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Abstract

Target-oriented sentiment classification
aims at classifying sentiment polarities
over individual opinion targets in a sen-
tence. RNN with attention seems a good
fit for the characteristics of this task, and
indeed it achieves the state-of-the-art per-
formance. After re-examining the draw-
backs of attention mechanism and the ob-
stacles that block CNN to perform well in
this classification task, we propose a new
model to overcome these issues. Instead of
attention, our model employs a CNN layer
to extract salient features from the trans-
formed word representations originated
from a bi-directional RNN layer. Between
the two layers, we propose a component
to generate target-specific representations
of words in the sentence, meanwhile in-
corporate a mechanism for preserving the
original contextual information from the
RNN layer. Experiments show that our
model achieves a new state-of-the-art per-
formance on a few benchmarks.1

1 Introduction

Target-oriented (also mentioned as “target-level”
or “aspect-level” in some works) sentiment clas-
sification aims to determine sentiment polarities
over “opinion targets” that explicitly appear in the
sentences (Liu, 2012). For example, in the sen-
tence “I am pleased with the fast log on, and the
long battery life”, the user mentions two targets

∗The work was done when Xin Li was an intern at Ten-
cent AI Lab. This project is substantially supported by a grant
from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14203414).

1Our code is open-source and available at https://
github.com/lixin4ever/TNet

“log on” and “better life”, and expresses positive
sentiments over them. The task is usually formu-
lated as predicting a sentiment category for a (tar-
get, sentence) pair.

Recurrent Neural Networks (RNNs) with at-
tention mechanism, firstly proposed in machine
translation (Bahdanau et al., 2014), is the most
commonly-used technique for this task. For ex-
ample, Wang et al. (2016); Tang et al. (2016b);
Yang et al. (2017); Liu and Zhang (2017); Ma
et al. (2017) and Chen et al. (2017) employ atten-
tion to measure the semantic relatedness between
each context word and the target, and then use
the induced attention scores to aggregate contex-
tual features for prediction. In these works, the
attention weight based combination of word-level
features for classification may introduce noise and
downgrade the prediction accuracy. For example,
in “This dish is my favorite and I always get it
and never get tired of it.”, these approaches tend
to involve irrelevant words such as “never” and
“tired” when they highlight the opinion modifier
“favorite”. To some extent, this drawback is rooted
in the attention mechanism, as also observed in
machine translation (Luong et al., 2015) and im-
age captioning (Xu et al., 2015).

Another observation is that the sentiment of a
target is usually determined by key phrases such
as “is my favorite”. By this token, Convolu-
tional Neural Networks (CNNs)—whose capabil-
ity for extracting the informative n-gram features
(also called “active local features”) as sentence
representations has been verified in (Kim, 2014;
Johnson and Zhang, 2015)— should be a suitable
model for this classification problem. However,
CNN likely fails in cases where a sentence ex-
presses different sentiments over multiple targets,
such as “great food but the service was dreadful!”.
One reason is that CNN cannot fully explore the
target information as done by RNN-based meth-

https://github.com/lixin4ever/TNet
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ods (Tang et al., 2016a).2 Moreover, it is hard
for vanilla CNN to differentiate opinion words of
multiple targets. Precisely, multiple active local
features holding different sentiments (e.g., “great
food” and “service was dreadful”) may be cap-
tured for a single target, thus it will hinder the pre-
diction.

We propose a new architecture, named Target-
Specific Transformation Networks (TNet), to
solve the above issues in the task of target senti-
ment classification. TNet firstly encodes the con-
text information into word embeddings and gener-
ates the contextualized word representations with
LSTMs. To integrate the target information into
the word representations, TNet introduces a novel
Target-Specific Transformation (TST) component
for generating the target-specific word representa-
tions. Contrary to the previous attention-based ap-
proaches which apply the same target representa-
tion to determine the attention scores of individual
context words, TST firstly generates different rep-
resentations of the target conditioned on individual
context words, then it consolidates each context
word with its tailor-made target representation to
obtain the transformed word representation. Con-
sidering the context word “long” and the target
“battery life” in the above example, TST firstly
measures the associations between “long” and in-
dividual target words. Then it uses the association
scores to generate the target representation con-
ditioned on “long”. After that, TST transforms
the representation of “long” into its target-specific
version with the new target representation. Note
that “long” could also indicate a negative senti-
ment (say for “startup time”), and the above TST
is able to differentiate them.

As the context information carried by the rep-
resentations from the LSTM layer will be lost
after the non-linear TST, we design a context-
preserving mechanism to contextualize the gen-
erated target-specific word representations. Such
mechanism also allows deep transformation struc-
ture to learn abstract features3. To help the CNN
feature extractor locate sentiment indicators more
accurately, we adopt a proximity strategy to scale
the input of convolutional layer with positional rel-
evance between a word and the target.

2One method could be concatenating the target represen-
tation with each word representation, but the effect as shown
in (Wang et al., 2016) is limited.

3Abstract features usually refer to the features ultimately
useful for the task (Bengio et al., 2013; LeCun et al., 2015).

In summary, our contributions are as follows:
• TNet adapts CNN to handle target-level senti-

ment classification, and its performance dominates
the state-of-the-art models on benchmark datasets.
• A novel Target-Specific Transformation com-

ponent is proposed to better integrate target infor-
mation into the word representations.
• A context-preserving mechanism is designed

to forward the context information into a deep
transformation architecture, thus, the model can
learn more abstract contextualized word features
from deeper networks.

2 Model Description

Given a target-sentence pair (wτ ,w), where
wτ = {wτ1 , wτ2 , ..., wτm} is a sub-sequence of
w = {w1, w2, ..., wn}, and the corresponding
word embeddings xτ = {xτ1 , xτ2 , ..., xτm} and x =
{x1, x2, ..., xn}, the aim of target sentiment clas-
sification is to predict the sentiment polarity y ∈
{P,N,O} of the sentence w over the target wτ ,
where P , N and O denote “positive”, “negative”
and “neutral” sentiments respectively.

The architecture of the proposed Target-
Specific Transformation Networks (TNet) is
shown in Fig. 1. The bottom layer is a BiLSTM
which transforms the input x = {x1, x2, ..., xn} ∈
Rn×dimw into the contextualized word represen-
tations h(0) = {h(0)1 , h

(0)
2 , ..., h

(0)
n } ∈ Rn×2dimh

(i.e. hidden states of BiLSTM), where dimw

and dimh denote the dimensions of the word em-
beddings and the hidden representations respec-
tively. The middle part, the core part of our
TNet, consists of L Context-Preserving Transfor-
mation (CPT) layers. The CPT layer incorporates
the target information into the word representa-
tions via a novel Target-Specific Transformation
(TST) component. CPT also contains a context-
preserving mechanism, resembling identity map-
ping (He et al., 2016a,b) and highway connec-
tion (Srivastava et al., 2015a,b), allows preserving
the context information and learning more abstract
word-level features using a deep network. The top
most part is a position-aware convolutional layer
which first encodes positional relevance between
a word and a target, and then extracts informative
features for classification.

2.1 Bi-directional LSTM Layer

As observed in Lai et al. (2015), combining con-
textual information with word embeddings is an



948

Figure 1: Architecture of TNet.

effective way to represent a word in convolution-
based architectures. TNet also employs a BiL-
STM to accumulate the context information for
each word of the input sentence, i.e., the bottom
part in Fig. 1. For simplicity and space issue, we
denote the operation of an LSTM unit on xi as
LSTM(xi). Thus, the contextualized word repre-
sentation h(0)i ∈ R2dimh is obtained as follows:

h
(0)
i = [

−−−−→
LSTM(xi);

←−−−−
LSTM(xi)], i ∈ [1, n]. (1)

2.2 Context-Preserving Transformation

The above word-level representation has not con-
sidered the target information yet. Traditional
attention-based approaches keep the word-level
features static and aggregate them with weights
as the final sentence representation. In contrast,
as shown in the middle part in Fig. 1, we intro-
duce multiple CPT layers and the detail of a sin-
gle CPT is shown in Fig. 2. In each CPT layer,
a tailor-made TST component that aims at better
consolidating word representation and target rep-
resentation is proposed. Moreover, we design a
context-preserving mechanism enabling the learn-
ing of target-specific word representations in a
deep neural architecture.

2.2.1 Target-Specific Transformation
TST component is depicted with the TST block in
Fig. 2. The first task of TST is to generate the rep-
resentation of the target. Previous methods (Chen

Figure 2: Details of a CPT module.

et al., 2017; Liu and Zhang, 2017) average the em-
beddings of the target words as the target repre-
sentation. This strategy may be inappropriate in
some cases because different target words usually
do not contribute equally. For example, in the tar-
get “amd turin processor”, the word “processor”
is more important than “amd” and “turin”, because
the sentiment is usually conveyed over the phrase
head, i.e.,“processor”, but seldom over modifiers
(such as brand name “amd”). Ma et al. (2017) at-
tempted to overcome this issue by measuring the
importance score between each target word repre-
sentation and the averaged sentence vector. How-
ever, it may be ineffective for sentences expressing
multiple sentiments (e.g., “Air has higher resolu-
tion but the fonts are small.”), because taking the
average tends to neutralize different sentiments.

We propose to dynamically compute the impor-
tance of target words based on each sentence word
rather than the whole sentence. We first employ
another BiLSTM to obtain the target word repre-
sentations hτ ∈ Rm×2dimh :

hτj = [
−−−−→
LSTM(xτj );

←−−−−
LSTM(xτj )], j ∈ [1,m]. (2)

Then, we dynamically associate them with each
word wi in the sentence to tailor-make target rep-
resentation rτi at the time step i:

rτi =

m∑
j=1

hτj ∗ F(h
(l)
i , h

τ
j ), (3)

where the function F measures the relatedness be-
tween the j-th target word representation hτj and
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the i-th word-level representation h(l)i :

F(h(l)i , h
τ
j ) =

exp (h
(l)>
i hτj )∑m

k=1 exp (h
(l)>
i hτk)

. (4)

Finally, the concatenation of rτi and h(l)i is fed into
a fully-connected layer to obtain the i-th target-
specific word representation h̃i

(l)
:

h̃
(l)
i = g(W τ [h

(l)
i : rτi ] + bτ ), (5)

where g(∗) is a non-linear activation function and
“:” denotes vector concatenation. W τ and bτ are
the weights of the layer.

2.2.2 Context-Preserving Mechanism
After the non-linear TST (see Eq. 5), the con-
text information captured with contextualized rep-
resentations from the BiLSTM layer will be lost
since the mean and the variance of the features
within the feature vector will be changed. To take
advantage of the context information, which has
been proved to be useful in (Lai et al., 2015),
we investigate two strategies: Lossless Forward-
ing (LF) and Adaptive Scaling (AS), to pass the
context information to each following layer, as de-
picted by the block “LF/AS” in Fig. 2. Accord-
ingly, the model variants are named TNet-LF and
TNet-AS.

Lossless Forwarding. This strategy preserves
context information by directly feeding the fea-
tures before the transformation to the next layer.
Specifically, the input h(l+1)

i of the (l+1)-th CPT
layer is formulated as:

h
(l+1)
i = h

(l)
i + h̃

(l)
i , i ∈ [1, n], l ∈ [0, L], (6)

where h(l)i is the input of the l-th layer and h̃(l)i
is the output of TST in this layer. We unfold the
recursive form of Eq. 6 as follows:

h
(l+1)
i = h

(0)
i +TST(h(0)i )+· · ·+TST(h(l)i ). (7)

Here, we denote h̃(l)i as TST(h
(l)
i ). From Eq. 7,

we can see that the output of each layer will con-
tain the contextualized word representations (i.e.,
h
(0)
i ), thus, the context information is encoded

into the transformed features. We call this strat-
egy “Lossless Forwarding” because the contex-
tualized representations and the transformed rep-
resentations (i.e., TST(h(l)i )) are kept unchanged
during the feature combination.

Adaptive Scaling. Lossless Forwarding intro-
duces the context information by directly adding
back the contextualized features to the trans-
formed features, which raises a question: Can
the weights of the input and the transformed fea-
tures be adjusted dynamically? With this motiva-
tion, we propose another strategy, named “Adap-
tive Scaling”. Similar to the gate mechanism in
RNN variants (Jozefowicz et al., 2015), Adaptive
Scaling introduces a gating function to control the
passed proportions of the transformed features and
the input features. The gate t(l) as follows:

t
(l)
i = σ(Wtransh

(l)
i + btrans), (8)

where t(l)i is the gate for the i-th input of the l-th
CPT layer, and σ is the sigmoid activation func-
tion. Then we perform convex combination of h(l)i
and h̃(l)i based on the gate:

h
(l+1)
i = t

(l)
i � h̃

(l)
i + (1− t(l)i )� h(l)i . (9)

Here, � denotes element-wise multiplication. The
non-recursive form of this equation is as follows
(for clarity, we ignore the subscripts):

h(l+1) = [

l∏
k=0

(1− t(k))]� h(0)

+[t(0)
l∏

k=1

(1− t(k))]� TST(h(0)) + · · ·

+t(l−1)(1− t(l))� TST(h(l−1)) + t(l) � TST(h(l)).

Thus, the context information is integrated in
each upper layer and the proportions of the contex-
tualized representations and the transformed rep-
resentations are controlled by the computed gates
in different transformation layers.

2.3 Convolutional Feature Extractor

Recall that the second issue that blocks CNN to
perform well is that vanilla CNN may associate a
target with unrelated general opinion words which
are frequently used as modifiers for different tar-
gets across domains. For example, “service” in
“Great food but the service is dreadful” may be
associated with both “great” and “dreadful”. To
solve it, we adopt a proximity strategy, which is
observed effective in (Chen et al., 2017; Li and
Lam, 2017). The idea is a closer opinion word is
more likely to be the actual modifier of the target.



950

# Positive # Negative # Neutral

LAPTOP
Train 980 858 454
Test 340 128 171

REST
Train 2159 800 632
Test 730 195 196

TWITTER
Train 1567 1563 3127
Test 174 174 346

Table 1: Statistics of datasets.

Specifically, we first calculate the position rel-
evance vi between the i-th word and the target4:

vi =


1− (k+m−i)

C i < k +m

1− i−k
C k +m ≤ i ≤ n

0 i > n

(10)

where k is the index of the first target word, C is a
pre-specified constant, and m is the length of the
target wτ . Then, we use v to help CNN locate the
correct opinion w.r.t. the given target:

ĥ
(l)
i = h

(l)
i ∗ vi, i ∈ [1, n], l ∈ [1, L]. (11)

Based on Eq. 10 and Eq. 11, the words close to
the target will be highlighted and those far away
will be downgraded. v is also applied on the in-
termediate output to introduce the position infor-
mation into each CPT layer. Then we feed the
weighted h(L) to the convolutional layer, i.e., the
top-most layer in Fig. 1, to generate the feature
map c ∈ Rn−s+1 as follows:

ci = ReLU(w>convh
(L)
i:i+s−1 + bconv), (12)

where h(L)
i:i+s−1 ∈ Rs·dimh is the concatenated vec-

tor of ĥ(L)i , · · · , ĥ(L)i+s−1, and s is the kernel size.
wconv ∈ Rs·dimh and bconv ∈ R are learnable
weights of the convolutional kernel. To capture
the most informative features, we apply max pool-
ing (Kim, 2014) and obtain the sentence represen-
tation z ∈ Rnk by employing nk kernels:

z = [max(c1), · · · ,max(cnk
)]>. (13)

Finally, we pass z to a fully connected layer for
sentiment prediction:

p(y|wτ ,w) = Softmax(Wfz + bf ). (14)

where Wf and bf are learnable parameters.
4As we perform sentence padding, it is possible that the

index i is larger than the actual length n of the sentence.

3 Experiments

3.1 Experimental Setup

As shown in Table 1, we evaluate the proposed
TNet on three benchmark datasets: LAPTOP and
REST are from SemEval ABSA challenge (Pon-
tiki et al., 2014), containing user reviews in laptop
domain and restaurant domain respectively. We
also remove a few examples having the “conflict
label” as done in (Chen et al., 2017); TWITTER
is built by Dong et al. (2014), containing twitter
posts. All tokens are lowercased without removal
of stop words, symbols or digits, and sentences are
zero-padded to the length of the longest sentence
in the dataset. Evaluation metrics are Accuracy
and Macro-Averaged F1 where the latter is more
appropriate for datasets with unbalanced classes.
We also conduct pairwise t-test on both Accuracy
and Macro-Averaged F1 to verify if the improve-
ments over the compared models are reliable.

TNet is compared with the following methods.

• SVM (Kiritchenko et al., 2014): It is a tra-
ditional support vector machine based model
with extensive feature engineering;

• AdaRNN (Dong et al., 2014): It learns the
sentence representation toward target for sen-
timent prediction via semantic composition
over dependency tree;

• AE-LSTM, and ATAE-LSTM (Wang et al.,
2016): AE-LSTM is a simple LSTM model
incorporating the target embedding as input,
while ATAE-LSTM extends AE-LSTM with
attention;

• IAN (Ma et al., 2017): IAN employs two
LSTMs to learn the representations of the
context and the target phrase interactively;

• CNN-ASP: It is a CNN-based model imple-
mented by us which directly concatenates tar-
get representation to each word embedding;

• TD-LSTM (Tang et al., 2016a): It employs
two LSTMs to model the left and right con-
texts of the target separately, then performs
predictions based on concatenated context
representations;

• MemNet (Tang et al., 2016b): It applies
attention mechanism over the word embed-
dings multiple times and predicts sentiments
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Hyper-params TNet-LF TNet-AS
LAPTOP REST TWITTER LAPTOP REST TWITTER

dimw 300 300
dimh 50 50
dropout rates (plstm, psent) (0.3, 0.3) (0.3, 0.3)
L 2 2
batch size 64 25 64 64 32 64
s 3 3
nk 50 100
C 40.0 30.0

Table 2: Settings of hyper-parameters.

based on the top-most sentence representa-
tions;

• BILSTM-ATT-G (Liu and Zhang, 2017):
It models left and right contexts using two
attention-based LSTMs and introduces gates
to measure the importance of left context,
right context, and the entire sentence for the
prediction;

• RAM (Chen et al., 2017): RAM is a multi-
layer architecture where each layer consists
of attention-based aggregation of word fea-
tures and a GRU cell to learn the sentence
representation.

We run the released codes of TD-LSTM and
BILSTM-ATT-G to generate results, since their
papers only reported results on TWITTER. We
also rerun MemNet on our datasets and evaluate
it with both accuracy and Macro-Averaged F1.5

We use pre-trained GloVe vectors (Pennington
et al., 2014) to initialize the word embeddings
and the dimension is 300 (i.e., dimw = 300).
For out-of-vocabulary words, we randomly sam-
ple their embeddings from the uniform distribu-
tion U(−0.25, 0.25), as done in (Kim, 2014). We
only use one convolutional kernel size because it
was observed that CNN with single optimal ker-
nel size is comparable with CNN having multiple
kernel sizes on small datasets (Zhang and Wallace,
2017). To alleviate overfitting, we apply dropout
on the input word embeddings of the LSTM and
the ultimate sentence representation z. All weight
matrices are initialized with the uniform distribu-
tion U(−0.01, 0.01) and the biases are initialized

5The codes of TD-LSTM/MemNet and BILSTM-ATT-
G are available at: http://ir.hit.edu.cn/˜dytang
and http://leoncrashcode.github.io. Note that
MemNet was only evaluated with accuracy.

as zeros. The training objective is cross-entropy,
and Adam (Kingma and Ba, 2015) is adopted as
the optimizer by following the learning rate and
the decay rates in the original paper.

The hyper-parameters of TNet-LF and TNet-
AS are listed in Table 2. Specifically, all hyper-
parameters are tuned on 20% randomly held-out
training data and the hyper-parameter collection
producing the highest accuracy score is used for
testing. Our model has comparable number of
parameters compared to traditional LSTM-based
models as we reuse parameters in the transforma-
tion layers and BiLSTM.6

3.2 Main Results

As shown in Table 3, both TNet-LF and TNet-AS
consistently achieve the best performance on all
datasets, which verifies the efficacy of our whole
TNet model. Moreover, TNet can perform well for
different kinds of user generated content, such as
product reviews with relatively formal sentences
in LAPTOP and REST, and tweets with more un-
grammatical sentences in TWITTER. The reason
is the CNN-based feature extractor arms TNet
with more power to extract accurate features from
ungrammatical sentences. Indeed, we can also ob-
serve that another CNN-based baseline, i.e., CNN-
ASP implemented by us, also obtains good results
on TWITTER.

On the other hand, the performance of those
comparison methods is mostly unstable. For the
tweet in TWITTER, the competitive BILSTM-
ATT-G and RAM cannot perform as effective as
they do for the reviews in LAPTOP and REST, due
to the fact that they are heavily rooted in LSTMs
and the ungrammatical sentences hinder their ca-

6All experiments are conducted on a single NVIDIA GTX
1080. The prediction cost of a sentence is about 2 ms.

http://ir.hit.edu.cn/~dytang
http://leoncrashcode.github.io
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Models LAPTOP REST TWITTER
ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Baselines

SVM 70.49\ - 80.16\ - 63.40∗ 63.30∗

AdaRNN - - - - 66.30\ 65.90\

AE-LSTM 68.90\ - 76.60\ - - -
ATAE-LSTM 68.70\ - 77.20\ - - -
IAN 72.10\ - 78.60\ - - -
CNN-ASP 72.46 65.31 77.82 65.11 73.27 71.77
TD-LSTM 71.83 68.43 78.00 66.73 66.62 64.01
MemNet 70.33 64.09 78.16 65.83 68.50 66.91
BILSTM-ATT-G 74.37 69.90 80.38 70.78 72.70 70.84
RAM 75.01 70.51 79.79 68.86 71.88 70.33

CPT Alternatives
LSTM-ATT-CNN 73.37 68.03 78.95 68.71 70.09 67.68
LSTM-FC-CNN-LF 75.59 70.60 80.41 70.23 73.70 72.82
LSTM-FC-CNN-AS 75.78 70.72 80.23 70.06 74.28 72.60

Ablated TNet

TNet w/o transformation 73.30 68.25 78.90 65.86 72.10 70.57
TNet w/o context 73.91 68.87 80.07 69.01 74.51 73.05
TNet-LF w/o position 75.13 70.63 79.86 69.69 73.83 72.49
TNet-AS w/o position 75.27 70.03 79.79 69.78 73.84 72.47

TNet variants TNet-LF 76.01†,‡ 71.47†,‡ 80.79†,‡ 70.84‡ 74.68†,‡ 73.36†,‡

TNet-AS 76.54†,‡ 71.75†,‡ 80.69†,‡ 71.27†,‡ 74.97†,‡ 73.60†,‡

Table 3: Experimental results (%). The results with symbol“\” are retrieved from the original papers, and
those starred (∗) one are from Dong et al. (2014). The marker † refers to p-value < 0.01 when comparing
with BILSTM-ATT-G, while the marker ‡ refers to p-value < 0.01 when comparing with RAM.

pability in capturing the context features. Another
difficulty caused by the ungrammatical sentences
is that the dependency parsing might be error-
prone, which will affect those methods such as
AdaRNN using dependency information.

From the above observations and analysis, some
takeaway message for the task of target sentiment
classification could be:

• LSTM-based models relying on sequential
information can perform well for formal sen-
tences by capturing more useful context fea-
tures;

• For ungrammatical text, CNN-based mod-
els may have some advantages because CNN
aims to extract the most informative n-gram
features and is thus less sensitive to informal
texts without strong sequential patterns.

3.3 Performance of Ablated TNet
To investigate the impact of each component such
as deep transformation, context-preserving mech-
anism, and positional relevance, we perform com-
parison between the full TNet models and its abla-
tions (the third group in Table 3). After removing
the deep transformation (i.e., the techniques intro-
duced in Section 2.2), both TNet-LF and TNet-
AS are reduced to TNet w/o transformation (where

position relevance is kept), and their results in both
accuracy and F1 measure are incomparable with
those of TNet. It shows that the integration of tar-
get information into the word-level representations
is crucial for good performance.

Comparing the results of TNet and TNet w/o
context (where TST and position relevance are
kept), we observe that the performance of TNet
w/o context drops significantly on LAPTOP and
REST7, while on TWITTER, TNet w/o context
performs very competitive (p-values with TNet-
LF and TNet-AS are 0.066 and 0.053 respec-
tively for Accuracy). Again, we could attribute
this phenomenon to the ungrammatical user gen-
erated content of twitter, because the context-
preserving component becomes less important for
such data. TNet w/o context performs consistently
better than TNet w/o transformation, which veri-
fies the efficacy of the target specific transforma-
tion (TST), before applying context-preserving.

As for the position information, we conduct
statistical t-test between TNet-LF/AS and TNet-
LF/AS w/o position together with performance
comparison. All of the produced p-values are
less than 0.05, suggesting that the improvements
brought in by position information are significant.

7Without specification, the significance level is set to 0.05.
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3.4 CPT versus Alternatives

The next interesting question is what if we replace
the transformation module (i.e., the CPT layers in
Fig.1) of TNet with other commonly-used compo-
nents? We investigate two alternatives: attention
mechanism and fully-connected (FC) layer, result-
ing in three pipelines as shown in the second group
of Table 3 (position relevance is kept for them).

LSTM-ATT-CNN applies attention as the al-
ternative8, and it does not need the context-
preserving mechanism. It performs unexception-
ally worse than the TNet variants. We are sur-
prised that LSTM-ATT-CNN is even worse than
TNet w/o transformation (a pipeline simply re-
moving the transformation module) on TWITTER.
More concretely, applying attention results in neg-
ative effect on TWITTER, which is consistent
with the observation that all those attention-based
state-of-the-art methods (i.e., TD-LSTM, Mem-
Net, BILSTM-ATT-G, and RAM) cannot perform
well on TWITTER.

LSTM-FC-CNN-LF and LSTM-FC-CNN-AS
are built by applying FC layer to replace TST
and keeping the context-preserving mechanism
(i.e., LF and AS). Specifically, the concatena-
tion of word representation and the averaged tar-
get vector is fed to the FC layer to obtain target-
specific features. Note that LSTM-FC-CNN-
LF/AS are equivalent to TNet-LF/AS when pro-
cessing single-word targets (see Eq. 3). They ob-
tain competitive results on all datasets: compara-
ble with or better than the state-of-the-art methods.
The TNet variants can still outperform LSTM-
FC-CNN-LF/AS with significant gaps, e.g., on
LAPTOP and REST, the accuracy gaps between
TNet-LF and LSTM-FC-CNN-LF are 0.42% (p <
0.03) and 0.38% (p < 0.04) respectively.

3.5 Impact of CPT Layer Number

As our TNet involves multiple CPT layers, we in-
vestigate the effect of the layer number L. Specif-
ically, we conduct experiments on the held-out
training data of LAPTOP and vary L from 2 to
10, increased by 2. The cases L=1 and L=15 are
also included. The results are illustrated in Fig-
ure 3. We can see that both TNet-LF and TNet-
AS achieve the best results when L=2. While in-
creasing L, the performance is basically becoming
worse. For large L, the performance of TNet-AS

8We tried different attention mechanisms and report the
best one here, namely, dot attention (Luong et al., 2015).
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Figure 3: Effect of L.

generally becomes more sensitive, it is probably
because AS involves extra parameters (see Eq 9)
that increase the training difficulty.

3.6 Case Study
Table 4 shows some sample cases. The input tar-
gets are wrapped in the brackets with true labels
given as subscripts. The notations P, N and O
in the table represent positive, negative and neu-
tral respectively. For each sentence, we under-
line the target with a particular color, and the
text of its corresponding most informative n-gram
feature9 captured by TNet-AS (TNet-LF captures
very similar features) is in the same color (so color
printing is preferred). For example, for the target
“resolution” in the first sentence, the captured fea-
ture is “Air has higher”. Note that as discussed
above, the CNN layer of TNet captures such fea-
tures with the size-three kernels, so that the fea-
tures are trigrams. Each of the last features of the
second and seventh sentences contains a padding
token, which is not shown.

Our TNet variants can predict target sentiment
more accurately than RAM and BILSTM-ATT-G
in the transitional sentences such as the first sen-
tence by capturing correct trigram features. For
the third sentence, its second and third most infor-
mative trigrams are “100% . PAD” and “’ s not”,
being used together with “features make up”, our
models can make correct predictions. Moreover,
TNet can still make correct prediction when the
explicit opinion is target-specific. For example,

9For each convolutional filter, only one n-gram feature in
the feature map will be kept after the max pooling. Among
those from different filters, the n-gram with the highest fre-
quency will be regarded as the most informative n-gram w.r.t.
the given target.
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Sentence BILSTM-ATT-G RAM TNet-LF TNet-AS
1. Air has higher [resolution]P but the [fonts]N are small . (N7, N) (N7, N) (P, N) (P, N)
2. Great [food]P but the [service]N is dreadful . (P, N) (P, N) (P, N) (P, N)
3. Sure it ’ s not light and slim but the [features]P make up
for it 100% .

N7 N7 P P

4. Not only did they have amazing , [sandwiches]P , [soup]P
, [pizza]P etc , but their [homemade sorbets]P are out of this
world !

(P, O7, O7, P) (P, P, O7, P) (P, P, P, P) (P, P, P, P)

5. [startup times]N are incredibly long : over two minutes . P7 P7 N N
6. I am pleased with the fast [log on]P , speedy [wifi
connection]P and the long [battery life]P ( > 6 hrs ) .

(P, P, P) (P, P, P) (P, P, P) (P, P, P)

7. The [staff]N should be a bit more friendly . P7 P7 P7 P7

Table 4: Example predictions, color printing is preferred. The input targets are wrapped in brackets with
the true labels given as subscripts. 7 indicates incorrect prediction.

“long” in the fifth sentence is negative for “startup
time”, while it could be positive for other targets
such as “battery life” in the sixth sentence. The
sentiment of target-specific opinion word is con-
ditioned on the given target. Our TNet variants,
armed with the word-level feature transformation
w.r.t. the target, is capable of handling such case.

We also find that all these models cannot give
correct prediction for the last sentence, a com-
monly used subjunctive style. In this case, the dif-
ficulty of prediction does not come from the de-
tection of explicit opinion words but the inference
based on implicit semantics, which is still quite
challenging for neural network models.

4 Related Work

Apart from sentence level sentiment classifica-
tion (Kim, 2014; Shi et al., 2018), aspect/target
level sentiment classification is also an impor-
tant research topic in the field of sentiment analy-
sis. The early methods mostly adopted supervised
learning approach with extensive hand-coded fea-
tures (Blair-Goldensohn et al., 2008; Titov and
McDonald, 2008; Yu et al., 2011; Jiang et al.,
2011; Kiritchenko et al., 2014; Wagner et al.,
2014; Vo and Zhang, 2015), and they fail to model
the semantic relatedness between a target and its
context which is critical for target sentiment anal-
ysis. Dong et al. (2014) incorporate the target in-
formation into the feature learning using depen-
dency trees. As observed in previous works, the
performance heavily relies on the quality of de-
pendency parsing. Tang et al. (2016a) propose to
split the context into two parts and associate tar-
get with contextual features separately. Similar to
(Tang et al., 2016a), Zhang et al. (2016) develop a
three-way gated neural network to model the in-

teraction between the target and its surrounding
contexts. Despite the advantages of jointly mod-
eling target and context, they are not capable of
capturing long-range information when some crit-
ical context information is far from the target. To
overcome this limitation, researchers bring in the
attention mechanism to model target-context as-
sociation (Tang et al., 2016a,b; Wang et al., 2016;
Yang et al., 2017; Liu and Zhang, 2017; Ma et al.,
2017; Chen et al., 2017; Zhang et al., 2017; Tay
et al., 2017). Compared with these methods, our
TNet avoids using attention for feature extraction
so as to alleviate the attended noise.

5 Conclusions

We re-examine the drawbacks of attention mecha-
nism for target sentiment classification, and also
investigate the obstacles that hinder CNN-based
models to perform well for this task. Our TNet
model is carefully designed to solve these issues.
Specifically, we propose target specific transfor-
mation component to better integrate target infor-
mation into the word representation. Moreover,
we employ CNN as the feature extractor for this
classification problem, and rely on the context-
preserving and position relevance mechanisms to
maintain the advantages of previous LSTM-based
models. The performance of TNet consistently
dominates previous state-of-the-art methods on
different types of data. The ablation studies show
the efficacy of its different modules, and thus ver-
ify the rationality of TNet’s architecture.
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