the outputted ordering is not always opti-
mal for machine translation. In particular, a topo-

(2005), for all the experiments in this paper, we fixed λ to
log2 600.

Algorithm 1 Linearization of a packed forest
1: function LINEARIZEFOREST(〈V,E〉,w)
2: v ← FINDROOT(V)
3: r← []
4: EXPANDSEQ(v, r, 〈V,E〉,w)
5: return r
6: function FINDROOT(V)
7: for v ∈ V do
8: if v has no parent then
9: return v

10: procedure EXPANDSEQ(v, r, 〈V,E〉,w)
11: for e ∈ E do
12: if head(e) = v then
13: if tails(e) 6= ∅ then
14: for t ∈ SORT(tails(e)) do . Sort

tails(e) by word indices.
15: EXPANDSEQ(t, r, 〈V,E〉,w)
16: l← LINEARIZEEDGE(head(e),w)
17: r.append(〈l, σ(0.0)〉) . σ is the sigmoid

function, i.e., σ(x) = 1
1+e−x , x ∈ R.

18: l ← c©LINEARIZEEDGES(tails(e),w)
. c© is a unary operator.

19: r.append(〈l, σ(score(e))〉)
20: else
21: l← LINEARIZEEDGE(head(e),w)
22: r.append(〈l, σ(0.0)〉)
23: function LINEARIZEEDGE(Xi,j ,w)
24: return X ⊗ (�j−1

k=iwk)

25: function LINEARIZEEDGES(v,w)
26: return ⊕v∈vLINEARIZEEDGE(v,w)

logical ordering could ignore “word sequential in-
formation” and “parent-child information” in the
sentences.

For example, for the packed forest in Figure 1a,
although “[10]→[1]→[2]→ · · · →[9]→[11]” is a
valid topological ordering, the word sequential in-
formation of the words (e.g., “John” should be lo-
cated ahead of the period), which is fairly crucial
for translation of languages with fixed pragmatic
word order such as Chinese or English, is lost.

As another example, for the packed forest in
Figure 1a, nodes [2], [9], and [10] are all the chil-
dren of node [11]. However, in the topological or-
der “[1]→[2]→ · · · →[9]→[10]→[11],” node [2]
is quite far from node [11], while nodes [9] and
[10] are both close to node [11]. The parent-child
information cannot be reflected in this topological
order, which is not what we would expect.

To address the above two problems, we pro-
pose a novel linearization algorithm for a packed
forest (Algorithm 1). The algorithm linearizes
the packed forest from the root node (Line 2) to
leaf nodes by calling the EXPANDSEQ procedure
(Line 15) recursively, while preserving the word
order in the sentence (Line 14). In this way, word
sequential information is preserved. Within the

NNP⊗John / NP⊗John / c©NNP⊗John / VBZ⊗has / DT⊗a /
NN⊗dog / NP⊗a�dog / c©DT⊗a⊕NN⊗dog / NP⊗a�dog /
c©DT⊗a⊕NN⊗dog / S⊗a�dog / c©NP⊗a�dog /

VP⊗has�a�dog / c©VBZ⊗has⊕NP⊗a�dog /
c©VBZ⊗has⊕S⊗a�dog / .⊗. / S⊗John�has�a�dog�. /
c©NP⊗John⊕VP⊗has�a�dog⊕.⊗.

Figure 2: Linearization result of the packed forest
in Figure 1a

EXPANDSEQ procedure, once a hyperedge is lin-
earized (Line 16), the tails are also linearized im-
mediately (Line 18). In this way, parent-child in-
formation is preserved. Intuitively, different parts
of constituent trees should be combined in differ-
ent ways, therefore we define different operators
(c©, ⊗, ⊕, or �) to represent the relationships be-
tween different parts, so that the representations
of these parts can be combined in different ways
(see Section 3.2 for details). Words are concate-
nated by the operator “�” with each other, a word
and a constituent label is concatenated by the op-
erator “⊗”, the linearization results of child nodes
are concatenated by the operator “⊕” with each
other, while the unary operator “ c©” is used to in-
dicate that the node is the child node of the pre-
vious part. Furthermore, each token in the lin-
earized sequence is related to a score, representing
the confidence of the parser.

The linearization result of the packed forest in
Figure 1a is shown in Figure 2. Tokens in the lin-
earized sequence are separated by slashes. Each
token in the sequence is composed of different
types of symbols and combined by different op-
erators. We can see that word sequential infor-
mation is preserved. For example, “NNP⊗John”
(linearization result of node [1]) is in front of
“VBZ⊗has” (linearization result of node [3]),
which is in front of “DT⊗a” (linearization result
of node [4]). Moreover, parent-child informa-
tion is also preserved. For example, “NP⊗John”
(linearization result of node [2]) is followed by
“ c©NNP⊗John” (linearization result of node [1],
the child of node [2]).

Note that our linearization method cannot fully
recover packed forest. What we want to do is
not to propose a fully recoverable linearization
method. What we actually want to do is to en-
code syntax information as much as possible, so
that we can improve the performance of NMT. As
will be shown in Section 4, this goal is achieved.

Also note that there is one more advantage of
our linearization method: the linearized sequence

… …

… … Decoder

Input Layer

Symbol Layer

Node/Operator Layer

Embedding Layer

Attention Layer

Score Layer

Hidden Layer

Pre-Embedding Layer

(a) Score-on-Embedding (SoE)

… …

… … Decoder

Input Layer

Symbol Layer

Node/Operator Layer

Embedding Layer

Attention Layer

Score Layer

Hidden Layer

Pre-Embedding Layer

(b) Score-on-Attention (SoA)

Figure 3: The framework of the forest-based NMT system.

is a weighted sequence, while all the previous
studies ignored the weights during linearization.
As will be shown in Section 4, the weights are ac-
tually important not only for the linearization of
a packed forest, but also for the linearization of a
single tree.

By preserving only the nodes and hyperedges
in the 1-best tree and removing all others, our
linearization method can be regarded as a tree-
linearization method. Compared with other tree-
linearization methods, our method combines sev-
eral different kinds of information within one sym-
bol, retaining the parent-child information, and
incorporating the confidence of the parser in the
sequence. We examine whether the weights can
be useful not only for linear structured tree-based
NMT but also for our forest-based NMT.

Furthermore, although our method is nonre-
versible for packed forests, it is reversible for con-
stituent trees, in that the linearization is processed
exactly in the depth-first traversal order and all
necessary information in the tree nodes has been
encoded. As far as we know, there is no previous
work on linearization of packed forests.

3.2 Encoding the linearized forest
The linearized packed forest forms the input of
the encoder, which has two major differences from
the input of a sequence-to-sequence NMT system.
First, the input sequence of the encoder consists
of two parts: the symbol sequence and the score
sequence. Second, each symbol in the symbol se-
quence consists of several parts (words and con-
stituent labels), which are combined by certain op-
erators (c©, ⊗, ⊕, or �). Based on these observa-

tions, we propose two new frameworks, which are
illustrated in Figure 3.

Formally, the input layer receives the sequence
(〈l0, ξ0〉, . . . , 〈lT , ξT 〉), where li denotes the i-th
symbol and ξi its score. Then, the sequence is
fed into the score layer and the symbol layer. The
score and symbol layers receive the sequence and
output the score sequence ξ = (ξ0, . . . , ξT) and
symbol sequence l = (l0, . . . , lT), respectively,
from the input. Any item l ∈ l in the symbol layer
has the form

l = o0x1o1 . . . xm−1om−1xm, (9)

where each xk (k = 1, . . . ,m) is a word or a con-
stituent label, m is the total number of words and
constituent labels in a symbol, o0 is “ c©” or empty,
and each ok (k = 1, . . . ,m − 1) is either “⊗”,
“⊕”, or “�”. Then, in the node/operator layer, the
x-s and o-s are separated and rearranged as x =
(x1, . . . , xm, o0, . . . , om−1), which is fed to the
pre-embedding layer. The pre-embedding layer
generates a sequence p = (p1, . . . , pm, . . . , p2m),
which is calculated as follows:

p =Wemb[I(x)]. (10)

Here, the function I(x) returns a list of the indices
in the dictionary for all the elements in x, which
consist of words, constituent labels, or operators.
In addition, Wemb is the embedding matrix of size
(|wword| + |wlabel| + 4) × dword, where |wword|
and |wlabel| are the total number of words and con-
stituent labels, respectively, dword is the dimen-
sion of the word embedding, and there are four
possible operators: “ c©,” “⊗,” “⊕,” and “�.” Note

that p is a list of 2m vectors, and the dimension of
each vector is dword.

Because the length of the sequence of the in-
put layer is T + 1, there are T + 1 different p-
s in the pre-embedding layer, which we denote
by P = (p0, . . . ,pT). Depending on where the
score layer is incorporated, we propose two frame-
works: Score-on-Embedding (SoE) and Score-on-
Attention (SoA). In SoE, the k-th element of the
embedding layer is calculated as follows:

ek = ξk
∑
p∈pk

p, (11)

while in SoA, the k-th element of the embedding
layer is calculated as

ek =
∑
p∈pk

p, (12)

where k = 0, . . . , T . Note that ek ∈ Rdword . In
this manner, the proposed forest-to-string NMT
framework is connected with the conventional
sequence-to-sequence NMT framework.

After calculating the embedding vectors in the
embedding layer, the hidden vectors are calculated
using Equation 5. When calculating the context
vector ci-s, SoE and SoA differ from each other.
For SoE, the ci-s are calculated using Equation 6
and 7, while for SoA, the αij-s used to calculate
the ci-s are determined as follows:

αij =
exp(ξja(si−1, hj))∑T
k=0 exp(ξka(si−1, hk))

. (13)

Then, using the decoder of the sequence-to-
sequence framework, the sentence of the target
language can be generated.

4 Experiments

4.1 Setup
We evaluate the effectiveness of our forest-based
NMT systems on English-to-Chinese and English-
to-Japanese translation tasks3. The statistics of the
corpora used in our experiments are summarized
in Table 1.

The packed forests of English sentences are
obtained by the constituent parser proposed by
Huang (2008)4. We filtered out the sentences for

3English is commonly chosen as the target language.
We chose English as the source language because a high-
performance forest parser is not available for other languages.

4http://web.engr.oregonstate.edu/
˜huanlian/software/forest-reranker/
forest-charniak-v0.8.tar.bz2

Language Corpus Usage #Sent.

English-Japanese ASPEC
train 100,000
dev. 1790
test 1812

English-Chinese

LDC7
train 1,423,695

FBIS 233,510
NIST MT 02 dev. 876
NIST MT 03

test
919

NIST MT 04 1,788
NIST MT 05 1,082

Table 1: Statistics of the corpora.

which the parser cannot generate the packed for-
est successfully and the sentences longer than 80
words. For NIST datasets, we simply choose the
first reference among the four English references
of NIST corpora, because all of them are inde-
pendent with each other, according to the docu-
ments of NIST datasets. For Chinese sentences,
we used Stanford segmenter5 for segmentation.
For Japanese sentences, we followed the prepro-
cessing steps recommended in WAT 20176.

We implemented our framework based on
nematus8 (Sennrich et al., 2017). For opti-
mization, we used the Adadelta algorithm (Zeiler,
2012). In order to avoid overfitting, we used
dropout (Srivastava et al., 2014) on the embedding
layer and hidden layer, with the dropout probabil-
ity set to 0.2. We used the gated recurrent unit
(Cho et al., 2014) as the recurrent unit of RNNs,
which are bi-directional, with one hidden layer.

Based on the tuning result, we set the maxi-
mum length of the input sequence to 300, the hid-
den layer size as 512, the dimension of word em-
bedding as 620, and the batch size for training as
40. We pruned the packed forest using the algo-
rithm of Huang (2008), with a threshold of 5. If
the linearization of the pruned forest is still longer
than 300, then we linearize the 1-best parsing tree
instead of the forest. During decoding, we used
beam search, and fixed the beam size to 12. For
the case of Forest (SoA), with 1 core of Tesla K80
GPU and LDC corpus as the training data, training
spent about 10 days, and decoding speed is about
10 sentences per second.

5https://nlp.stanford.edu/software/
stanford-segmenter-2017-06-09.zip

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2017/baseline/dataPreparationJE.html

7LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06

8https://github.com/EdinburghNLP/
nematus

http://web.engr.oregonstate.edu/~huanlian/software/forest-reranker/forest-charniak-v0.8.tar.bz2
http://web.engr.oregonstate.edu/~huanlian/software/forest-reranker/forest-charniak-v0.8.tar.bz2
http://web.engr.oregonstate.edu/~huanlian/software/forest-reranker/forest-charniak-v0.8.tar.bz2
https://nlp.stanford.edu/software/stanford-segmenter-2017-06-09.zip
https://nlp.stanford.edu/software/stanford-segmenter-2017-06-09.zip
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/dataPreparationJE.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/dataPreparationJE.html
https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus

Types Systems & MT 03 MT 04 MT 05
p valueConfigurations FBIS LDC FBIS LDC FBIS LDC

FS Mi et al. (2008) 27.10 28.21 28.67 30.09 26.57 28.36 -

TN
Eriguchi et al. (2016) 29.00 29.71 30.24 31.56 28.38 30.33 -

Chen et al. (2017) 28.34 29.64 30.00 31.25 28.14 29.59 -
Li et al. (2017) 28.40 29.60 29.66 31.96 27.74 29.84 -

FN

s2s 27.44 29.18 29.73 30.53 27.32 28.80 -
1-best (No score) 28.61 29.38 30.07 31.58 28.59 30.01 < 0.01

1-best (SoE) 28.78 30.65 30.36 32.22 29.31 30.16 < 0.05
1-best (SoA) 29.39 30.80 30.25 32.39 29.30 30.61 < 0.005

Forest (No score) 28.06 29.63 29.51 31.41 28.48 29.75 < 0.01
Forest (SoE) 29.58 31.07 30.67 32.69 29.26 30.41 < 0.001
Forest (SoA) 29.63 31.35 30.31 33.14 29.87 31.23 < 0.001

Table 2: English-Chinese experimental results (character-level BLEU). “FS,” “TN,” and “FN” denote
forest-based SMT, tree-based NMT, and forest-based NMT systems, respectively. We performed the
paired bootstrap resampling significance test (Koehn, 2004) over the NIST MT 03 to 05 corpus, with
respect to the s2s baseline, and list the p values in the table.

Types Systems & BLEU
p valueConfigurations (test)

FS Mi et al. (2008) 34.13 -

TN
Eriguchi et al. (2016) 37.52 -

Chen et al. (2017) 36.94 -
Li et al. (2017) 36.21 -

FN

s2s 37.10 -
1-best (No score) 38.01 < 0.05

1-best (SoE) 38.53 < 0.01
1-best (SoA) 39.42 < 0.001

Forest (No score) 37.92 < 0.1
Forest (SoE) 41.35 < 0.01
Forest (SoA) 42.17 < 0.005

Table 3: English-Japanese experimental results (character-level BLEU).

4.2 Experimental results

Table 2 and 3 summarize the experimental results.
To avoid the affect of segmentation errors, the per-
formance were evaluated by character-level BLEU
(Papineni et al., 2002). We compare our proposed
models (i.e., Forest (SoE) and Forest (SoA)) with
three types of baseline: a string-to-string model
(s2s), forest-based models that do not use score se-
quences (Forest (No score)), and tree-based mod-
els that use the 1-best parsing tree (1-best (No
score, SoE, SoA)). For the 1-best models, we pre-
serve the nodes and hyperedges that are used in the
1-best constituent tree in the packed forest, and re-
move all other nodes and hyperedges, yielding a
pruned forest that contains only the 1-best con-
stituent tree. For the “No score” configurations,
we force the input score sequence to be a sequence
of 1.0 with the same length as the input symbol se-
quence, so that neither the embedding layer nor the
attention layer are affected by the score sequence.

In addition, we also perform a comparison with
some state-of-the-art tree-based systems that are

publicly available, including an SMT system (Mi
et al., 2008) and the NMT systems (Eriguchi et al.
(2016)9, Chen et al. (2017)10, and Li et al. (2017)).
For Mi et al. (2008), we use the implementation
of cicada11. For Li et al. (2017), we reimple-
mented the “Mixed RNN Encoder” model, be-
cause of its outstanding performance on the NIST
MT corpus.

We can see that for both English-Chinese and
English-Japanese, compared with the s2s baseline
system, both the 1-best and forest-based configu-
rations yield better results. This indicates syntac-
tic information contained in the constituent trees
or forests is indeed useful for machine translation.
Specifically, we observe the following facts.

First, among the three different frameworks
SoE, SoA, and No-score, the SoA framework per-
forms the best, while the No-score framework per-

9https://github.com/tempra28/tree2seq
10https://github.com/howardchenhd/

Syntax-awared-NMT
11https://github.com/tarowatanabe/

cicada

https://github.com/tempra28/tree2seq
https://github.com/howardchenhd/Syntax-awared-NMT
https://github.com/howardchenhd/Syntax-awared-NMT
https://github.com/tarowatanabe/cicada
https://github.com/tarowatanabe/cicada

[Source] In the Czech Republic , which was ravaged by serious floods last summer , the temperatures in its border region adjacent to neighboring Slovakia plunged to minus 18 degrees Celsius .
[Reference] 去年 夏季 曾 出现 严重 水患 的 捷克 共和国 ， 其 邻近 斯洛伐克 的 边界 地区 气温 低 至 摄氏 零下 18 度 。

last summer ever appear serious floods of Czech Republic , its adjacent Slovakia of border region temperature decrease to Celsius minus 18 degree .
[s2s] 去年 夏天 ， 捷克 地区 遭受 严重 洪灾 的 捷克 边境 地区 气温 下降 了 18 摄氏 度 。

last summer , Czech region suffer serious floods of Czech border region temperature decrease -ed 18 Celsius degree .
[1best Tree] 去年 夏天 ， 遭受 特大 洪灾 的 捷克 边境 地区 的 气温 下降 了 18 摄氏 度 。

last summer , suffer serious floods of Czech border region of temperature decrease -ed 18 Celsius degree .
[Forest] 去年 夏天 发生 严重 水灾 的 捷克 共和国 ， 毗邻 斯洛伐克 的 边境 地区 温度 下降 至 零下 18 度 。

last summer occur serious floods of Czech Republic , adjacent Slovakia of border region temperature decrease to minus 18 degree .

Figure 4: Chinese translation results of an English sentence.

forms the worst. This indicates that the scores of
the edges in constituent trees or packed forests,
which reflect the confidence of the correctness of
the edges, are indeed useful. In fact, for the 1-best
constituent parsing tree, the score of the edge re-
flects the confidence of the parser. By using this
information, the NMT system succeed to learn a
better attention, paying much attention to the con-
fident structure and not paying attention to the un-
confident structure, which improved the transla-
tion performance. This fact is ignored by previous
studies on tree-based NMT. Furthermore, it is bet-
ter to use the scores to modify the values of atten-
tion instead of rescaling the word embeddings, be-
cause modifying word embeddings carelessly may
change the semantic meanings of words.

Second, compared with the cases that only
using the 1-best constituent trees, using packed
forests yields statistical significantly better results
for the SoE and SoA frameworks. This shows the
effectiveness of using more syntactic information.
Compared with one constituent tree, the packed
forest, which contains multiple different trees, de-
scribes the syntactic structure of the sentence in
different aspects, which together increase the ac-
curacy of machine translation. However, without
using the scores, the 1-best constituent tree is pre-
ferred. This is because without using the scores,
all trees in the packed forest are treated equally,
which makes it easy to import noise into the en-
coder.

Compared with other types of state-of-the-art
systems, our systems using only the 1-best tree
(1-best(SoE, SoA)) are better than the other tree-
based systems. Moreover, our NMT systems using
the packed forests achieve the best performance.
These results also support the usefulness of the
scores of the edges and packed forests in NMT.

As for the efficiency, the training time of the
SoA system was slightly longer than that of the
SoE system, which was about twice of the s2s
baseline. The training time of the tree-based sys-
tem was about 1.5 times of the baseline. For the

case of Forest (SoA), with 1 core of Tesla P100
GPU and LDC corpus as the training data, train-
ing spent about 10 days, and decoding speed was
about 10 sentences per second. The reason for the
relatively low efficiency is that the linearized se-
quences of packed forests were much longer than
word sequences, enlarging the scale of the inputs.
Despite this, the training process ended within rea-
sonable time.

4.3 Qualitative analysis

Figure 4 illustrates the translation results of an En-
glish sentence using several different configura-
tions: the s2s baseline, using only the 1-best tree
(SoE), and using the packed forest (SoE). This is a
sentence from NIST MT 03, and the training cor-
pus is the LDC corpus.

For the s2s case, no syntactic information is uti-
lized, and therefore the output of the system is not
a grammatical Chinese sentence. The attributive
phrase of “Czech border region” is a complete sen-
tence. However, the attributive is not allowed to be
a complete sentence in Chinese.

For the case of using 1-best constituent tree, the
output is a grammatical Chinese sentence. How-
ever, the phrase “adjacent to neighboring Slo-
vakia” is completely ignored in the translation re-
sult. After analyzing the constituent tree, we found
that this phrase was incorrectly parsed as an “ad-
verb phrase”, so that the NMT system paid little
attention to it, because of the low confidence given
by the parser.

In contrast, for the case of the packed forest, we
can see this phrase was not ignored and was trans-
lated correctly. Actually, besides “adverb phrase”,
this phrase was also correctly parsed as an “ad-
jective phrase”, and covered by multiple different
nodes in the forest, making it difficult for the en-
coder to ignore the phrase.

We also noticed that our method performed bet-
ter on learning attention. For the example in Fig-
ure 4, we observed that for s2s model, the decoder
paid attention to the word “Czech” twice, which

causes the output sentence contains the Chinese
translation of Czech twice. On the other hand, for
our forest model, by using the syntax information,
the decoder paid attention to the phrase “In the
Czech Republic” only once, making the decoder
generates the correct output.

5 Related work

Incorporating syntactic information into NMT
systems is attracting widespread attention nowa-
days. Compared with conventional string-to-string
NMT systems, tree-based systems demonstrate a
better performance with the help of constituent
trees or dependency trees.

The first noteworthy study is Eriguchi et al.
(2016), which used Tree-structured LSTM (Tai
et al., 2015) to encode the HPSG syntax tree of the
sentence in the source-side in a bottom-up man-
ner. Then, Chen et al. (2017) enhanced the en-
coder with a top-down tree encoder.

As a simple extension of Eriguchi et al. (2016),
very recently, Zaremoodi and Haffari (2017) pro-
posed a forest-based NMT method by represent-
ing the packed forest with a forest-structured neu-
ral network. However, their method was evaluated
in small-scale MT settings (each training dataset
consists of under 10k parallel sentences). In con-
trast, our proposed method is effective in a large-
scale MT setting, and we present qualitative anal-
ysis regarding the effectiveness of using forests in
NMT.

Although these methods obtained good results,
the tree-structured network used by the encoder
made the training and decoding relatively slow,
therefore restricts the scope of application.

Other attempts at encoding syntactic trees have
also been proposed. Eriguchi et al. (2017) com-
bined the Recurrent Neural Network Grammar
(Dyer et al., 2016) with NMT systems, while Li
et al. (2017) linearized the constituent tree and
encoded it using RNNs. The training of these
methods is fast, because of the linear structures of
RNNs. However, all these syntax-based NMT sys-
tems used only the 1-best parsing tree, making the
systems sensitive to parsing errors.

Instead of using trees to represent syntactic in-
formation, some studies use other data structures
to represent the latent syntax of the input sen-
tence. For example, Hashimoto and Tsuruoka
(2017) proposed translating using a latent graph.
However, such systems do not enjoy the benefit of

handcrafted syntactic knowledge, because they do
not use a parser trained from a large treebank with
human annotations.

Compared with these related studies, our frame-
work utilizes a linearized packed forest, meaning
the encoder can encode exponentially many trees
in an efficient manner. The experimental results
demonstrated these advantages.

6 Conclusion and future work

We proposed a new NMT framework, which en-
codes a packed forest for the source sentence
using linear-structured neural networks, such as
RNN. Compared with conventional string-to-
string NMT systems and tree-to-string NMT sys-
tems, our framework can utilize exponentially
many linearized parsing trees during encoding,
without significantly decreasing the efficiency.
This represents the first attempt at using a forest
under the string-to-string NMT framework. The
experimental results demonstrate the effectiveness
of our framework.

As future work, we plan to design some more
elaborate structures to incorporate the score layer
in the encoder. Further improvement in the trans-
lation performance is expected to be achieved for
the forest-based NMT system. We will also apply
the proposed linearization method to other tasks.

Acknowledgements

We are grateful to the anonymous reviewers for
their insightful comments and suggestions. We
thank Lemao Liu from Tencent AI Lab for his
suggestions about the experiments. We thank At-
sushi Fujita whose suggestions greatly improve
the readability and the logical soundness of this
paper. This work was done during the intern-
ship of Chunpeng Ma at NICT. Akihiro Tamura
is supported by JSPS KAKENHI Grant Num-
ber JP18K18110. Tiejun Zhao is supported by
the National Natural Science Foundation of China
(NSFC) via grant 91520204 and State High-Tech
Development Plan of China (863 program) via
grant 2015AA015405.

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 132–140.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 173–180.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1936–1945.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
72–78.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017.
Neural machine translation with source-side latent
graph parsing. arXiv preprint arXiv:1702.02265.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of
ACL-08: HLT, pages 586–594.

Arthur B Kahn. 1962. Topological sorting of large net-
works. Communications of the ACM, 5(11):558–
562.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP 2004, pages 388–395.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 688–697.

Chunpeng Ma, Lemao Liu, Akihiro Tamura, Tiejun
Zhao, and Sumita Eiichiro. 2017. Deterministic at-
tention for sequence-to-sequence constituent pars-
ing. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pages 3237–3243.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Haitao Mi and Liang Huang. 2008. Forest-based trans-
lation rule extraction. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 206–214.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proceedings of ACL-08: HLT,
pages 192–199.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Brich. 2017. Syntax-aware neu-
ral machine translation using ccg. arXiv preprint
arXiv:1702.01147.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Chris Quirk and Simon Corston-Oliver. 2006. The im-
pact of parse quality on syntactically-informed sta-
tistical machine translation. In Proceedings of the
2006 Conference on Empirical Methods in Natural
Language Processing, pages 62–69.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
arXiv preprint arXiv:1606.02892.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning re-
search, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations

from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566.

Robert Endre Tarjan. 1976. Edge-disjoint spanning
trees and depth-first search. Acta Informatica,
6(2):171–185.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2773–2781.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
698–707.

Poorya Zaremoodi and Gholamreza Haffari. 2017. In-
corporating syntactic uncertainty in neural machine
translation with forest-to-sequence model. arXiv
preprint arXiv:1711.07019.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu,
and Maosong Sun. 2017. Prior knowledge inte-
gration for neural machine translation using poste-
rior regularization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1514–
1523.

