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Abstract

Existing automated essay scoring (AES)
models rely on rated essays for the tar-
get prompt as training data. Despite their
successes in prompt-dependent AES, how
to effectively predict essay ratings under
a prompt-independent setting remains a
challenge, where the rated essays for the
target prompt are not available. To close
this gap, a two-stage deep neural network
(TDNN) is proposed. In particular, in the
first stage, using the rated essays for non-
target prompts as the training data, a shal-
low model is learned to select essays with
an extreme quality for the target prompt,
serving as pseudo training data; in the sec-
ond stage, an end-to-end hybrid deep mod-
el is proposed to learn a prompt-dependent
rating model consuming the pseudo train-
ing data from the first step. Evaluation
of the proposed TDNN on the standard
ASAP dataset demonstrates a promising
improvement for the prompt-independent
AES task.

1 Introduction

Automated essay scoring (AES) utilizes natural
language processing and machine learning tech-
niques to automatically rate essays written for a
target prompt (Dikli, 2006). Currently, the AES
systems have been widely used in large-scale En-
glish writing tests, e.g. Graduate Record Exami-
nation (GRE), to reduce the human efforts in the
writing assessments (Attali and Burstein, 2006).

Existing AES approaches are prompt-
dependent, where, given a target prompt,
rated essays for this particular prompt are required
for training (Dikli, 2006; Williamson, 2009; Foltz
et al., 1999). While the established models are

effective (Chen and He, 2013; Taghipour and
Ng, 2016; Alikaniotis et al., 2016; Cummins
et al., 2016; Dong et al., 2017), we argue that
the models for prompt-independent AES are
also desirable to allow for better feasibility and
flexibility of AES systems especially when the
rated essays for a target prompt are difficult to
obtain or even unaccessible. For example, in
a writing test within a small class, students are
asked to write essays for a target prompt without
any rated examples, where the prompt-dependent
methods are unlikely to provide effective AES due
to the lack of training data. Prompt-independent
AES, however, has drawn little attention in the
literature, where there only exists unrated essays
written for the target prompt, as well as the rated
essays for several non-target prompts.

We argue that it is not straightforward,
if possible, to apply the established prompt-
dependent AES methods for the mentioned
prompt-independent scenario. On one hand, es-
says for different prompts may differ a lot in the
uses of vocabulary, the structure, and the gram-
matic characteristics; on the other hand, howev-
er, established prompt-dependent AES models are
designed to learn from these prompt-specific fea-
tures, including the on/off-topic degree, the tf -
idf weights of topical terms (Attali and Burstein,
2006; Dikli, 2006), and the n-gram features ex-
tracted from word semantic embeddings (Dong
and Zhang, 2016; Alikaniotis et al., 2016). Conse-
quently, the prompt-dependent models can hardly
learn generalized rules from rated essays for non-
target prompts, and are not suitable for the prompt-
independent AES.

Being aware of this difficulty, to this end, a two-
stage deep neural network, coined as TDNN, is
proposed to tackle the prompt-independent AES
problem. In particular, to mitigate the lack of the
prompt-dependent labeled data, at the first stage,
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a shallow model is trained on a number of rated
essays for several non-target prompts; given a tar-
get prompt and a set of essays to rate, the trained
model is employed to generate pseudo training da-
ta by selecting essays with the extreme quality. At
the second stage, a novel end-to-end hybrid deep
neural network learns prompt-dependent features
from these selected training data, by considering
semantic, part-of-speech, and syntactic features.

The contributions in this paper are threefold:
1) a two-stage learning framework is proposed to
bridge the gap between the target and non-target
prompts, by only consuming rated essays for non-
target prompts as training data; 2) a novel deep
model is proposed to learn from pseudo labels by
considering semantic, part-of-speech, and syntac-
tic features; and most importantly, 3) to the best
of our knowledge, the proposed TDNN is actual-
ly the first approach dedicated to addressing the
prompt-independent AES. Evaluation on the stan-
dard ASAP dataset demonstrates the effectiveness
of the proposed method.

The rest of this paper is organized as follows.
In Section 2, we describe our novel TDNN mod-
el, including the two-stage framework and the pro-
posed deep model. Following that, we describe the
setup of our empirical study in Section 3, there-
after present the results and provide analyzes in
Section 4. Section 5 recaps existing literature and
put our work in context, before drawing final con-
clusions in Section 6.

2 Two-stage Deep Neural Network for
AES

In this section, the proposed two-stage deep neu-
ral network (TDNN) for prompt-independent AES
is described. To accurately rate an essay, on one
hand, we need to consider its pertinence to the giv-
en prompt; on the other hand, the organization,
the analyzes, as well as the uses of the vocabu-
lary are all crucial for the assessment. Henceforth,
both prompt-dependent and -independent factors
should be considered, but the latter ones actual-
ly do not require prompt-dependent training da-
ta. Accordingly, in the proposed framework, a
supervised ranking model is first trained to learn
from prompt-independent data, hoping to rough-
ly assess essays without considering the promp-
t; subsequently, given the test dataset, namely, a
set of essays for a target prompt, a subset of es-
says are selected as positive and negative training

data based on the prediction of the trained model
from the first stage; ultimately, a novel deep mod-
el is proposed to learn both prompt-dependent and
-independent factors on this selected subset. As
indicated in Figure 1, the proposed framework in-
cludes two stages.

2.1 Overview

Figure 1: The architecture of the TDNN frame-
work for prompt-independent AES.

Prompt-independent stage. Only the prompt-
independent factors are considered to train a shal-
low model, aiming to recognize the essays with the
extreme quality in the test dataset, where the rated
essays for non-target prompts are used for training.
Intuitively, one could recognize essays with the
highest and the lowest scores correctly by solely
examining their quality of writing, e.g., the num-
ber of typos, without even understanding them,
and the prompt-independent features such as the
number of grammatic and spelling errors should
be sufficient to fulfill this screening procedure.
Accordingly, a supervised model trained solely
on prompt-independent features is employed to i-
dentify the essays with the highest and lowest s-
cores in a given set of essays for the target prompt,
which are used as the positive and negative train-
ing data in the follow-up prompt-dependent learn-
ing phase.

Prompt-dependent stage. Intuitively, most es-
says are with a quality in between the extremes, re-
quiring a good understanding of their meaning to
make an accurate assessment, e.g., whether the ex-
amples from the essay are convincing or whether
the analyzes are insightful, making the consider-
ation of prompt-dependent features crucial. To
achieve that, a model is trained to learn from the
comparison between essays with the highest and
lowest scores for the target prompt according to
the predictions from the first step. Akin to the
settings in transductive transfer learning (Pan and
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Yang, 2010), given essays for a particular prompt,
quite a few confident essays at two extremes are
selected and are used to train another model for a
fine-grained content-based prompt-dependent as-
sessment. To enable this, a powerful deep mod-
el is proposed to consider the content of the es-
says from different perspectives using semantic,
part-of-speech (POS) and syntactic network. Af-
ter being trained with the selected essays, the deep
model is expected to memorize the properties of a
good essay in response to the target prompt, there-
after accurately assessing all essays for it. In Sec-
tion 2.2, building blocks for the selection of the
training data and the proposed deep model are de-
scribed in details.

2.2 Building Blocks

Select confident essays as training data. The i-
dentification of the extremes is relatively simple,
where a RankSVM (Joachims, 2002) is trained on
essays for different non-target prompts, avoiding
the risks of over-fitting some particular prompts.
A set of established prompt-independent features
are employed, which are listed in Table 2. Giv-
en a prompt and a set of essays for evaluation, to
begin with, the trained RankSVM is used to as-
sign prediction scores to individual prompt-essay
pairs, which are uniformly transformed into a 10-
point scale. Thereafter, the essays with predict-
ed scores in [0, 4] and [8, 10] are selected as nega-
tive and positive examples respectively, serving as
the bad and good templates for training in the nex-
t stage. Intuitively, an essay with a score beyond
eight out of a 10-point scale is considered good,
while the one receiving less than or equal to four,
is considered to be with a poor quality.

A hybrid deep model for fine-grained assess-
ment. To enable a prompt-dependent assessmen-
t, a model is desired to comprehensively capture
the ways in which a prompt is described or dis-
cussed in an essay. In this paper, semantic mean-
ing, part-of-speech (POS), and the syntactic tag-
gings of the token sequence from an essay are
considered, grasping the quality of an essay for
a target prompt. The model architecture is sum-
marized in Figure 2. Intuitively, the model learns
the semantic meaning of an essay by encoding it
in terms of a sequence of word embeddings, de-
noted as −→e sem, hoping to understand what the
essay is about; in addition, the part-of-speech in-
formation is encoded as a sequence of POS tag-

gings, coined as −→e pos; ultimately, the structural
connections between different components in an
essay (e.g., terms or phrases) are further captured
via syntactic network, leading to −→e synt, where the
model learns the organization of the essay. Akin
to (Li et al., 2015) and (Zhou and Xu, 2015), bi-
LSTM is employed as a basic component to en-
code a sequence. Three features are separate-
ly captured using the stacked bi-LSTM layers as
building blocks to encode different embeddings,
whose outputs are subsequently concatenated and
fed into several dense layers, generating the ulti-
mate rating. In the following, the architecture of
the model is described in details.

- Semantic embedding. Akin to the existing
works (Alikaniotis et al., 2016; Taghipour and
Ng, 2016), semantic word embeddings, namely,
the pre-trained 50-dimension GloVe (Pennington
et al., 2014), are employed. On top of the word
embeddings, two bi-LSTM layers are stacked,
namely, the essay layer is constructed on top of the
sentence layer, ending up with the semantic repre-
sentation of the whole essay, which is denoted as
−→e sem in Figure 2.

- Part-Of-Speech (POS) embeddings for individu-
al terms are first generated by the Stanford Tag-
ger (Toutanova et al., 2003), where 36 differen-
t POS tags present. Accordingly, individual words
are embedded with 36-dimensional one-hot repre-
sentation, and is transformed to a 50-dimensional
vector through a lookup layer. After that, two bi-
LSTM layers are stacked, leading to −→e pos. Take
Figure 3 for example, given a sentence “Attention
please, here is an example.”, it is first converted in-
to a POS sequence using the tagger, namely, VB,
VBP, RB, VBZ, DT, NN; thereafter it is further
mapped to vector space through one-hot embed-
ding and a lookup layer.

- Syntactic embedding aims at encoding an essay
in terms of the syntactic relationships among d-
ifferent syntactic components, by encoding an es-
say recursively. The Stanford Parser (Socher et al.,
2013) is employed to label the syntactic structure
of words and phrases in sentences, accounting for
59 different types in total. Similar to (Tai et al.,
2015), we opt for three stacked bi-LSTM, aiming
at encoding individual phrases, sentences, and ul-
timately the whole essay in sequence. In partic-
ular, according to the hierarchical structure from
a parsing tree, the phrase-level bi-LSTM first en-
codes different phrases by consuming syntactic
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Figure 2: The model architecture of the proposed hybrid deep learning model.

embeddings (
−→
Sti in Figure 2) from a lookup ta-

ble of individual syntactic units in the tree; there-
after, the encoded dense layers in individual sen-
tences are further consumed by a sentence-level
bi-LSTM, ending up with sentence-level syntac-
tic representations, which are ultimately combined
by the essay-level bi-LSTM, resulting in −→e synt.
For example, the parsed tree for a sentence “At-
tention please, here is an example.” is displayed
in Figure 3. To start with, the sentence is parsed
into ((NP VP)(NP VP NP)), and the dense embed-
dings are fetched from a lookup table for all to-
kens, namely, NP and VP; thereafter, the phrase-
level bi-LSTM encodes (NP VP) and (NP VP N-
P) separately, which are further consumed by the
sentence-level bi-LSTM. Afterward, essay-level
bi-LSTM further combines the representations of
different sentences into −→e synt.

(ROOT
(S

(S
(NP (VB Attention))
(VP (VBP please)))

(, ,)
(NP (RB here))
(VP (VBZ is)

(NP (DT an) (NN example)))
(. .)))

Figure 3: An example of the context-free phrase
structure grammar tree.

- Combination. A feed-forward network linearly
transforms the concatenated representations of an
essay from the mentioned three perspectives into a
scalar, which is further normalized into [0, 1] with
a sigmoid function.

2.3 Objective and Training
Objective. Mean square error (MSE) is opti-
mized, which is widely used as a loss function in
regression tasks. Given N pairs of a target promp-
t pi and an essay ei, MSE measures the average
value of square error between the normalized gold
standard rating r∗(pi, ei) and the predicted rating
r(pi, ei) assigned by the AES model, as summa-
rized in Equation 1.

1

N

N∑
i=1

(
r(pi, ei)− r∗(pi, ei)

)2 (1)

Optimization. Adam (Kingma and Ba, 2014)
is employed to minimize the loss over the train-
ing data. The initial learning rate η is set to
0.01 and the gradient is clipped between [−10, 10]
during training. In addition, dropout (Srivasta-
va et al., 2014) is introduced for regularization
with a dropout rate of 0.5, and 64 samples are
used in each batch with batch normalization (Ioffe
and Szegedy, 2015). 30% of the training data are
reserved for validation. In addition, early stop-
ping (Yao et al., 2007) is employed according to
the validation loss, namely, the training is termi-
nated if no decrease of the loss is observed for
ten consecutive epochs. Once training is finished,
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Prompt #Essays Avg Length Score Range

1 1783 350 2-12
2 1800 350 1-6
3 1726 150 0-3
4 1772 150 0-3
5 1805 150 0-4
6 1800 150 0-4
7 1569 250 0-30
8 723 650 0-60

Table 1: Statistics for the ASAP dataset.

akin to (Dong et al., 2017), the model with the best
quadratic weighted kappa on the validation set is
selected.

3 Experimental Setup

Dataset. The Automated Student Assessmen-
t Prize (ASAP) dataset has been widely used for
AES (Alikaniotis et al., 2016; Chen and He, 2013;
Dong et al., 2017), and is also employed as the
prime evaluation instrument herein. In total, AS-
AP consists of eight sets of essays, each of which
associates to one prompt, and is originally written
by students between Grade 7 and Grade 10. As
summarized in Table 1, essays from different sets
differ in their rating criteria, length, as well as the
rating distribution1.
Cross-validation. To fully employ the rated data,
a prompt-wise eight-fold cross validation on the
ASAP is used for evaluation. In each fold, essays
corresponding to a prompt is reserved for testing,
and the remaining essays are used as training data.
Evaluation metric. The model outputs are first u-
niformly re-scaled into [0, 10], mirroring the range
of ratings in practice. Thereafter, akin to (Yan-
nakoudakis et al., 2011; Chen and He, 2013; A-
likaniotis et al., 2016), we report our results pri-
marily based on the quadratic weighted Kappa
(QWK), examining the agreement between the
predicted ratings and the ground truth. Pearson
correlation coefficient (PCC) and Spearman rank-
order correlation coefficient (SCC) are also re-
ported. The correlations obtained from individual
folds, as well as the average over all eight folds,
are reported as the ultimate results.
Competing models. Since the prompt-
independent AES is of interests in this work,
the existing AES models are adapted for
prompt-independent rating prediction, serving
as baselines. This is due to the facts that the

1Details of this dataset can be found at https://www.
kaggle.com/c/asap-aes.

No. Feature

1 Mean & variance of word length in characters
2 Mean & variance of sentence length in words
3 Essay length in characters and words
4 Number of prepositions and commas
5 Number of unique words in an essay
6 Mean number of clauses per sentence
7 Mean length of clauses
8 Maximum number of clauses of a sentence in

an essay
9 Number of spelling errors
10 Average depth of the parser tree of each sen-

tence in an essay
11 Average depth of each leaf node in the parser

tree of each sentence

Table 2: Handcrafted features used in learning the
prompt-independent RankSVM.

prompt-dependent and -independent models differ
a lot in terms of problem settings and model
designs, especially in their requirements for the
training data, where the latter ones release the
prompt-dependent requirements and thereby are
accessible to more data.
- RankSVM, using handcrafted features for
AES (Yannakoudakis et al., 2011; Chen et al.,
2014), is trained on a set of pre-defined prompt-
independent features as listed in Table 2, where the
features are standardized beforehand to remove
the mean and variance. The RankSVM is also
used for the prompt-independent stage in our pro-
posed TDNN model. In particular, the linear ker-
nel RankSVM2 is employed, where C is set to 5
according to our pilot experiments.
- 2L-LSTM. Two-layer bi-LSTM with GloVe for
AES (Alikaniotis et al., 2016) is employed as an-
other baseline. Regularized word embeddings are
dropped to avoid over-fitting the prompt-specific
features.
- CNN-LSTM. This model (Taghipour and Ng,
2016) employs a convolutional (CNN) layer over
one-hot representations of words, followed by an
LSTM layer to encode word sequences in a given
essay. A linear layer with sigmoid activation func-
tion is then employed to predict the essay rating.
- CNN-LSTM-ATT. This model (Dong et al.,
2017) employs a CNN layer to encode word se-
quences into sentences, followed by an LSTM lay-
er to generate the essay representation. An atten-
tion mechanism is added to model the influence of
individual sentences on the final essay representa-
tion.

2http://svmlight.joachims.org/

https://www.kaggle.com/c/asap-aes
https://www.kaggle.com/c/asap-aes
http://svmlight.joachims.org/
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For the proposed TDNN model, as introduced
in Section 2.2, different variants of TDNN are ex-
amined by using one or multiple components out
of the semantic, POS and the syntactic network-
s. The combinations being considered are listed
in the following. In particular, the dimensions of
POS tags and syntactic network are fixed to 50,
whereas the sizes of the hidden units in LSTM,
as well as the output units of the linear layers are
tuned by grid search.
- TDNN(Sem) only includes the semantic build-
ing block, which is similar to the two-layer LSTM
neural network from (Alikaniotis et al., 2016) but
without regularizing the word embeddings;
- TDNN(Sem+POS) employs the semantic and
the POS building blocks;
- TDNN(Sem+Synt) uses the semantic and the
syntactic network building blocks;
- TDNN(POS+Synt) includes the POS and the
syntactic network building blocks;
- TDNN(ALL) employs all three building blocks.

The use of POS or syntactic network alone is
not presented for brevity given the facts that they
perform no better than TDNN(POS+Synt) in our
pilot experiments. Source code of the TDNN mod-
el is publicly available to enable further compari-
son3.

4 Results and Analyzes

In this section, the evaluation results for differ-
ent competing methods are compared and ana-
lyzed in terms of their agreements with the manu-
al ratings using three correlation metrics, namely,
QWK, PCC and SCC, where the best results for
each prompt is highlighted in bold in Table 3.

It can be seen that, for seven out of all eight
prompts, the proposed TDNN variants outperfor-
m the baselines by a margin in terms of QWK,
and the TDNN variant with semantic and syn-
tactic features, namely, TDNN(Sem+Synt), con-
sistently performs the best among different com-
peting methods. More precisely, as indicated in
the bottom right corner in Table 3, on average,
TDNN(Sem+Synt) outperforms the baselines by
at least 25.52% under QWK, by 10.28% under
PCC, and by 15.66% under SCC, demonstrating
that the proposed model not only correlates bet-
ter with the manual ratings in terms of QWK, but
also linearly (PCC) and monotonically (SCC) cor-
relates better with the manual ratings. As for the

3https://github.com/ucasir/TDNN4AES

four baselines, note that, the relatively underper-
formed deep models suffer from larger variances
of performance under different prompts, e.g., for
prompts two and eight, 2L-LSTM’s QWK is low-
er than 0.3. This actually confirms our choice
of RankSVM for the first stage in TDNN, since
a more complicated model (like 2L-LSTM) may
end up with learning prompt-dependent signals,
making it unsuitable for the prompt-independent
rating prediction. As a comparison, RankSVM
performs more stable among different prompts.

As for the different TDNN variants, it turns out
that the joint uses of syntactic network with se-
mantic or POS features can lead to better perfor-
mances. This indicates that, when learning the
prompt-dependent signals, apart from the widely-
used semantic features, POS features and the sen-
tence structure taggings (syntactic network) are al-
so essential in learning the structure and the ar-
rangement of an essay in response to a particu-
lar prompt, thereby being able to improve the re-
sults. It is also worth mentioning, however, when
using all three features, the TDNN actually per-
forms worse than when only using (any) two fea-
tures. One possible explanation is that the uses
of all three features result in a more complicated
model, which over-fits the training data.

In addition, recall that the prompt-independent
RankSVM model from the first stage enables the
proposed TDNN in learning prompt-dependent in-
formation without manual ratings for the target
prompt. Therefore, one would like to understand
how good the trained RankSVM is in feeding
training data for the model in the second stage.
In particular, the precision, recall and F-score
(P/R/F) of the essays selected by RanknSVM,
namely, the negative ones rated between [0, 4], and
the positive ones rated between [8, 10], are dis-
played in Figure 4. It can be seen that the P/R/F
scores of both positive and negative classes differ
a lot among different prompts. Moreover, it turns
out that the P/R/F scores do not necessarily cor-
relate with the performance of the TDNN model.
Take TDNN(Sem+Synt), the best TDNN variant,
as an example: as indicated in Table 4, the perfor-
mance and the P/R/F scores of the pseudo exam-
ples are only weakly correlated in most cases.

To gain a better understanding in how the qual-
ity of pseudo examples affects the performance
of TDNN, the sanctity of the selected essays are
examined. In Figure 5, the relative precision of

https://github.com/ucasir/TDNN4AES
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Eval. Metric QWK PCC SCC QWK PCC SCC QWK PCC SCC
Method Prompt 1 Prompt 2 Prompt 3
RankSVM .7371 .6915 .6726 .4666 .4956 .4993 .4637 .5584 .5357
2L-LSTM .4687 .6570 .4213 .2788 .6202 .6337 .5018 .6410 .6197
CNN-LSTM .4320 .6933 .5108 .3230 .6513 .6395 .5454 .6844 .6541
CNN-LSTM-ATT .6256 .7430 .6612 .4348 .7200 .6724 .4219 .5927 .6327
TDNN(Sem) .7292 .7366 .7190 .6220 .7138 .7372 .6038 .6613 .6714
TDNN(Sem+POS) .7305 .7413 .7209 .6551 .7276 .7469 .6112 .6706 .6809
TDNN(Sem+Synt) .7688 .7759 .7318 .6859 .7292 .7593 .6281 .6759 .7028
TDNN(POS+Synt) .7663 .7700 .7310 .6808 .7225 .7581 .6219 .6803 .6984
TDNN(All) .7310 .7584 .7300 .6596 .7210 .7496 .6146 .6772 .6943
Method Prompt 4 Prompt 5 Prompt 6
RankSVM .5112 .6250 .6325 .6690 .7103 .6651 .5285 .5443 .5239
2L-LSTM .5754 .6527 .6354 .5128 .7375 .7360 .4951 .6528 .6669
CNN-LSTM .7065 .7564 .7346 .6594 .6722 .6536 .5810 .6460 .6447
CNN-LSTM-ATT .4665 .7224 .7383 .5348 .6531 .6505 .5149 .6291 .6637
TDNN(Sem) .7398 .7412 .6934 .6874 .7585 .7323 .6278 .6524 .7205
TDNN(Sem+POS) .7450 .7601 .7119 .6943 .7716 .7341 .6540 .6780 .7239
TDNN(Sem+Synt) .7578 .7616 .7492 .7366 .7993 .7960 .6752 .6903 .7434
TDNN(POS+Synt) .7561 .7591 .7440 .7332 .7983 .7866 .6593 .6759 .7354
TDNN(All) .7527 .7609 .7251 .7302 .7974 .7794 .6557 .6874 .7350
Method Prompt 7 Prompt 8 Average
RankSVM .5858 .6436 .6429 .4075 .5889 .6087 .5462 .6072 .5976
2L-LSTM .6690 .7637 .7607 .2486 .5137 .4979 .4687 .6548 .6214
CNN-LSTM .6609 .6849 .6865 .3812 .4666 .3872 .5362 .6569 .6139
CNN-LSTM-ATT .6002 .6314 .6223 .4468 .5358 .4536 .5057 .6535 .6368
TDNN(Sem) .5482 .6957 .6902 .5003 .6083 .6545 .5875 .6779 .6795
TDNN(Sem+POS) .6239 .7111 .7243 .5519 .6219 .6614 .6582 .7103 .7130
TDNN(Sem+Synt) .6587 .7201 .7380 .5741 .6324 .6713 .6856 .7244 .7365
TDNN(POS+Synt) .6464 .7172 .7349 .5631 .6281 .6698 .6784 .7189 .7322
TDNN(All) .6396 .7114 .7300 .5622 .6267 .6631 .6682 .7176 .7258

Table 3: Correlations between AES and manual ratings for different competing methods are reported for
individual prompts. The average results among different prompts are summarized in the bottom right.
The best results are highlighted in bold for individual prompts.

Neg/Pos Metric QWK PCC SCC

[0, 4]
Precision +0.5151 +0.4286 +0.4471
Recall - 0.2362 - 0.1363 - 0.3491
F-score +0.4135 +0.4062 +0.1703

[8, 10]
Precision +0.3526 +0.3224 +0.3885
Recall +0.0063 - 0.0415 - 0.2112
F-score +0.8339 +0.6905 +0.4221

Table 4: Linear correlations between the performance of
TDNN(Sem+Synt) and the precision, recall, and F-score of
the selected pseudo examples.

Prpt 1 2 3 4 5 6 7 8

Neg 191 245 847 428 501 209 454 60
Pos 623 470 65 295 277 426 267 418

Table 5: The numbers of the selected positive and negative
essays for each prompt.

the selected positive and negative training data by
RankSVM are displayed for all eight prompts in
terms of their concordance with the manual rat-
ings, by computing the number of positive (nega-
tive) essays that are better (worse) than all negative
(positive) essays. It can be seen that, such relative
precision is at least 80% and mostly beyond 90%
on different prompts, indicating that the overlap of
the selected positive and negative essays are fairly
small, guaranteeing that the deep model in the sec-
ond stage at least learns from correct labels, which
are crucial for the success of our TDNN model.

Beyond that, we further investigate the class
balance of the selected training data from the first
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(a) Negative (b) Positive

Figure 4: The precision, recall and F-score of the pseudo negative or positive examples, which are rated within [0, 4] or [8, 10]
by RankSVM.

Figure 5: The sanctity of the selected positive and negative
essays by RankSVM. The x-axis indicates different prompts
and the y-axis is the relative precision.

stage, which could also influence the ultimate re-
sults. The number of selected positive and neg-
ative essays are reported in Table 5, where for
prompts three and eight the training data suffer-
s from serious imbalanced problem, which may
explain their lower performance (namely, the two
lowest QWKs among different prompts). On one
hand, this is actually determined by real distribu-
tion of ratings for a particular prompt, e.g., how
many essays are with an extreme quality for a giv-
en prompt in the target data. On the other hand,
a fine-grained tuning of the RankSVM (e.g., tun-
ing C+ and C− for positive and negative exam-

ples separately) may partially resolve the problem,
which is left for the future work.

5 Related Work

Classical regression and classification algorithm-
s are widely used for learning the rating mod-
el based on a variety of text features including
lexical, syntactic, discourse and semantic features
(Larkey, 1998; Rudner, 2002; Attali and Burstein,
2006; Mcnamara et al., 2015; Phandi et al., 2015).
There are also approaches that see AES as a pref-
erence ranking problem by applying learning to
ranking algorithms to learn the rating model. Re-
sults show improvement of learning to rank ap-
proaches over classical regression and classifica-
tion algorithms (Chen et al., 2014; Yannakoudakis
et al., 2011). In addition, Chen & He propose
to incorporate the evaluation metric into the loss
function of listwise learning to rank for AES
(Chen and He, 2013).

Recently, there have been efforts in develop-
ing AES approaches based on deep neural net-
works (DNN), for which feature engineering is
not required. Taghipour & Ng explore a variety
of neural network model architectures based on
recurrent neural networks which can effectively
encode the information required for essay scor-
ing and learn the complex connections in the da-
ta through the non-linear neural layers (Taghipour
and Ng, 2016). Alikaniotis et al. introduce a neu-
ral network model to learn the extent to which spe-
cific words contribute to the text’s score, which
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is embedded in the word representations. Then a
two-layer bi-directional Long-Short Term Memo-
ry networks (bi-LSTM) is used to learn the mean-
ing of texts, and finally the essay score is predict-
ed through a mutli-layer feed-forward network (A-
likaniotis et al., 2016). Dong & Zhang employ
a hierarchical convolutional neural network (CN-
N) model, with a lower layer representing sen-
tence structure and an upper layer representing es-
say structure based on sentence representations,
to learn features automatically (Dong and Zhang,
2016). This model is later improved by employ-
ing attention layers. Specifically, the model learns
text representation with LSTMs which can model
the coherence and co-reference among sequences
of words and sentences, and uses attention pool-
ing to capture more relevant words and sentences
that contribute to the final quality of essays (Dong
et al., 2017). Song et al. propose a deep model
for identifying discourse modes in an essay (Song
et al., 2017).

While the literature has shown satisfactory
performance of prompt-dependent AES, how to
achieve effective essay scoring in a prompt-
independent setting remains to be explored.
Chen & He studied the usefulness of prompt-
independent text features and achieved a human-
machine rating agreement slightly lower than the
use of all text features (Chen and He, 2013) for
prompt-dependent essay scoring prediction. A
constrained multi-task pairwise preference learn-
ing approach was proposed in (Cummins et al.,
2016) to combine essays from multiple prompt-
s for training. However, as shown by (Dong and
Zhang, 2016; Zesch et al., 2015; Phandi et al.,
2015), straightforward applications of existing
AES methods for prompt-independent AES lead
to a poor performance.

6 Conclusions & Future Work

This study aims at addressing the prompt-
independent automated essay scoring (AES),
where no rated essay for the target prompt is avail-
able. As demonstrated in the experiments, two
kinds of established prompt-dependent AES mod-
els, namely, RankSVM for AES (Yannakoudakis
et al., 2011; Chen et al., 2014) and the deep mod-
els for AES (Alikaniotis et al., 2016; Taghipour
and Ng, 2016; Dong et al., 2017), fail to pro-
vide satisfactory performances, justifying our ar-
guments in Section 1 that the application of estab-

lished prompt-dependent AES models on prompt-
independent AES is not straightforward. There-
fore, a two-stage TDNN learning framework was
proposed to utilize the prompt-independent fea-
tures to generate pseudo training data for the target
prompt, on which a hybrid deep neural network
model is proposed to learn a rating model consum-
ing semantic, part-of-speech, and syntactic signal-
s. Through the experiments on the ASAP dataset,
the proposed TDNN model outperforms the base-
lines, and leads to promising improvement in the
human-machine agreement.

Given that our approach in this paper is simi-
lar to the methods for transductive transfer learn-
ing (Pan and Yang, 2010), we argue that the pro-
posed TDNN could be further improved by mi-
grating the non-target training data to the target
prompt (Busto and Gall, 2017). Further study of
the uses of transfer learning algorithms on prompt-
independent AES needs to be undertaken.
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