
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 548–557
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

548

Text Deconvolution Saliency (TDS): a deep tool box for linguistic analysis
Laurent Vanni1∗ Melanie Ducoffe2∗ Damon Mayaffre1 Frederic Precioso2

Dominique Longrée3 Veeresh Elango2 Nazly Santos2 Juan Gonzalez2 Luis Galdo2

Carlos Aguilar1

1Université Côte d’Azur, CNRS, BCL, France
2Université Côte d’Azur, CNRS, I3S, France

3Univ. Liège, L.A.S.L.A, Belgium
{laurent.vanni, melanie.ducoffe}@unice.fr

Abstract

In this paper, we propose a new strat-
egy, called Text Deconvolution Saliency
(TDS), to visualize linguistic information
detected by a CNN for text classifica-
tion. We extend Deconvolution Networks
to text in order to present a new per-
spective on text analysis to the linguis-
tic community. We empirically demon-
strated the efficiency of our Text Decon-
volution Saliency on corpora from three
different languages: English, French, and
Latin. For every tested dataset, our Text
Deconvolution Saliency automatically en-
codes complex linguistic patterns based on
co-occurrences and possibly on grammat-
ical and syntax analysis.

1 Introduction

As in many other fields of data analysis, Natural
Language Processing (NLP) has been strongly im-
pacted by the recent advances in Machine Learn-
ing, more particularly with the emergence of Deep
Learning techniques. These techniques outper-
form all other state-of-the-art approaches on a
wide range of NLP tasks and so they have been
quickly and intensively used in industrial systems.
Such systems rely on end-to-end training on large
amounts of data, making no prior assumptions
about linguistic structure and focusing on stasti-
cally frequent patterns. Thus, they somehow step
away from computational linguistics as they learn
implicit linguistic information automatically with-
out aiming at explaining or even exhibiting classic
linguistic structures underlying the decision.

This is the question we raise in this article and
that we intend to address by exhibiting classic lin-

∗ L. Vanni and M. Ducoffe contributed equally to this
work and should be considered as co-first authors.

guistic patterns which are indeed exploited im-
plictly in deep architectures to lead to higher per-
formances. Do neural networks make use of co-
occurrences and other standard features, consid-
ered in traditional Textual Data Analysis (TDA)
(Textual Mining)? Do they also rely on comple-
mentary linguistic structure which is invisible to
traditional techniques? If so, projecting neural net-
works features back onto the input space would
highlight new linguistic structures and would lead
to improving the analysis of a corpus and a bet-
ter understanding on where the power of the Deep
Learning techniques comes from.

Our hypothesis is that Deep Learning is sensi-
tive to the linguistic units on which the computa-
tion of the key statistical sentences is based as well
as to phenomena other than frequency and com-
plex linguistic observables. The TDA has more
difficulty taking such elements into account – such
as linguistic linguistic patterns. Our contribu-
tion confronts Textual Data Analysis and Convolu-
tional Neural Networks for text analysis. We take
advantage of deconvolution networks for image
analysis in order to present a new perspective on
text analysis to the linguistic community that we
call Text Deconvolution Saliency (TDS). Our de-
convolution saliency corresponds to the sum over
the word embedding of the deconvolution projec-
tion of a given feature map. Such a score provides
a heat-map of words in a sentence that highlights
the pattern relevant for the classification decision.
We examine z-test (see section 4.2) and TDS for
three languages: English, French and Latin. For
all our datasets, TDS highlights new linguistic ob-
servables, invisible with z-test alone.

2 Related work

Convolutional Neural Networks (CNNs) are
widely used in the computer vision community for



549

a wide panel of tasks: ranging from image classifi-
cation, object detection to semantic segmentation.
It is a bottom-up approach where we applied an
input image, stacked layers of convolutions, non-
linearities and sub-sampling.

Encouraged by the success for vision tasks,
researchers applied CNNs to text-related prob-
lems Kalchbrenner et al. (2014); Kim (2014).
The use of CNNs for sentence modeling traces
back to Collobert and Weston (2008). Collobert
adapted CNNs for various NLP problems includ-
ing Part-of-Speech tagging, chunking, Named En-
tity Recognition and semantic labeling. CNNs for
NLP work as an analogy between an image and a
text representation. Indeed each word is embed-
ded in a vector representation, then several words
build a matrix (concatenation of the vectors).

We first discuss our choice of architectures.
If Recurrent Neural Networks (mostly GRU and
LSTM) are known to perform well on a broad
range of tasks for text, recent comparisons have
confirmed the advantage of CNNs over RNNs
when the task at hand is essentially a keyphrase
recognition task Yin et al. (2017).

In Textual Mining, we aim at highlighting lin-
guistics patterns in order to analyze their constrast:
specificities and similarities in a corpus Feldman,
R., and J. Sanger (2007); L. Lebart, A. Salem and
L. Berry (1998). It mostly relies on frequential
based methods such as z-test. However, such ex-
isting methods have so far encountered difficulties
in underlining more challenging linguistic knowl-
edge, which up to now have not been empirically
observed as for instance syntactical motifs Mellet
and Longrée (2009).

In that context, supervised classification, espe-
cially CNNs, may be exploited for corpus anal-
ysis. Indeed, CNN learns automatically param-
eters to cluster similar instances and drive away
instances from different categories. Eventually,
their prediction relies on features which inferred
specificities and similarities in a corpus. Project-
ing such features in the word embedding will re-
veal relevant spots and may automatize the dis-
covery of new linguistic structures as in the pre-
viously cited syntactical motifs. Moreover, CNNs
hold other advantages for linguistic analysis. They
are static architectures that, according to specific
settings are more robust to the vanishing gradi-
ent problem, and thus can also model long-term
dependency in a sentence Dauphin et al. (2017);

Wen et al. (2017); Adel and Schütze (2017). Such
a property may help to detect structures relying on
different parts of a sentence.

All previous works converged to a shared as-
sessment: both CNNs and RNNs provide relevant,
but different kinds of information for text classifi-
cation. However, though several works have stud-
ied linguistic structures inherent in RNNs, to our
knowledge, none of them have focused on CNNs.
A first line of research has extensively studied the
interpretability of word embeddings and their se-
mantic representations Ji and Eisenstein (2014).
When it comes to deep architectures, Karpathy et
al. Karpathy et al. (2015) used LSTMs on charac-
ter level language as a testbed. They demonstrate
the existence of long-range dependencies on real
word data. Their analysis is based on gate activa-
tion statistics and is thus global. On another side,
Li et al. Li et al. (2015) provided new visualization
tools for recurrent models. They use decoders, t-
SNE and first derivative saliency, in order to shed
light on how neural models work. Our perspec-
tive differs from their line of research, as we do
not intend to explain how CNNs work on textual
data, but rather use their features to provide com-
plementary information for linguistic analysis.

Although the usage of RNNs is more common,
there are various visualization tools for CNNs
analysis, inspired by the computer vision field.
Such works may help us to highlight the linguis-
tic features learned by a CNN. Consequently, our
method takes inspiration from those works. Visu-
alization models in computer vision mainly con-
sist in inverting hidden layers in order to spot ac-
tive regions or features that are relevant to the
classification decision. One can either train a de-
coder network or use backpropagation on the in-
put instance to highlight its most relevant features.
While those methods may hold accurate informa-
tion in their input recovery, they have two main
drawbacks: (i) they are computationally expen-
sive: the first method requires training a model
for each latent representation, and the second re-
lies on backpropagation for each submitted sen-
tence; (ii) they are highly hyperparameter depen-
dent and may require some finetuning depending
on the task at hand. On the other hand, Deconvolu-
tion Networks, proposed by Zeiler et al Zeiler and
Fergus (2014), provide an off-the-shelf method to
project a feature map in the input space. It consists
in inverting each convolutional layer iteratively,



550

back to the input space. The inverse of a discrete
convolution is computationally challenging. In re-
sponse, a coarse approximation may be employed
which consists of inverting channels and filter
weights in a convolutional layer and then trans-
posing their kernel matrix. More details of the
deconvolution heuristic are provided in section 3.
Deconvolution has several advantages. First, it in-
duces minimal computational requirements com-
pared to previous visualization methods. Also, it
has been used with success for semantic segmen-
tation on images: in Noh et al. (2015); Noh et al
demonstrate the efficiency of deconvolution net-
works to predict segmentation masks to identify
pixel-wise class labels. Thus deconvolution is able
to localize meaningful structure in the input space.

3 Model

3.1 CNN for Text Classification

We propose a deep neural model to capture lin-
guistics patterns in text. This model is based on
Convolutional Neural Networks with an embed-
ding layer for word representations, one convolu-
tional with pooling layer and non-linearities. Fi-
nally we have two fully-connected layers. The
final output size corresponds to the number of
classes. The model is trained by cross-entropy
with an Adam optimizer. Figure 1 shows the
global structure of our architecture. The input
is a sequence of words w1, w2...wn and the out-
put contains class probabilities (for text classifica-
tion).

The embedding is built on top of a Word2Vec
architecture, here we consider a Skip-gram model.
This embedding is also finetuned by the model to
to increase the accuracy. Notice that we do not use
lemmatisation, as in Collobert and Weston (2008),
thus the linguistic material which is automatically
detected does not rely on any prior assumptions
about the part of speech. In computer vision, we
consider images as 2-dimensional isotropic sig-
nals. A text representation may also be consid-
ered as a matrix: each word is embedded in a fea-
ture vector and their concatenation builds a ma-
trix. However, we cannot assume both dimensions
the sequence of words and their embedding repre-
sentation are isotropic. Thus the filters of CNNs
for text typically differ from their counterparts de-
signed for images. Consequently in text, the width
of the filter is usually equal to the dimension of
the embedding, as illustrated with the red, yellow,

blue and green filters in figure 1
Using CNNs has another advantage in our con-

text: due to the convolution operators involved,
they can be easily parallelized and may also be
easily used by the CPU, which is a practical so-
lution for avoiding the use of GPUs at test time.

Figure 1: CNN for Text Classification

3.2 Deconvolution
Extending Deconvolution Networks for text is
not straightforward. Usually, in computer vision,
the deconvolution is represented by a convolution
whose weights depends on the filters of the CNN:
we invert the weights of the channels and the filters
and then transpose each kernel matrix. When con-
sidering deconvolution for text, transposing the
kernel matrices is not realistic since we are deal-
ing with nonisotropic dimensions - the word se-
quences and the filter dimension. Eventually, the
kernel matrix is not transposed.

Another drawback concerns the dimension of
the feature map. Here feature map means the out-
put of the convolution before applying max pool-
ing. Its shape is actually the tuple (# words, # fil-
ters). Because the filters’ width (red, yellow, blue
and green in fig 1) matches the embedding dimen-
sion, the feature maps cannot contain this informa-
tion. To project the feature map in the embedding
space, we need to convolve our feature map with
the kernel matrices. To this aim, we upsample the
feature map to obtain a 3-dimensional sample of
size (# words, embedding dimension, # filters).

To analyze the relevance of a word in a sen-
tence, we only keep one value per word which cor-
responds to the sum along the embedding axis of
the output of the deconvolution. We call this sum
Text Deconvolution Saliency (TDS).

For the sake of consistency, we sum up our
method in figure 2



551

Figure 2: Textual Deconvolution Saliency (TDS)

Eventually, every word in a sentence has a
unique TDS score whose value is related to the
others. In the next section, we analyze the rel-
evance of TDS. We thoroughly demonstrate em-
pirically, that the TDS encodes complex linguis-
tic patterns based on co-occurrences and possibly
also on grammatical and syntaxic analysis.

4 Experiments

4.1 Datasets

In order to understand what the linguistic mark-
ers found by the convolutional neural network ap-
proach are, we conducted several tests on different
languages and our model seems to get the same
behavior in all of them. In order to perform all
the linguistic statistical tests, we used our own
simple linguistic toolbox Hyperbase, which allows
the creation of databases from textual corpus, the
analysis and the calculations such as z-test, co-
occurrences, PCA, K-Means distance,... We use it
to evaluate TDS against z-test scoring. We compel
our analysis by only presenting cases on which z-
test fail while TDS does not. Indeed TDS captures
z-test, as we did not find any sentence on which
z-test succeeds while TDS fails. Red words in the
studied examples are the highest TDS.

The first dataset we used for our experiments
is the well known IMDB movie review corpus for
sentiment classification. It consists of 25,000 re-
views labeled by positive or negative sentiment
with around 230,000 words.

The second dataset targets French political dis-
courses. It is a corpus of 2.5 millions of words of
French Presidents from 1958 (with De Gaulle, the
first President of the Fifth Republic) to 2018 with
the first speeches by Macron. In this corpus we
have removed Macron’s speech from the 31st of

December 2017, to use it as a test data set. The
training task is to recognize each french president.

The last dataset we used is based on Latin.
We assembled a contrastive corpus of 2 million
words with 22 principle authors writting in clas-
sical Latin. As with the French dataset, the learn-
ing task here is to be able to predict each author
according to new sequences of words. The next
example is an excerpt of chapter 26 of the 23th
book of Livy:

[...] tutus tenebat se quoad multum ac
diu obtestanti quattuor milia peditum et
quingenti equites in supplementum missi
ex Africa sunt . tum refecta tandem spe
castra propius hostem mouit classem
que et ipse instrui parari que iubet ad
insulas maritimam que oram tutandam .
in ipso impetu mouendarum de [...]

4.2 Z-test Versus Text Deconvolution
Saliency

Z-test is one of the standard metrics used in
linguistic statistics, in particular to measure the
occurrences of word collocations Manning and
Schütze (1999). Indeed, the z-test provides a sta-
tistical score of the co-occurrence of a sequence of
words to appear more frequently than any other se-
quence of words of the same length. This score re-
sults from the comparison between the frequency
of the observerd word sequence with the frequency
expected in the case of a ”Normal” distribution.
In the context of constrative corpus analysis, this
same calculation applied to single words can read-
ily provide, for example, the most specific vocab-
ulary of a given author. The highest z-test are the
most specific words of this given author in this
case. This is a simple but strong method for ana-
lyzing features of text. It can also be used to clas-
sify word sentences according to the global z-test
(sum of the scores) of all the words in the given
sentence. We can thus use this global z-test as
a very simple metric for authorship classification.
The resulting authorship of a given sentence is for
instance given by the author corresponding to the
highest global z-test on that sentence compared
to all other global z-test obtained by summing up
the z-test of each word of the same sentence but
with the vocabulary specificity of another author.
The mean accuracy of assigning the right author to
the right sentence, in our data set, is around 87%,
which confirms that z-test is indeed meaningful for



552

z-test Deep Learning
Latin 84% 93%
French 89% 91%
English 90% 97%

Table 1: Test accuray with z-test and Deep Learn-
ing

contrast pattern analysis. On the other hand, most
of the time CNN reaches an accuracy greater than
90% for text classification (as shown in Table 1).

This means that the CNN approaches can learn
also on their own some of the linguistic specifici-
ties useful in discriminating text categories. Pre-
vious works on image classification have high-
lighted the key role of convolutional layers which
learn different level of abstractions of the data to
make classification easier.

The question is: what is the nature of the ab-
straction on text?

We show in this article that CNN approach de-
tects automatically words with high z-test but ob-
viously this is not the only linguistic structure de-
tected.

To make the two values comparable, we nor-
malize them. The values can be either positive or
negative. And we distinguish between two thresh-
olds1 for the z-test: over 2 a word is considered as
specific and over 5 it is strongly specific (and the
oposite with negative values). For the TDS it is
just a matter of activation strength.

The Figure 3 shows us a comparison between
z-test and TDS on a sentence extracted from our
Latin corpora (Livy Book XXIII Chap. 26). This
sentence is an example of specific words used by
Livy2. As we can see, when the z-test is the high-
est, the TDS is also the highest and the TDS val-
ues are high also for the neighbor words (for ex-
ample around the word castra). However, this is
not always the case: for example small words as
que or et are also high in z-test but they do not
impact the network at the same level. We can see
also on Figure 3 that words like tenebat, multum or
propius are totally uncorrelated. The Pearson cor-

1The z-test can be approximated by a normal distribution.
The score we obtain by the z-test is the standard deviation. A
low standard deviation indicates that the data points tend to
be close to the mean (the expected value). Over 2 this score
means there is less than 2% of chance to have this distribu-
tion. Over 5 it’s less than 0.1%.

2Titus Livius Patavinus – (64 or 59 BC - AD 12 or 17) –
was a Roman historian.

Figure 3: z-test versus Text Deconvolution
Saliency (TDS) - Example on Livy Book XXIII
Chap. 26

relation coefficient3 tells us that in this sentence
there is no linear correlation between z-test and
TDS (with a Pearson of 0.38). This example is
one of the most correlated examples of our dataset,
thus CNN seems to learn more than a simple z-
test.

4.3 Dataset: English
For English, we used the IMDB movie review cor-
pus for sentiment classification. With the default
methods, we can easily show the specific vocabu-
lary of each class (positive/negative), according to
the z-test. There are for example the words too,
bad, no or boring as most indicitive of negative
sentiment, and the words and, performance, pow-
erful or best for positive. Is it enough to detect
automatically if a new review is positive or not?
Let’s see an example excerpted from a review from
December 2017 (not in the training set) on the last
American blockbuster:

[...] i enjoyed three moments in the
film in total , and if i am being honest
and the person next to me fell asleep in
the middle and started snoring during
the slow space chasescenes . the story
failed to draw me in and entertain me
the way [...]

In general the z-test is sufficient to predict the
class of this kind of comment. But in this case, the
CNN seems to do better, but why?

3Pearson correlation coefficient measures the linear rela-
tionship between two datasets. It has a value between +1 and
−1, where 1 is total positive linear correlation, 0 is no linear
correlation, and −1 is total negative



553

If we sum all the z-test (for negative and posi-
tive), the positive class obtains a greater score than
the negative. The words film, and, honest and en-
tertain – with scores 5.38, 12.23, 4 and 2.4 – make
this example positive. CNN has activated differ-
ent parts of this sentence (as we show in bold/red
in the example). If we take the sub-sequence and
if i am being honest and, there are two occurences
of and but the first one is followed by if and our
toolbox gives us 0.84 for and if as a negative class.
This is far from the 12.23 in the positive. And if
we go further, we can do a co-occurrence analy-
sis on and if on the training set. As we see with
our co-occurrence analysis4 (Figure 4), honest is
among the most specific adjectivals5 associated
with and if. Exactly what we found in our exam-
ple.

Figure 4: co-occurrences analysis of and if (Hy-
perbase)

In addition, we have the same behavior with
the verb fall. There is the word asleep next to
it. Asleep alone is not really specific of nega-
tive review (z-test of 1.13). But the association
of both words become highly specific of negative
sentences (see the co-occurrences analysis - Fig-
ure 5).

4Those figures shows the major co-occurrences for a
given word (or lemma or PartOfSpeech). There two layers
of co-occurrences, the first one (on top) show the direct co-
occurrence and the second (on bottom) show a second level
of co-occurrence. This level is given by the context of two
words (taken together). The colors and the dotted lines are
only used to make it more readable (dotted lines are used for
the first level). The width of each line is related to the z-test
score (more the z-test is big, more the line is wide).

5With our toolbox, we can focus on different part of
speech.

Figure 5: co-occurrences analysis of fall (Hyper-
base)

The Text Deconvolution Saliency here confirms
that the CNN seems to focus not only on high z-
test but on more complex patterns and maybe de-
tects the lemma or the part of speech linked to each
word. We will see now that these observations are
still valid for other languages and can even be gen-
eralized between different TDS.

4.4 Dataset: French
In this corpus we have removed Macron’s speech
from the 31st of December 2017, to use it as a test
data set. In this speech, the CNN primarily recog-
nizes Macron (the training task was to be able to
predict the correct President). To achieve this task
the CNN seems to succeed in finding really com-
plex patterns specific to Macron. For example in
this sequence:

[...] notre pays advienne à l’école pour
nos enfants, au travail pour l’ ensem-
ble de nos concitoyens pour le climat
pour le quotidien de chacune et chacun
d’ entre vous . Ces transformations pro-
fondes ont commencé et se poursuiv-
ront avec la même force le même rythme
la même intensité [...]

The z-test gives a result statistically closer to De
Gaulle than to Macron. The error in the statistical
attribution can be explained by a Gaullist phrase-
ology and the multiplication of linguistic markers
strongly indexed with De Gaulle: De Gaulle had
the specificity of making long and literary sen-
tences articulated around co-ordination conjunc-
tions as in et (z-test = 28 for de Gaulle, two oc-



554

Figure 6: Deconvolution on Macron speech.

currences in the excerpt). His speech was also
more conceptual than average, and this resulted in
an over-use of the articles defined le, la, l´, les)
very numerous in the excerpt (7 occurrences); es-
pecially in the feminine singular (la république, la
liberté, la nation, la guerre, etc., here we have la
même force, la même intensité.

The best results given by the CNN may be sur-
prising for a linguist but match perfectly with what
is known about the sociolinguistics of Macron’s
dynamic kind of speeches.

The part of the excerpt, which impacts most
the CNN classification, is related to the nominal
syntagm transformations profondes. Taken sepa-
rately, neither of the phrase’s two words are very
Macronian from a statistical point of view (trans-
formations = 1.9 profondes = 2.9). Better, the
syntagm itself does not appear in the President’s
learning corpus (0 occurrence). However, it can
be seen that the co-occurrence of transformation
and profondes amounts to 4.81 at Macron: so it is
not the occurrence of one word alone, or the other,
which is Macronian but the simultaneous appear-
ance of both in the same window. The second and
complementary most impacting part of the excerpt
thus is related to the two verbs advienne and pour-
suivront. From a semantic point of view, the two
verbs perfectly contribute, after the phrase trans-
formations profondes, to give the necessary dy-
namic to a discourse that advocates change. How-
ever it is the verb tenses (carried by the morphol-
ogy of the verbs) that appear to be the determining
factor in the analysis. The calculation of the gram-
matical codes co-occurring with the word trans-
formations thus indicates that the verbs in the sub-
junctive and the verbs in the future (and also the

nouns) are the privileged codes for Macron (Fig-
ure 7).

Figure 7: Main part-of-speech co-occurrences for
transformations (Hyperbase)

More precisely the algorithm indicates that, for
Macron, when transformation is associated with a
verb in the subjunctive (here advienne), then there
is usually a verb in the future co-present (here
poursuivront). transformations profondes, advi-
enne to the subjunctive, poursuivront to the fu-
ture: all these elements together form a speech
promising action, from the mouth of a young and
dynamic President. Finally, the graph indicates
that transformations is especially associated with
nouns in the President’s speeches: in an extraor-
dinary concentration, the excerpt lists 11 (pays,
école, enfants, travail, concitoyens, climat, quo-
tidien, transformations, force, rythme, intensité).

4.5 Dataset: Latin
As with the French dataset, the learning task here
is to be able to predict the identity of each author
from a contrastive corpus of 2 million words with
22 principle authors writting in classical Latin.

The statistics here identify this sentence as Cae-
sar6 but Livy is not far off. As historians, Caesar
and Livy share a number of specific words: for
example tool words like se (reflexive pronoun) or
que (a coordinator) and prepositions like in, ad, ex,
of. There are also nouns like equites (cavalry) or
castra (fortified camp).

The attribution of the sentence to Caesar cannot
only rely only on z-test: que or in or castra, with

6Gaius Julius Caesar, 100 BC - 44 BC, usually called
Julius Caesar, was a Roman politician and general and a no-
table author of Latin prose.



555

differences thereof equivalent or inferior to Livy.
On the other hand, the differences of se, ex, are
greater, as is that of equites. Two very Caesarian
terms undoubtedly make the difference iubet (he
orders) and milia (thousands).

The greater score of quattuor (four), castra,
hostem (the enemy), impetu (the assault) in Livy
are not enough to switch the attribution to this au-
thor.

On the other hand, CNN activates several zones
appearing at the beginning of sentences and cor-
responding to coherent syntactic structures (for
Livy) – Tandem reflexes spe castra propius hostem
mouit (then, hope having finally returned, he
moved the camp closer to the camp of the enemy)
– despite the fact that castra in hostem mouit is
attested only by Tacitus7.

There are also in ipso metu (in fear itself), while
in followed by metu is counted one time with Cae-
sar and one time also with Quinte-Curce8.

More complex structures are possibly also de-
tected by the CNN: the structure tum + participates
Ablative Absolute (tum refecta) is more character-
istic of Livy (z-test 3.3 with 8 occurrences) than
of Caesar (z-test 1.7 with 3 occurrences), even if it
is even more specific of Tacitus (z-test 4.2 with 10
occurrences).

Finally and more likely, the co-occurrence be-
tween castra, hostem and impetu may have played
a major role: Figure 8

Figure 8: Specific co-occurrences between impetu
and castra (Hyperbase)

With Livy, impetu appears as a co-occurrent
7Publius (or Gaius) Cornelius Tacitus, 56 BC - 120 BC,

was a senator and a historian of the Roman Empire.
8Quintus Curtius Rufus was a Roman historian, probably

of the 1st century, his only known and only surviving work
being ”Histories of Alexander the Great”

with the lemmas hostis (z-test 9.42) and castra (z-
test 6.75), while hostis only has a gap of 3.41 in
Caesar and that castra does not appear in the list
of co-occurrents.

For castra, the first co-occurent for Livy is
hostis (z-test 22.72), before castra (z-test 10.18),
ad (z-test 10.85), in (z-test 8.21), impetus (z-test
7.35), que (z-test 5.86) while in Caesar, impetus
does not appear and the scores of all other lemmas
are lower except castra (z-test 15.15), hostis (8),
ad (10,35), in (5,17), que (4.79).

Thus, our results suggest that CNNs manage to
account for specificity, phrase structure, and co-
occurence networks. . .

4.6 Preprocessings and hyperparameters

In order to make our experiments reproductible,
we detail here all the hyperparameters used in
our architecture. The neural network is written
in python with the library Keras (an tensorflow as
backend).

The embedding uses a Word2Vec implementa-
tion given by the gensim Library. Here we use the
SkipGram model with a window size of 10 words
and output vectors of 128 values (embedding di-
mension).

The textual datas are tokenized by a home-
made tokensizer (which work on English, Latin
and French). The corpus is splited into 50 length
sequence of words (punctuation is keeped) and
each word is converted inta an unique vector of
128 value.

The first layer of our model takes the text se-
quence (as word vectors) and applies a weight
corresponding to our WordToVec values. Those
weights are still trainable during model training.

The second layer is the convolution, a Conv2D
in Keras with 512 filters of size 3 ∗ 128 (filter-
ing three words at time), with a Relu activation
method. Then, there is the Maxpooling (MaxPool-
ing2D)

(The deconvolution model is identical until
here. We replace the rest of the classifica-
tion model (Dense) by a transposed convolution
(Conv2DTranspose).)

The last layers of the model are Dense layers.
One hidden layer of 100 neurons with a Relu acti-
vation and one final layer of size equal to the num-
ber of classes with a softmax activation.

All experiments in this paper share the same
architecture and the same hyperparameters, and



556

are trained with a cross-entropy method (with an
Adam optimizer) with 90% of the dataset for the
training data and 10% for the validation. All the
tests in this paper are done with new data not in-
cluded in the original dataset.

5 Conclusion

In a nutshell, Text Deconvolution Saliency is ef-
ficient on a wide range of corpora. By crossing
statistical approaches with neural networks, we
propose a new strategy for automatically detect-
ing complex linguistic observables, which up to
now hardly detectable by frequency-based meth-
ods. Recall that the linguistic matter and the
topology recovered by our TDS cannot return to
chance: the zones of activation make it possible
to obtain recognition rates of more than 91% on
the French political speech and 93% on the Latin
corpus; both rates equivalent to or higher than the
rates obtained by the statistical calculation of the
key passages. Improving the model and under-
standing all the mathematical and linguistic out-
comes remains an import goal. In future work,
we intend to thoroughly study the impact of TDS
given morphosyntactic information.

Acknowledgments

This work has been partly funded by the French
Government (National Research Agency, ANR)
through the grant ANR-16-CE23-0006 Deep in
France, through the “Investments for the Future”
Program ANR-11-LABX-0031-01, and through
the UCAJEDI Investments in the Future project
ANR-15-IDEX-01.

References
Heike Adel and Hinrich Schütze. 2017. Global normal-

ization of convolutional neural networks for joint en-
tity and relation classification. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1723–1729.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International Conference on
Machine Learning, pages 933–941.

Feldman, R., and J. Sanger. 2007. The Text Mining
Handbook. Advanced Approaches in Analyzing Un-
structured Data. New York: Cambridge University
Press.

Hyperbase. Web based toolbox for linguistics analysis.
http://hyperbase.unice.fr.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 13–24.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 655–665.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

L. Lebart, A. Salem and L. Berry. 1998. Exploring
Textual Data. Ed. Springer.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in nlp. arXiv preprint arXiv:1506.01066.

Christopher D Manning and Hinrich Schütze. 1999.
Foundations of statistical natural language process-
ing. MIT press.

S. Mellet and D. Longrée. 2009. Syntactical motifs and
textual structures. In Belgian Journal of Linguistics
23, pages 161–173.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
2015. Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 1520–
1528.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers, vol-
ume 1, pages 438–449.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://hyperbase.unice.fr


557

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Eu-
ropean conference on computer vision, pages 818–
833. Springer.


