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Abstract

Despite recent advances in knowledge rep-
resentation, automated reasoning, and ma-
chine learning, artificial agents still lack
the ability to understand basic action-
effect relations regarding the physical
world, for example, the action of cutting
a cucumber most likely leads to the state
where the cucumber is broken apart into
smaller pieces. If artificial agents (e.g.,
robots) ever become our partners in joint
tasks, it is critical to empower them with
such action-effect understanding so that
they can reason about the state of the world
and plan for actions. Towards this goal,
this paper introduces a new task on naive
physical action-effect prediction, which
addresses the relations between concrete
actions (expressed in the form of verb-
noun pairs) and their effects on the state of
the physical world as depicted by images.
We collected a dataset for this task and de-
veloped an approach that harnesses web
image data through distant supervision to
facilitate learning for action-effect predic-
tion. Our empirical results have shown
that web data can be used to complement a
small number of seed examples (e.g., three
examples for each action) for model learn-
ing. This opens up possibilities for agents
to learn physical action-effect relations for
tasks at hand through communication with
humans with a few examples.

1 Introduction

Causation in the physical world has long been a
central discussion to philosophers who study ca-
sual reasoning and explanation (Ducasse, 1926;
Gopnik et al., 2007), to mathematicians or com-

puter scientists who apply computational ap-
proaches to model cause-effect prediction (Pearl
et al., 2009), and to domain experts (e.g., medical
doctors) who attempt to understand the underly-
ing cause-effect relations (e.g., disease and symp-
toms) for their particular inquires. Apart from this
wide range of topics, this paper investigates a spe-
cific kind of causation, the very basic causal rela-
tions between a concrete action (expressed in the
form of a verb-noun pair such as “cut-cucumber”)
and the change of the physical state caused by
this action. We call such relations naive physical
action-effect relations.

For example, given an image as shown in Fig-
ure 1, we would have no problem predicting what
actions can cause the state of the world depicted in
the image, e.g., slicing an apple will likely lead to
the state. On the other hand, given a statement
“slice an apple”, it would not be hard for us to
imagine what state change may happen to the ap-
ple. We can make such action-effect prediction
because we have developed an understanding of
this kind of basic action-effect relations at a very
young age (Baillargeon, 2004). What happens to
machines? Will artificial agents be able to make
the same kind of predictions? The answer is not
yet.

Despite tremendous progress in knowledge rep-
resentation, automated reasoning, and machine
learning, artificial agents still lack the understand-
ing of naive causal relations regarding the physical
world. This is one of the bottlenecks in machine
intelligence. If artificial agents ever become capa-
ble of working with humans as partners, they will
need to have this kind of physical action-effect un-
derstanding to help them reason, learn, and per-
form actions.

To address this problem, this paper introduces
a new task on naive physical action-effect pre-
diction. This task supports both cause predic-
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Figure 1: Images showing the effects of “slice an
apple”.

tion: given an image which describes a state of the
world, identify the most likely action (in the form
of a verb-noun pair, from a set of candidates) that
can result in that state; and effect prediction: given
an action in the form of a verb-noun pair, identify
images (from a set of candidates) that depicts the
most likely effects on the state of the world caused
by that action. Note that there could be different
ways to formulate this problem, for example, both
causes and effects are in the form of language or
in the form of images/videos. Here we intention-
ally frame the action as a language expression (i.e.,
a verb-noun pair) and the effect as depicted in an
image in order to make a connection between lan-
guage and perception. This connection is impor-
tant for physical agents that not only can perceive
and act, but also can communicate with humans in
language.

As a first step, we collected a dataset of 140
verb-noun pairs. Each verb-noun pair is annotated
with possible effects described in language and de-
picted in images (where language descriptions and
image descriptions are collected separately). We
have developed an approach that applies distant
supervision to harness web data for bootstrapping
action-effect prediction models. Our empirical re-
sults have shown that, using a simple bootstrap-
ping strategy, our approach can combine the noisy
web data with a small number of seed examples to
improve action-effect prediction. In addition, for a
new verb-noun pair, our approach can infer its ef-
fect descriptions and predict action-effect relations
only based on 3 image examples.

The contributions of this paper are three folds.
First, it introduces a new task on physical action-
effect prediction, a first step towards an under-

standing of causal relations between physical ac-
tions and the state of the physical world. Such
ability is central to robots which not only perceive
from the environment, but also act to the environ-
ment through planning. To our knowledge, there
is no prior work that attempts to connect actions
(in language) and effects (in images) in this na-
ture. Second, our approach harnesses the large
amount of image data available on the web with
minimum supervision. It has shown that physi-
cal action-effect models can be learned through
a combination of a few annotated examples and
a large amount of un-annotated web data. This
opens up the possibility for humans to teach robots
new tasks through language communication with
a small number of examples. Third, we have cre-
ated a dataset for this task, which is available to
the community 1. Our bootstrapping approach can
serve as a baseline for future work on this topic.

In the following sections, we first describe our
data collection effort, then introduce the bootstrap-
ping approach for action-effect prediction, and fi-
nally present results from our experiments.

2 Related Work

In the NLP community, there has been exten-
sive work that models cause-effect relations from
text (Cole et al., 2005; Do et al., 2011; Yang and
Mao, 2014). Most of these previous studies ad-
dress high-level causal relations between events,
for example, “the collapse of the housing bubble”
causes the effect of “stock prices to fall” (Sharp
et al., 2016). They do not concern the kind of
naive physical action-effect relations in this pa-
per. There is also an increasing amount of effort
on capturing commonsense knowledge, for exam-
ple, through knowledge base population. Except
for few (Yatskar et al., 2016) that acquires knowl-
edge from images, most of the previous effort ap-
ply information extraction techniques to extract
facts from a large amount of web data (Dredze
et al., 2010; Rajani and Mooney, 2016). DBPe-
dia (Lehmann et al., 2015), Freebase (Bollacker
et al., 2008), and YAGO (Suchanek et al., 2007)
knowledge bases contain millions of facts about
the world such as people and places. However,
they do not contain basic cause-effect knowledge
related to concrete actions and their effects to the
world. Recent work started looking into phys-

1This dataset is available at http://lair.cse.msu.
edu/lair/projects/actioneffect.html

http://lair.cse.msu.edu/lair/projects/actioneffect.html
http://lair.cse.msu.edu/lair/projects/actioneffect.html
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ical causality of action verbs (Gao et al., 2016)
and other physical properties of verbs (Forbes and
Choi, 2017; Zellers and Choi, 2017; Chao et al.,
2015). But they do not address action-effect pre-
diction.

The idea of modeling object physical state
change has also been studied in the computer vi-
sion community (Fire and Zhu, 2016). Compu-
tational models have been developed to infer ob-
ject states from observations and to further pre-
dict future state changes (Zhou and Berg, 2016;
Wu et al., 2016, 2017). The action recognition
task can be treated as detecting the transforma-
tion on object states (Fathi and Rehg, 2013; Yang
et al., 2013; Wang et al., 2016). However these
previous works only focus on the visual presenta-
tion of motion effects. Recent years have seen an
increasing amount of work integrating language
and vision, for example, visual question answer-
ing (Antol et al., 2015; Fukui et al., 2016; Lu et al.,
2016), image description generation (Xu et al.,
2015; Vinyals et al., 2015), and grounding lan-
guage to perception (Yang et al., 2016; Roy, 2005;
Tellex et al., 2011; Misra et al., 2017). While
many approaches require a large amount of train-
ing data, recent works have developed zero/few
shot learning for language and vision (Mukherjee
and Hospedales, 2016; Xu et al., 2016, 2017a,b;
Tsai and Salakhutdinov, 2017). Different from
these previous works, this paper introduces a new
task that connects language with vision for physi-
cal action-effect prediction.

In the robotics community, an important task
is to enable robots to follow human natural lan-
guage instructions. Previous works (She et al.,
2014; Misra et al., 2015; She and Chai, 2016,
2017) explicitly model verb semantics as desired
goal states and thus linking natural language com-
mands with underlying planning systems for ac-
tion planning and execution. However, these stud-
ies were carried out either in a simulated world or
in a carefully curated simple environment within
the limitation of the robot’s manipulation system.
And they only focus on a very limited set of do-
main specific actions which often only involve the
change of locations. In this work, we study a set
of open-domain physical actions and a variety of
effects perceived from the environment (i.e., from
images).

3 Action-Effect Data Collection

We collected a dataset to support the investigation
on physical action-effect prediction. This dataset
consists of actions expressed in the form of verb-
noun pairs, effects of actions described in lan-
guage, and effects of actions depicted in images.
Note that, as we would like to have a wide range
of possible effects, language data and image data
are collected separately.

Actions (verb-noun pairs). We selected 40 nouns
that represent everyday life objects, most of them
are from the COCO dataset (Lin et al., 2014), with
a combination of food, kitchen ware, furniture, in-
door objects, and outdoor objects. We also iden-
tified top 3000 most frequently used verbs from
Google Syntactic N-gram dataset (Goldberg and
Orwant, 2013) (Verbargs set). And we extracted
top frequent verb-noun pairs containing a verb
from the top 3000 verbs and a noun in the 40 nouns
which hold a dobj (i.e., direct object) dependency
relation. This resulted in 6573 candidate verb-
noun pairs. As changes to an object can occur
at various dimensions (e.g., size, color, location,
attachment, etc.), we manually selected a subset
of verb-noun pairs based on the following criteria:
(1) changes to the objects are visible (as opposed
to other types such as temperature change, etc.);
and (2) changes reflect one particular dimension
as opposed to multiple dimensions (as entailed by
high-level actions such as “cook a meal”, which
correspond to multiple dimensions of change and
can be further decomposed into basic actions). As
a result, we created a subset of 140 verb-noun pairs
(containing 62 unique verbs and 39 unique nouns)
for our investigation.

Effects Described in Language. The basic
knowledge about physical action-effect is so fun-
damental and shared among humans. It is of-
ten presupposed in our communication and not
explicitly stated. Thus, it is difficult to extract
naive action-effect relations from the existing tex-
tual data (e.g., web). This kind of knowledge is
also not readily available in commonsense knowl-
edge bases such as ConceptNet (Speer and Havasi,
2012). To overcome this problem, we applied
crowd-sourcing (Amazon Mechanical Turk) and
collected a dataset of language descriptions de-
scribing effects for each of the 140 verb-noun
pairs. The workers were shown a verb-noun pair,
and were asked to use their own words and imag-



937

Action Effect Text
ignite paper The paper is on fire.
soak shirt The shirt is thoroughly wet.
fry potato The potatoes become crisp and golden.
stain shirt There is a visible mark on the shirt.

Table 1: Example action and effect text from our
collected data.

inations to describe what changes might occur to
the corresponding object as a result of the action.
Each verb-noun pair was annotated by 10 differ-
ent annotators, which has led to a total of 1400
effect descriptions. Table 1 shows some examples
of collected effect descriptions. These effect lan-
guage descriptions allow us to derive seed effect
knowledge in a symbolic form.

Effects Depicted in Images. For each action,
three students searched the web and collected a
set of images depicting potential effects. Specif-
ically, given a verb-noun pair, each of the three
students was asked to collect at least 5 positive
images and 5 negative images. Positive images
are those deemed to capture the resulting world
state of the action. And negative images are those
deemed to capture some state of the related ob-
ject (i.e., the nouns in the verb-noun pairs), but are
not the resulting state of the corresponding action.
Then, each student was also asked to provide pos-
itive or negative labels for the images collected by
the other two students. As a result each image has
three positive/negative labels. We only keep the
images whose labels are agreed by all three stu-
dents. In total, the dataset contains 4163 images.
On average, each action has 15 positive images,
and 15 negative images. Figure 2 shows several
examples of positive images and negative images
of the action peel-orange. The positive images
show an orange in a peeled state, while the neg-
ative images show oranges in different states (or-
ange as a whole, orange slices, orange juice, etc.).

4 Action-Effect Prediction

Action-effect prediction is to connect actions (as
causes) to the effects of actions. Specifically,
given an image which depicts a state of the world,
our task is to predict what concrete actions could
cause the state of the world. This task is different
from traditional action recognition as the underly-
ing actions (e.g., human body posture/movement)
are not captured by the images. In this regard, it is
also different from image description generation.

Figure 2: Positive images (top row) and negative
images (bottom row) of the action peel-orange.

We frame the problem as a few-shot learning
task, by only providing a few human-labelled im-
ages for each action at the training stage. Given
the very limited training data, we attempt to make
use of web-search images. Web search has been
adopted by previous computer vision studies to ac-
quire training data (Fergus et al., 2005; Kennedy
et al., 2006; Berg et al., 2010; Otani et al., 2016).
Compared with human annotations, web-search
comes at a much lower cost, but with a trade-off
of poor data quality. To address this issue, we ap-
ply a bootstrapping approach that aims to handle
data with noisy labels.

The first question is what search terms should
be used for image search. There are two options.
The first option is to directly use the action terms
(i.e., verb-noun pairs) to search images and the
downloaded web images are referred to as action
web images. As desired images should be depict-
ing effects of an action, terms describing effects
become a natural choice. The second option is to
use the key phrases extracted from language effect
descriptions to search the web. The downloaded
web images are referred to as effect web images.

4.1 Extracting Effect Phrases from Language
Data

We first apply chunking (shallow parsing) using
the SENNA software (Collobert et al., 2011) to
break an effect description into phrases such as
noun phrases (NP), verb phrases (VP), preposi-
tional phrases (PP), adjectives (ADJP), adverbs
(ADVP), etc. After some examination, we found
that most of the effect descriptions follow simple
syntactic patterns. For a verb-noun pair, around
80% of its effect descriptions start with the same
noun as the subject. In an effect description, the
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Example patterns Example Effect Phrases (bold) extracted from effect descriptions
VP with a verb ∈ {be, become, turn, get} The ship is destroyed.
VP + PRT The wall is knocked off.
VP + ADVP The door swings forward.
ADJP The window would begin to get clean.
PP + NP The eggs are divided into whites and yolks.

Table 2: Example patterns that are used to extract effect phrases (bold) from sample sentences.

change of state associated with the noun is mainly
captured by some key phrases. For example, an
adjective phrase usually describes a physical state;
verbs like be, become, turn, get often indicate a
description of change of the state. Based on these
observations, we defined a set of patterns to iden-
tify phrases that describe physical states of an ob-
ject. In total 1997 effect phrases were extracted
from the language data. Table 2 shows some ex-
ample patterns and example effect phrases that are
extracted.

4.2 Downloading Web Images

The purpose of querying search engine is to re-
trieve images of objects in certain effect states.
To form image searching keywords, the effect
phrases are concatenated with the corresponding
noun phrases, for example, “apple + into thin
pieces”. The image search results are downloaded
and used as supplementary training data for the
action-effect prediction models. However, web
images can be noisy. First of all, not all of the au-
tomatically extracted effect phrases describe vis-
ible state of objects. Even if a phrase represents
visible object states, the retrieved results may not
be relevant. Figure 3 shows some example image
search results using queries describing the object
name “book”, and describing the object state such
as “book is on fire”, “book is set aflame”. These
state phrases were used by human annotators to
describe the effect of the action “burn a book”. We
can see that the images returned from the query
“book is set aflame” are not depicting the physi-
cal effect state of “burn a book”. Therefore, it’s
important to identify images with relevant effect
states to train the model. To do that, we applied
a bootstrapping method to handle the noisy web
images as described in Section 4.3. For an action
(i.e., a verb-noun pair), it has multiple correspond-
ing effect phrases, and all of their image search re-
sults are treated as training images for this action.

Since both the human annotated image data
(Section 3) and the web-search image data were
obtained from Internet search engines, they may

book� book	is	on	fire� book	is	set	aflame�

Figure 3: Examples of image search results.

have duplicates. As part of the annotated images
are used as test data to evaluate the models, it
is important to remove duplicates. We designed
a simple method to remove any images from the
web-search image set that has a duplicate in the
human annotated set. We first embed all images
into feature vectors using pre-trained CNNs. For
each web-search image, we calculate its cosine
similarity score with each of the annotated images.
And we simply remove the web images that have
a score larger than 0.95.

4.3 Models

We formulate the action-effect prediction task as
a multi-class classification problem. Given an im-
age, the model will output a probability distribu-
tion q over the candidate actions (i.e., verb-noun
pairs) that can potentially cause the effect depicted
in the image.

Specifically for model training, we are given a
set of human annotated seeding image data {x, t}
and a set of web-search image data {x′, t′}. Here
x and x′ are the images (depicting effect states),
and t and t′ are their classification targets (i.e., ac-
tions that cause the effects). Each target vector is
the observed image label, t ∈ {0, 1}C ,

∑
i ti = 1,

and C is the number of classes (i.e., actions). The
human annotated targets t can be trusted. But the
targets of web-search images t′ are usually very
noisy. Bootstrapping method has been shown to
be an effective method to handle noisy labelled
data (Rosenberg et al., 2005; Whitney and Sarkar,
2012; Reed et al., 2014). The objective of the
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Figure 4: Architecture for the action-effect predic-
tion model with bootstrapping.

cross-entropy loss is defined as follows:

L(t,q) =
C∑
i=1

ti log (qi), (1)

where q are the predicted class probabilities, and
C is the number of classes. To handle the
noisy labels in the web-search data {x′, t′}, we
adopt a bootstrapping objective following Reed’s
work (Reed et al., 2014):

L(t′,q) =
C∑
i=1

[βt′i + (1− β)zi] log (qi), (2)

where β ∈ [0, 1] is a model parameter to be as-
signed, z is the one-hot vector of the prediction q,
zi = 1, if i = argmax qk, k = 1 . . . C.

The model architecture is shown in Figure 4.
After each training batch, the current model will
be used to make predictions q on images in the
next batch. And the target probabilities is calcu-
lated as a linear combination of the current predic-
tions q and the observed noisy labels t′. The idea
behind this bootstrapping strategy is to ensure the
consistency of the model’s predictions. By first
initializing the model on the seeding image data,
the bootstrapping approach allows the model to
trust more on the web images that are consistent
with the seeding data.

4.4 Evaluation

We evaluate the models on the action-effect pre-
diction task. Given an image that illustrates a state
of the world, the goal is to predict what action
could cause that state. Given an action in the form
of a verb-noun pair, the goal is to identify images
that depict the most likely effects on the state of
the world caused by that action.

For each of the 140 verb-noun pairs, we use
10% of the human annotated images as the seed-
ing image data for training, and use 30% for de-
velopment and the rest 60% for test. The seeding
image data set contains 408 images. On average,
each verb-noun pair has less than 3 seeding images
(including positive images and negative images).
The development set contains 1252 images. The
test set contains 2503 images. The model param-
eters were selected based on the performance on
the development set.

As a given image may not be relevant to any ef-
fect, we add a background class to refer to images
where effects are not caused by any action in the
space of actions. So the total of classes for our
evaluation model is 141. For each verb-noun pair
and each of the effect phrases, around 40 images
were downloaded from the Bing image search en-
gine and used as candidate training examples. In
total we have 6653 action web images and 59575
effect web images.

Methods for Comparison
All the methods compared are based on one neu-
ral network structure. We use ResNet (He et al.,
2016) pre-trained on ImageNet (Deng et al., 2009)
to extract image features. The extracted image fea-
tures are fed to a fully connected layer with rec-
tified linear units and then to a softmax layer to
make predictions. More specifically, we compare
the following configurations:
(1) BS+Seed+Act+Eff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the effect web images. During
the training stage, the model was first trained on
the seeding image data using vanilla cross-entropy
objective (Equation 1). Then it was further trained
on a combination of the seeding image data and
web-search data using the bootstrapping objective
(Equation 2). In the experiments we set β = 0.3.
(2) BS+Seed+Act. The bootstrapping approach
trained in the same fashion as (1). The only dif-
ference is that this method does not use the effect
web images.
(3) Seed+Act+Eff. A baseline method trained on
a combination of the seeding images, the web ac-
tion images, and the web effect images, using the
vanilla cross-entropy objective.
(4) Seed+Act. A baseline method trained on a
combination of the seeding images and the action
web images, using the vanilla cross-entropy objec-
tive.
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Top Action 
Predictions Top Effect Descriptions Top Action 

Predictions Top Effect Descriptions

bake potato
peel potato 
boil potato 
fry potato

potato crispy 
potato is crushed 
eggs get beaten 
potato browned

wrap book 
tear book
fold paper 
shave hair

book is ripped 
paper become creased 
book into smaller pieces 
meat is being prepped

peel carrot 
cut wood 
chop carrot
grate carrot

carrot into little sections 
tree into pieces 
carrot into tiny pieces 
wood is being chopped

stain paper 
close drawer 
squeeze bottle
crack bottle

bottle is pressed together 
meat is exposed 
paper around itself 
drawer is pushed back

chop onion 
cut onion 
slice onion 
background

onion is being cut 
onion in 
banana is made 
banana is removed

chop onion 
cook onion 
grate potato 
background

onion is heated 
onion into small pieces 
onion into multiple pieces 
onion is chopped

Figure 5: Several example test images and their predicted actions and predicted effect descriptions. The
actions in bold are ground-truth labels.

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.290 0.414 0.750 0.921
BS+Seed+Act 0.252 0.414 0.721 0.893
Seed+Act+Eff 0.247 0.314 0.679 0.886
Seed+Act 0.241 0.371 0.650 0.814
Seed 0.182 0.329 0.629 0.807

Table 3: Results for the action-effect prediction
task (given an action, rank all the candidate im-
ages).

MAP Top 1 Top 5 Top 20
BS+Seed+Act+Eff 0.660 0.523 0.843 0.954
BS+Seed+Act 0.642 0.508 0.802 0.924
Seed+Act+Eff 0.289 0.176 0.398 0.625
Seed+Act 0.481 0.301 0.724 0.926
Seed 0.634 0.520 0.765 0.892

Table 4: Results for the action-effect prediction
task (given an image, rank all the actions).

(5) Seed. A baseline method that was only trained
on the seeding image data, using the vanilla cross-
entropy objective.

Evaluation Results
We apply the trained classification model to all of
the test images. Based on the matrix of predic-
tion scores, we can evaluate action-effect predic-
tion from two angles: (1) given an action class,
rank all the candidate images; (2) given an image,
rank all the candidate action classes. Table 3 and 4
show the results for these two angels respectively.
We report both mean average precision (MAP) and
top prediction accuracy.

Overall, BS+Seed+Act+Eff gives the best per-
formance. By comparing the bootstrap approach
with baseline approaches (i.e., BS+Seed+Act+Eff

vs. Seed+Act+Eff, and BS+Seed+Act vs.
Seed+Act), the bootstrapping approaches clearly
outperforms their counterparts, demonstrating its
ability in handling noisy web data. Comparing
BS+Seed+Act+Eff with BS+Seed+Act, we can
see that BS+Seed+Act+Eff performs better. This
indicates the use of effect descriptions can bring
more relevant images to train better models for
action-effect prediction.

In Table 4, the poor performance of
Seed+Act+Eff and Seed+Act shows that it is
risky to fully rely on the noisy web search results.
These two methods had trouble in distinguishing
the background class from the rest.

We further trained another multi-class classifier
with web effect images, using their corresponding
effect phrases as class labels. Given a test image,
we apply this new classifier to predict the effect
descriptions of this image. Figure 5 shows some
example images, their predicted actions based on
our bootstrapping approach and their predicted ef-
fect phrases based on the new classifier. These ex-
amples also demonstrate another advantage of in-
corporating seed effect knowledge from language
data: it provides state descriptions that can be used
to better explain the perceived state. Such explana-
tion can be crucial in human-agent communication
for action planning and reasoning.

5 Generalizing Effect Knowledge to New
Verb-Noun Pairs

In real applications, it is very likely that we do not
have the effect knowledge (i.e., language effect de-
scriptions) for every verb-noun pair. And annotat-
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Action	 Effect	

slice		apple	 into		many		small		pieces	

LSTM� LSTM�

Cosine		
Embedding	Loss	

Figure 6: Architecture of the action-effect embed-
ding model.

ing effect knowledge using language (as shown in
Section 3) can be very expensive. In this section,
we describe how to potentially generalize seed ef-
fect knowledge to new verb-noun pairs through an
embedding model.

5.1 Action-Effect Embedding Model
The structure of our model is shown in Figure 6.
It is composed of two sub-networks: one for verb-
noun pairs (i.e., action) and the other one for effect
phrases (i.e, effect). The action or effect is fed into
an LSTM encoder and then to two fully-connected
layers. The output is an action embedding vc and
effect embedding ve. The networks are trained by
minimizing the following cosine embedding loss
function:

L(vc,ve) =

{
1− s(vc,ve), if (c, e) ∈ T
max(0, s(vc,ve)), if (c, e) /∈ T

s(·, ·) is the cosine similarity between vectors. T
is a collection of action-effect pairs. Suppose c is
an input for action and e is an input for effect, this
loss function will learn an action and effect seman-
tic space that maximizes the similarities between
c and e if they have an action-effect relation (i.e.,
(c, e) ∈ T ). During training, the negative action-
effect pairs (i.e., (c, e) /∈ T ) are randomly sam-
pled from data. In the experiments, the negative
sampling ratio is set to 25. That is, for each posi-
tive action-effect pair, 25 negative pairs are created
through random sampling.

At the inference step, given an unseen verb-
noun pair, we embed it into the action and ef-
fect semantic space. Its embedding vector will be
used to calculate similarities with all the embed-
ding vectors of the candidate effect phrases.

MAP Top 1 Top 5
BS+Seed+Act+Eff 0.529 0.643 0.928
BS+Seed+Act+pEff 0.507 0.642 0.893
BS+Seed+Act 0.435 0.643 0.964
Seed 0.369 0.678 0.786

Table 5: Results for the action-effect prediction
task (given an action, rank all the candidate im-
ages).

MAP Top 1 Top 5
BS+Seed+Act+Eff 0.733 0.574 0.947
BS+Seed+Act+pEff 0.729 0.551 0.961
BS+Seed+Act 0.724 0.557 0.933
Seed 0.705 0.557 0.898

Table 6: Results for the action-effect prediction
task (given an image, rank all the actions).

5.2 Evaluation

We divided the 140 verb-noun pairs into 70%
training set (98 verb-noun pairs), 10% develop-
ment set (14) and 20% test set (28). For the action-
effect embedding model, we use pre-trained
GloVe word embeddings (Pennington et al., 2014)
as input to the LSTM. The embedding model was
trained using the language effect data correspond-
ing to the training verb-noun pairs, and then it was
applied to predict effect phrases for the unseen
verb-noun pairs in the test set. For each unseen
verb-noun pair, we collected its top five predicted
effect phrases. Each predicted effect phrase was
then used as query keywords to download web ef-
fect images. This set of web images are referred
to as pEff and will be used in training the action-
effect prediction model.

For each of the 28 test (i.e., new) verb-noun
pairs, we use the same ratio 10% (about 3 ex-
amples) of the human annotated images as the
seeding images, which were combined with down-
loaded web images to train the prediction model.
The remaining 30% and 60% are used as the de-
velopment set, and the test set. We compare the
following different configurations:
(1) BS+Seed+Act+pEff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the web images downloaded us-
ing the predicted effect phrases.
(2) BS+Seed+Act+Eff. The bootstrapping ap-
proach trained on the seeding images, the action
web images, and the effect web images (down-
loaded using ground-truth effect phrases).
(3) BS+Seed+Act. The bootstrapping approach
trained on the seeding images and the action web
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Action Text Predicted Effect Text

chop carrot

carrot into sandwiches,
carrot is sliced,
carrot is cut thinly,
carrot into different pieces,
carrot is divided

ignite paper

paper is being charred ,
paper is being burned,
paper is set,
paper is being destroyed,
paper is lit

mash potato

potato into chunks,
potato into sandwiches,
potato into slices,
potato is chewed,
potato into smaller pieces

Table 7: Example predicted effect phrases for
new verb-noun pairs. Unseen verbs and nouns are
shown in bold.

images.

(4) Seed. A baseline only trained on the seeding
images.

Table 5 and 6 show the results for the
action-effect prediction task for unseen verb-
noun pairs. From the results we can see that
BS+Seed+Act+pEff achieves close performance
compared with BS+Seed+Act+Eff, which uses hu-
man annotated effect phrases. Although in most
cases, BS+Seed+Act+pEff outperforms the base-
line, which seems to point to the possibility that
semantic embedding space can be employed to
extend effect knowledge to new verb-noun pairs.
However, the current results are not conclusive
partly due to the small testing set. More in-depth
evaluation is needed in the future.

Table 7 shows top predicted effect phrases for
several new verb-noun pairs. After analyzing the
action-effect prediction results we notice that gen-
eralizing the effect knowledge to a verb-noun pair
that contains an unseen verb tends to be more dif-
ficult than generalizing to a verb-noun pair that
contains an unseen noun. Among the 28 test verb-
noun pairs, 12 of them contain unseen verbs and
known nouns, 7 of them contain unseen nouns and
known verbs. For the task of ranking images given
an action, the mean average precision is 0.447 for
the unseen verb cases and 0.584 for the unseen
noun cases. Although not conclusive, this might
indicate that, verbs tend to capture more informa-
tion about the effect states of the world than nouns.

6 Discussion and Conclusion

When robots operate in the physical world, they
not only need to perceive the world, but also need
to act to the world. They need to understand the
current state, to map their goals to the world state,
and to plan for actions that can lead to the goals.
All of these point to the importance of the ability
to understand causal relations between actions and
the state of the world. To address this issue, this
paper introduces a new task on action-effect pre-
diction.

Particularly, we focus on modeling the connec-
tion between an action (a verb-noun pair) and its
effect as illustrated in an image and treat natural
language effect descriptions as side knowledge to
help acquiring web image data and bootstrap train-
ing. Our current model is very simple and perfor-
mance is yet to be improved. We plan to apply
more advanced approaches in the future, for exam-
ple, attention models that jointly capture actions,
image states, and effect descriptions. We also plan
to incorporate action-effect prediction to human-
robot collaboration, for example, to bridge the gap
of commonsense knowledge about the physical
world between humans and robots.

This paper presents an initial investigation on
action-effect prediction. There are many chal-
lenges and unknowns, from problem formulation
to knowledge representation; from learning and
inference algorithms to methods and metrics for
evaluations. Nevertheless, we hope this work can
motivate more research in this area, enabling phys-
ical action-effect reasoning, towards agents which
can perceive, act, and communicate with humans
in the physical world.
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