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Abstract

We introduce a method of adapting neural
paragraph-level question answering mod-
els to the case where entire documents are
given as input. Most current question an-
swering models cannot scale to document
or multi-document input, and naively ap-
plying these models to each paragraph in-
dependently often results in them being
distracted by irrelevant text. We show
that it is possible to significantly improve
performance by using a modified training
scheme that teaches the model to ignore
non-answer containing paragraphs. Our
method involves sampling multiple para-
graphs from each document, and using an
objective function that requires the model
to produce globally correct output. We
additionally identify and improve upon a
number of other design decisions that arise
when working with document-level data.
Experiments on TriviaQA and SQuAD
shows our method advances the state of the
art, including a 10 point gain on TriviaQA.

1 Introduction

Teaching machines to answer arbitrary user-
generated questions is a long-term goal of natural
language processing. For a wide range of ques-
tions, existing information retrieval methods are
capable of locating documents that are likely to
contain the answer. However, automatically ex-
tracting the answer from those texts remains an
open challenge. The recent success of neural mod-
els at answering questions given a related para-
graph (Wang et al., 2017c; Tan et al., 2017) sug-
gests they have the potential to be a key part of

∗Work completed while interning at the Allen Institute
for Artificial Intelligence

a solution to this problem. Most neural models
are unable to scale beyond short paragraphs, so
typically this requires adapting a paragraph-level
model to process document-level input.

There are two basic approaches to this task.
Pipelined approaches select a single paragraph
from the input documents, which is then passed to
the paragraph model to extract an answer (Joshi
et al., 2017; Wang et al., 2017a). Confidence
based methods apply the model to multiple para-
graphs and return the answer with the highest con-
fidence (Chen et al., 2017a). Confidence meth-
ods have the advantage of being robust to errors
in the (usually less sophisticated) paragraph selec-
tion step, however they require a model that can
produce accurate confidence scores for each para-
graph. As we shall show, naively trained models
often struggle to meet this requirement.

In this paper we start by proposing an improved
pipelined method which achieves state-of-the-art
results. Then we introduce a method for training
models to produce accurate per-paragraph confi-
dence scores, and we show how combining this
method with multiple paragraph selection further
increases performance.

Our pipelined method focuses on addressing the
challenges that come with training on document-
level data. We use a linear classifier to select
which paragraphs to train and test on. Since an-
notating entire documents is expensive, data of
this sort is typically distantly supervised, mean-
ing only the answer text, not the answer spans,
are known. To handle the noise this creates, we
use a summed objective function that marginal-
izes the model’s output over all locations the an-
swer text occurs. We apply this approach with
a model design that integrates some recent ideas
in reading comprehension models, including self-
attention (Cheng et al., 2016) and bi-directional at-
tention (Seo et al., 2016).
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Our confidence method extends this approach
to better handle the multi-paragraph setting. Pre-
vious approaches trained the model on questions
paired with paragraphs that are known a priori to
contain the answer. This has several downsides:
the model is not trained to produce low confidence
scores for paragraphs that do not contain an an-
swer, and the training objective does not require
confidence scores to be comparable between para-
graphs. We resolve these problems by sampling
paragraphs from the context documents, includ-
ing paragraphs that do not contain an answer, to
train on. We then use a shared-normalization ob-
jective where paragraphs are processed indepen-
dently, but the probability of an answer candidate
is marginalized over all paragraphs sampled from
the same document. This requires the model to
produce globally correct output even though each
paragraph is processed independently.

We evaluate our work on TriviaQA (Joshi et al.,
2017) in the wiki, web, and unfiltered setting.
Our model achieves a nearly 10 point lead over
published prior work. We additionally perform
an ablation study on our pipelined method, and
we show the effectiveness of our multi-paragraph
methods on a modified version of SQuAD (Ra-
jpurkar et al., 2016) where only the correct docu-
ment, not the correct paragraph, is known. Finally,
we combine our model with a web search backend
to build a demonstration end-to-end QA system1,
and show it performs well on questions from the
TREC question answering task (Voorhees et al.,
1999). We release our code2 to facilitate future
work.

2 Pipelined Method

In this section we propose a pipelined QA system,
where a single paragraph is selected and passed to
a paragraph-level question answering model.

2.1 Paragraph Selection

If there is a single source document, we select the
paragraph with the smallest TF-IDF cosine dis-
tance with the question. Document frequencies are
computed using the individual paragraphs within
the document. If there are multiple input docu-
ments, we found it beneficial to use a linear clas-
sifier that uses the same TF-IDF score, whether
the paragraph was the first in its document, how

1https://documentqa.allenai.org
2https://github.com/allenai/document-qa

many tokens preceded it, and the number of ques-
tion words it includes as features. The classifier is
trained on the distantly supervised objective of se-
lecting paragraphs that contain at least one answer
span. On TriviaQA web, relative to truncating the
document as done by prior work, this improves the
chance of the selected text containing the correct
answer from 83.1% to 85.1%.

2.2 Handling Noisy Labels

Question: Which British general was killed at Khartoum
in 1885?
Answer: Gordon
Context: In February 1885 Gordon returned to the Sudan
to evacuate Egyptian forces. Khartoum came under siege
the next month and rebels broke into the city, killing Gor-
don and the other defenders. The British public reacted to
his death by acclaiming ‘Gordon of Khartoum’, a saint.
However, historians have suggested that Gordon...

Figure 1: Noisy supervision can cause many spans
of text that contain the answer, but are not situated
in a context that relates to the question (red), to
distract the model from learning from more rele-
vant spans (green).

In a distantly supervised setup we label all text
spans that match the answer text as being correct.
This can lead to training the model to select un-
wanted answer spans. Figure 1 contains an exam-
ple. To handle this difficulty, we use a summed
objective function similar to the one from Kadlec
et al. (2016), that optimizes the negative log-
likelihood of selecting any correct answer span.
The models we consider here work by indepen-
dently predicting the start and end token of the an-
swer span, so we take this approach for both pre-
dictions. For example, the objective for predicting
the answer start token becomes − log

(∑
a∈A pa

)
where A is the set of tokens that start an answer
and pi is the answer-start probability predicted by
the model for token i. This objective has the ad-
vantage of being agnostic to how the model dis-
tributes probability mass across the possible an-
swer spans, allowing the model to focus on only
the most relevant spans.

2.3 Model
We use a model with the following layers (shown
in Figure 2):

Embedding: We embed words using pre-
trained word vectors. We concatenate these with
character-derived word embeddings, which are
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Figure 2: High level outline of our model.

produced by embedding characters using a learned
embedding matrix and then applying a convolu-
tional neural network and max-pooling.

Pre-Process: A shared bi-directional
GRU (Cho et al., 2014) is used to process
the question and passage embeddings.

Attention: The attention mechanism from
the Bi-Directional Attention Flow (BiDAF)
model (Seo et al., 2016) is used to build a query-
aware context representation. Let hi and qj be
the vector for context word i and question word
j, and nq and nc be the lengths of the question
and context respectively. We compute attention
between context word i and question word j as:

aij = w1 · hi +w2 · qj +w3 · (hi � qj)

where w1, w2, and w3 are learned vectors and �
is element-wise multiplication. We then compute
an attended vector ci for each context token as:

pij =
eaij∑nq

j=1 e
aij

ci =

nq∑
j=1

qjpij

We also compute a query-to-context vector qc:

mi = max
1≤j≤nq

aij

pi =
emi∑nc
i=1 e

mi
qc =

nc∑
i=1

hipi

The final vector for each token is built by con-
catenating hi, ci, hi � ci, and qc � ci. In our
model we subsequently pass the result through a
linear layer with ReLU activations.

Self-Attention: Next we use a layer of residual
self-attention. The input is passed through another
bi-directional GRU. Then we apply the same at-
tention mechanism, only now between the passage
and itself. In this case we do not use query-to-
context attention and we set aij = −inf if i = j.

As before, we pass the concatenated output
through a linear layer with ReLU activations. The
result is then summed with the original input.

Prediction: In the last layer of our model a bi-
directional GRU is applied, followed by a linear
layer to compute answer start scores for each to-
ken. The hidden states are concatenated with the
input and fed into a second bi-directional GRU and
linear layer to predict answer end scores. The soft-
max function is applied to the start and end scores
to produce answer start and end probabilities.

Dropout: We apply variational dropout (Gal
and Ghahramani, 2016) to the input to all the
GRUs and the input to the attention mechanisms
at a rate of 0.2.

3 Confidence Method

We adapt this model to the multi-paragraph setting
by using the un-normalized and un-exponentiated
(i.e., before the softmax operator is applied) score
given to each span as a measure of the model’s
confidence. For the boundary-based models we
use here, a span’s score is the sum of the start and
end score given to its start and end token. At test
time we run the model on each paragraph and se-
lect the answer span with the highest confidence.
This is the approach taken by Chen et al. (2017a).

Our experiments in Section 5 show that these
confidence scores can be very poor if the model is
only trained on answer-containing paragraphs, as
done by prior work. Table 1 contains some quali-
tative examples of the errors that occur.

We hypothesize that there are two key sources
of error. First, for models trained with the soft-
max objective, the pre-softmax scores for all spans
can be arbitrarily increased or decreased by a con-
stant value without changing the resulting softmax
probability distribution. As a result, nothing pre-
vents models from producing scores that are arbi-
trarily all larger or all smaller for one paragraph
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Question Low Confidence Correct Extraction High Confidence Incorrect Extraction

When is the Members
Debate held?

Immediately after Decision Time a “Mem-
bers Debate” is held, which lasts for 45 min-
utes...

...majority of the Scottish electorate voted for
it in a referendum to be held on 1 March
1979 that represented at least...

How many tree species
are in the rainforest?

...one 2001 study finding a quarter square
kilometer (62 acres) of Ecuadorian rainforest
supports more than 1,100 tree species

The affected region was approximately
1,160,000 square miles (3,000,000 km2) of
rainforest, compared to 734,000 square miles

Who was Warsz?
....In actuality, Warsz was a 12th/13th century
nobleman who owned a village located at the
modern....

One of the most famous people born in War-
saw was Maria Sklodowska - Curie, who
achieved international...

How much did the ini-
tial LM weight in kg?

The initial LM model weighed approximately
33,300 pounds (15,000 kg), and...

The module was 11.42 feet (3.48 m) tall,
and weighed approximately 12,250 pounds
(5,560 kg)

Table 1: Examples from SQuAD where a model was less confident in a correct extraction from one
paragraph (left) than in an incorrect extraction from another (right). Even if the passage has no correct
answer and does not contain any question words, the model assigns high confidence to phrases that match
the category the question is asking about. Because the confidence scores are not well-calibrated, this
confidence is often higher than the confidence assigned to correct answer spans in different paragraphs,
even when those correct spans have better contextual evidence.

than another. Second, if the model only sees para-
graphs that contain answers, it might become too
confident in heuristics or patterns that are only ef-
fective when it is known a priori that an answer
exists. For example, the model might become too
reliant on selecting answers that match semantic
type the question is asking about, causing it be eas-
ily distracted by other entities of that type when
they appear in irrelevant text. This kind of error
has also been observed when distractor sentences
are added to the context (Jia and Liang, 2017)

We experiment with four approaches to training
models to produce comparable confidence scores,
shown in the following subsections. In all cases
we will sample paragraphs that do not contain an
answer as additional training points.

3.1 Shared-Normalization

In this approach a modified objective function is
used where span start and end scores are normal-
ized across all paragraphs sampled from the same
context. This means that paragraphs from the
same context use a shared normalization factor in
the final softmax operations. We train on this ob-
jective by including multiple paragraphs from the
same context in each mini-batch. The key idea is
that this will force the model to produce scores that
are comparable between paragraphs, even though
it does not have access to information about what
other paragraphs are being considered.

3.2 Merge

As an alternative to the previous method, we ex-
periment with concatenating all paragraphs sam-

pled from the same context together during train-
ing. A paragraph separator token with a learned
embedding is added before each paragraph.

3.3 No-Answer Option
We also experiment with allowing the model to se-
lect a special “no-answer” option for each para-
graph. First we re-write our objective as:

− log

(
esa∑n
i=1 e

si

)
− log

(
egb∑n
j=1 e

gj

)
=

− log

(
esa+gb∑n

i=1

∑n
j=1 e

si+gj

)
where sj and gj are the scores for the start and end
bounds produced by the model for token j, and a
and b are the correct start and end tokens. We have
the model compute another score, z, to represent
the weight given to a “no-answer” possibility. Our
revised objective function becomes:

− log

(
(1− δ)ez + δesa+gb

ez +
∑n

i=1

∑n
j=1 e

si+gj

)
where δ is 1 if an answer exists and 0 otherwise. If
there are multiple answer spans we use the same
objective, except the numerator includes the sum-
mation over all answer start and end tokens.

We compute z by adding an extra layer at the
end of our model. We build input vectors by tak-
ing the summed hidden states of the RNNs used to
predict the start/end token scores weighed by the
start/end probabilities, and using a learned atten-
tion vector on the output of the self-attention layer.
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These vectors are fed into a two layer network with
an 80 dimensional hidden layer and ReLU activa-
tions that produces z as its only output.

3.4 Sigmoid
As a final baseline, we consider training models
with the sigmoid loss objective function. That is,
we compute a start/end probability for each token
by applying the sigmoid function to the start/end
scores of each token. A cross entropy loss is used
on each individual probability. The intuition is
that, since the scores are being evaluated indepen-
dently of one another, they are more likely to be
comparable between different paragraphs.

4 Experimental Setup

4.1 Datasets
We evaluate our approach on four datasets: Triv-
iaQA unfiltered (Joshi et al., 2017), a dataset of
questions from trivia databases paired with docu-
ments found by completing a web search of the
questions; TriviaQA wiki, the same dataset but
only including Wikipedia articles; TriviaQA web,
a dataset derived from TriviaQA unfiltered by
treating each question-document pair where the
document contains the question answer as an in-
dividual training point; and SQuAD (Rajpurkar
et al., 2016), a collection of Wikipedia articles and
crowdsourced questions.

4.2 Preprocessing
We note that for TriviaQA web we do not sub-
sample as was done by Joshi et al. (2017), instead
training on the all 530k training examples. We
also observe that TriviaQA documents often con-
tain many small paragraphs, so we restructure the
documents by merging consecutive paragraphs to-
gether up to a target size. We use a maximum para-
graph size of 400 unless stated otherwise. Para-
graph separator tokens with learned embeddings
are added between merged paragraphs to preserve
formatting information. We are also careful to
mark all spans of text that would be considered an
exact match by the official evaluation script, which
includes some minor text pre-processing, as an-
swer spans, not just spans that are an exact string
match with the answer text.

4.3 Sampling
Our confidence-based approaches are trained by
sampling paragraphs from the context during
training. For SQuAD and TriviaQA web we take

Model EM F1
baseline (Joshi et al., 2017) 41.08 47.40
BiDAF 50.21 56.86
BiDAF + TF-IDF 53.41 59.18
BiDAF + sum 56.22 61.48
BiDAF + TF-IDF + sum 57.20 62.44
our model + TF-IDF + sum 61.10 66.04

Table 2: Results on TriviaQA web using our
pipelined method.

the top four paragraphs as judged by our paragraph
ranking function (see Section 2.1). We sample two
different paragraphs from those four each epoch
to train on. Since we observe that the higher-
ranked paragraphs are more likely to contain the
context needed to answer the question, we sample
the highest ranked paragraph that contains an an-
swer twice as often as the others. For the merge
and shared-norm approaches, we additionally re-
quire that at least one of the paragraphs contains
an answer span, and both of those paragraphs are
included in the same mini-batch. For TriviaQA
wiki we repeat the process but use the top 8 para-
graphs, and for TriviaQA unfiltered we use the top
16, because much more context is given in these
settings.

4.4 Implementation

We train the model with the Adadelta opti-
mizer (Zeiler, 2012) with a batch size 60 for Triv-
iaQA and 45 for SQuAD. At test time we select
the most probable answer span of length less than
or equal to 8 for TriviaQA and 17 for SQuAD.
The GloVe 300 dimensional word vectors released
by Pennington et al. (2014) are used for word em-
beddings. On SQuAD, we use a dimensionality
of size 100 for the GRUs and of size 200 for the
linear layers employed after each attention mecha-
nism. We found for TriviaQA, likely because there
is more data, using a larger dimensionality of 140
for each GRU and 280 for the linear layers is bene-
ficial. During training, we maintain an exponential
moving average of the weights with a decay rate of
0.999. We use the weight averages at test time. We
do not update the word vectors during training.

5 Results

5.1 TriviaQA Web and TriviaQA Wiki

First, we do an ablation study on TriviaQA web
to show the effects of our proposed methods for
our pipeline model. We start with a baseline fol-
lowing the one used by Joshi et al. (2017). This
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Model Web Web Verified Wiki Wiki Verified
EM F1 EM F1 EM F1 EM F1

Baseline (Joshi et al., 2017) 40.74 47.06 49.54 55.80 40.32 45.91 44.86 50.71
Smarnet (Chen et al., 2017b) 40.87 47.09 51.11 55.98 42.41 48.84 50.51 55.90
Mnemonic Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48 46.94 52.85 54.45 59.46
(Weissenborn et al., 2017a) 50.56 56.73 63.20 67.97 48.64 55.13 53.42 59.92
Neural Cascade (Swayamdipta et al., 2017) 53.75 58.57 63.20 66.88 51.59 55.95 58.90 62.53
S-Norm (ours) 66.37 71.32 79.97 83.70 63.99 68.93 67.98 72.88

Table 3: Published TriviaQA results. Our approach advances the state of the art by about 10 points on
these datasets4
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Figure 3: Results on TriviaQA web when apply-
ing our models to multiple paragraphs from each
document. Most of our training methods improve
the model’s ability to utilize more text.

system uses BiDAF (Seo et al., 2016) as the para-
graph model, and selects a random answer span
from each paragraph each epoch to train on. The
first 400 tokens of each document are used during
training, and the first 800 during testing. When
using the TF-IDF paragraph selection approach,
we instead break the documents into paragraphs
of size 400 when training and 800 when testing,
and select the top-ranked paragraph to feed into
the model. As shown in Table 2, our baseline out-
performs the results reported by Joshi et al. (2017)
significantly, likely because we are not subsam-
pling the data. We find both TF-IDF ranking and
the sum objective to be effective. Using our re-
fined model increases the gain by another 4 points.

Next we show the results of our confidence-
based approaches. For this comparison we split
documents into paragraphs of at most 400 to-
kens, and rank them using TF-IDF cosine distance.
Then we measure the performance of our proposed
approaches as the model is used to independently
process an increasing number of these paragraphs,
and the highest confidence answer is selected as
the final output. The results are shown in Figure 3.

On this dataset even the model trained without
any of the proposed training methods (“none”) im-
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none
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no-answer
shared-norm

Figure 4: Results for our confidence methods on
TriviaQA unfiltered. The shared-norm approach
is the strongest, while the baseline model starts to
lose performance as more paragraphs are used.

proves as more paragraphs are used, showing it
does a passable job at focusing on the correct para-
graph. The no-answer option training approach
lead to a significant improvement, and the shared-
norm and merge approaches are even better.

We use the shared-norm approach for evalua-
tion on the TriviaQA test sets. We found that in-
creasing the paragraph size to 800 at test time, and
to 600 during training, was slightly beneficial, al-
lowing our model to reach 66.04 EM and 70.98 F1
on the dev set. As shown in Table 3, our model is
firmly ahead of prior work on both the TriviaQA
web and TriviaQA wiki test sets. Since our sub-
mission, a few additional entries have been added
to the public leader for this dataset5, although to
the best of our knowledge these results have not
yet been published.

5.2 TriviaQA Unfiltered

Next we apply our confidence methods to Trivi-
aQA unfiltered. This dataset is of particular inter-
est because the system is not told which document
contains the answer, so it provides a plausible sim-
ulation of answering a question using a document

4Comparison made of 5/01/2018.
5https://competitions.codalab.org/competitions/17208
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Figure 5: Results for our confidence methods on
document-level SQuAD. The shared-norm model
is the only model that does not lose performance
when exposed to large numbers of paragraphs.

retrieval system. We show the same graph as be-
fore for this dataset in Figure 4. Our methods have
an even larger impact on this dataset, probably be-
cause there are many more relevant and irrelevant
paragraphs for each question, making paragraph
selection more important.

Note the naively trained model starts to lose
performance as more paragraphs are used, show-
ing that errors are being caused by the model be-
ing overly confident in incorrect extractions. We
achieve a score of 61.55 EM and 67.61 F1 on the
dev set. This advances the only prior result re-
ported for this dataset, 50.6 EM and 57.3 F1 from
Wang et al. (2017b), by 10 points.

5.3 SQuAD

We additionally evaluate our model on SQuAD.
SQuAD questions were not built to be answered
independently of their context paragraph, which
makes it unclear how effective of an evaluation
tool they can be for document-level question an-
swering. To assess this we manually label 500 ran-
dom questions from the training set.

We categorize questions as:

1. Context-independent, meaning it can be un-
derstood independently of the paragraph.

2. Document-dependent, meaning it can be un-
derstood given the article’s title. For exam-
ple, “What individual is the school named af-
ter?” for the document “Harvard University”.

3. Paragraph-dependent, meaning it can only be
understood given its paragraph. For example,
“What was the first step in the reforms?”.

We find 67.4% of the questions to be context-
independent, 22.6% to be document-dependent,

and the remaining 10% to be paragraph-
dependent. There are many document-dependent
questions because questions are frequently about
the subject of the document. Since a reasonably
high fraction of the questions can be understood
given the document they are from, and to isolate
our analysis from the retrieval mechanism used,
we choose to evaluate on the document-level. We
build documents by concatenating all the para-
graphs in SQuAD from the same article together
into a single document.

Given the correct paragraph (i.e., in the standard
SQuAD setting) our model reaches 72.14 EM and
81.05 F1 and can complete 26 epochs of training
in less than five hours. Most of our variations to
handle the multi-paragraph setting caused a minor
(up to half a point) drop in performance, while the
sigmoid version fell behind by a point and a half.

We graph the document-level performance in
Figure 5. For SQuAD, we find it crucial to em-
ploy one of the suggested confidence training tech-
niques. The base model starts to drop in perfor-
mance once more than two paragraphs are used.
However, the shared-norm approach is able to
reach a peak performance of 72.37 F1 and 64.08
EM given 15 paragraphs. Given our estimate that
10% of the questions are ambiguous if the para-
graph is unknown, our approach appears to have
adapted to the document-level task very well.

Finally, we compare the shared-norm model
with the document-level result reported by Chen
et al. (2017a). We re-evaluate our model using
the documents used by Chen et al. (2017a), which
consist of the same Wikipedia articles SQuAD was
built from, but downloaded at different dates. The
advantage of this dataset is that it does not allow
the model to know a priori which paragraphs were
filtered out during the construction of SQuAD.
The disadvantage is that some of the articles have
been edited since the questions were written, so
some questions may no longer be answerable. Our
model achieves 59.14 EM and 67.34 F1 on this
dataset, which significantly outperforms the 49.7
EM reported by Chen et al. (2017a).

5.4 Curated TREC

We perform one final experiment that tests our
model as part of an end-to-end question answering
system. For document retrieval, we re-implement
the pipeline from Joshi et al. (2017). Given a
question, we retrieve up to 10 web documents us-

7https://github.com/brmson/yodaqa/wiki/Benchmarks
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Model Accuracy
S-Norm (ours) 53.31

YodaQA with Bing (Baudiš, 2015), 37.18
YodaQA (Baudiš, 2015), 34.26

DrQA + DS (Chen et al., 2017a) 25.7

Table 4: Results on the Curated TREC corpus, Yo-
daQA results extracted from its github page7

ing a Bing web search of the question, and all
Wikipedia articles about entities the entity linker
TAGME (Ferragina and Scaiella, 2010) identifies
in the question. We then use our linear paragraph
ranker to select the 16 most relevant paragraphs
from all these documents, which are passed to
our model to locate the final answer span. We
choose to use the shared-norm model trained on
the TriviaQA unfiltered dataset since it is trained
using multiple web documents as input. We use
the same heuristics as Joshi et al. (2017) to filter
out trivia or QA websites to ensure questions can-
not be trivially answered using webpages that di-
rectly address the question. A demo of the system
is publicly available8.

We find accuracy on the TriviaQA unfiltered
questions remains almost unchanged (within half
a percent exact match score) when using our doc-
ument retrieval method instead of the given doc-
uments, showing our pipeline does a good job of
producing evidence documents that are similar to
the ones in the training data.

We test the system on questions from the TREC
QA tasks (Voorhees et al., 1999), in particular a
curated set of questions from Baudiš (2015), the
same dataset used in Chen et al. (2017a). We apply
our system to the 694 test questions without re-
training on the train questions.

We compare against DrQA (Chen et al., 2017a)
and YodaQA (Baudiš, 2015). It is important to
note that these systems use different document
corpora (Wikipedia for DrQA, and Wikipedia,
several knowledge bases, and optionally Bing web
search for YodaQA) and different training data
(SQuAD and the TREC training questions for
DrQA, and TREC only for YodaQA), so we can-
not make assertions about the relative performance
of individual components. Nevertheless, it is in-
structive to show how the methods we experiment
with in this work can advance an end-to-end QA
system.

The results are listed in Table 4. Our method
outperforms prior work, breaking the 50% accu-

8https://documentqa.allenai.org/

Category proportion
Sentence reading errors 35.2
Paragraph reading errors 17.6

Document coreference errors 14.1
Part of answer extracted 7.1

Required background knowledge 5.8
Answer indirectly stated 20.2

Table 5: Error analysis on TriviaQA web.

racy mark. This is a strong proof-of-concept that
neural paragraph reading combined with existing
document retrieval methods can advance the state-
of-the-art on general question answering. It also
shows that, despite the noise, the data from Trivi-
aQA is sufficient to train models that can be effec-
tive on out-of-domain QA tasks.

5.5 Discussion

We found that models that have only been trained
on answer-containing paragraphs can perform
very poorly in the multi-paragraph setting. The
results were particularly bad for SQuAD; we think
this is partly because the paragraphs are shorter, so
the model had less exposure to irrelevant text.

The shared-norm approach consistently outper-
formed the other methods, especially on SQuAD
and TriviaQA unfiltered, where many paragraphs
were needed to reach peak performance. Figures
3, 4, and 5 show this technique has a minimal ef-
fect on the performance when only one paragraph
is used, suggesting the model’s per-paragraph per-
formance is preserved. Meanwhile, it can be
seen the accuracy of the shared-norm model never
drops as more paragraphs are added, showing it
successfully resolves the problem of being dis-
tracted by irrelevant text.

The no-answer and merge approaches were
moderately effective, we suspect because they at
least expose the model to more irrelevant text.
However, these methods do not address the fun-
damental issue of requiring confidence scores to
be comparable between independent applications
of the model to different paragraphs, which is why
we think they lagged behind. The sigmoid objec-
tive function reduces the paragraph-level perfor-
mance considerably, especially on the TriviaQA
datasets. We suspect this is because it is vulner-
able to label noise, as discussed in Section 2.2.

5.6 Error Analysis

We perform an error analysis by labeling 200 ran-
dom TriviaQA web dev-set errors made by the
shared-norm model. We found 40.5% of the er-
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rors were caused because the document did not
contain sufficient evidence to answer the question,
and 17% were caused by the correct answer not
being contained in the answer key. The distribu-
tion of the remaining errors is shown in Table 5.

We found quite a few cases where a sentence
contained the answer, but the model was unable
to extract it due to complex syntactic structure or
paraphrasing. Two kinds of multi-sentence read-
ing errors were also common: cases that required
connecting multiple statements made in a sin-
gle paragraph, and long-range coreference cases
where a sentence’s subject was named in a previ-
ous paragraph. Finally, some questions required
background knowledge, or required the model to
extract answers that were only stated indirectly
(e.g., examining a list to extract the nth element).
Overall, these results suggest good avenues for im-
provement are to continue advancing the sentence
and paragraph level reading comprehension abili-
ties of the model, and adding a mechanism to han-
dle document-level coreferences.

6 Related Work

Reading Comprehension Datasets. The state of
the art in reading comprehension has been rapidly
advanced by neural models, in no small part due
to the introduction of many large datasets. The
first large scale datasets for training neural reading
comprehension models used a Cloze-style task,
where systems must predict a held out word from
a piece of text (Hermann et al., 2015; Hill et al.,
2015). Additional datasets including SQuAD (Ra-
jpurkar et al., 2016), WikiReading (Hewlett et al.,
2016), MS Marco (Nguyen et al., 2016) and Triv-
iaQA (Joshi et al., 2017) provided more realis-
tic questions. Another dataset of trivia questions,
Quasar-T (Dhingra et al., 2017), was introduced
recently that uses ClueWeb09 (Callan et al., 2009)
as its source for documents. In this work we
choose to focus on SQuAD because it is well stud-
ied, and TriviaQA because it is more challenging
and features documents and multi-document con-
texts (Quasar T is similar, but was released after
we started work on this project).

Neural Reading Comprehension. Neural
reading comprehension systems typically use
some form of attention (Wang and Jiang, 2016), al-
though alternative architectures exist (Chen et al.,
2017a; Weissenborn et al., 2017b). Our model
follows this approach, but includes some re-
cent advances such as variational dropout (Gal

and Ghahramani, 2016) and bi-directional atten-
tion (Seo et al., 2016). Self-attention has been
used in several prior works (Cheng et al., 2016;
Wang et al., 2017c; Pan et al., 2017). Our
approach to allowing a reading comprehension
model to produce a per-paragraph no-answer score
is related to the approach used in the BiDAF-
T (Min et al., 2017) model to produce per-sentence
classification scores, although we use an attention-
based method instead of max-pooling.

Open QA. Open question answering has been
the subject of much research, especially spurred
by the TREC question answering track (Voorhees
et al., 1999). Knowledge bases can be used,
such as in (Berant et al., 2013), although the re-
sulting systems are limited by the quality of the
knowledge base. Systems that try to answer ques-
tions using natural language resources such as
YodaQA (Baudiš, 2015) typically use pipelined
methods to retrieve related text, build answer can-
didates, and pick a final output.

Neural Open QA. Open question answering
with neural models was considered by Chen et al.
(2017a), where researchers trained a model on
SQuAD and combined it with a retrieval engine
for Wikipedia articles. Our work differs because
we focus on explicitly addressing the problem
of applying the model to multiple paragraphs.
A pipelined approach to QA was recently pro-
posed by Wang et al. (2017a), where a ranker
model is used to select a paragraph for the read-
ing comprehension model to process. More recent
work has considered evidence aggregation tech-
niques (Wang et al., 2017b; Swayamdipta et al.,
2017). Our work shows paragraph-level mod-
els that produce well-calibrated confidence scores
can effectively exploit large amounts of text with-
out aggregation, although integrating aggregation
techniques could further improve our results.

7 Conclusion

We have shown that, when using a paragraph-level
QA model across multiple paragraphs, our train-
ing method of sampling non-answer-containing
paragraphs while using a shared-norm objective
function can be very beneficial. Combining this
with our suggestions for paragraph selection, us-
ing the summed training objective, and our model
design allows us to advance the state of the art
on TriviaQA. As shown by our demo, this work
can be directly applied to building deep-learning-
powered open question answering systems.
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