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Abstract

We present a generative model to map nat-
ural language questions into SQL queries.
Existing neural network based approach-
es typically generate a SQL query word-
by-word, however, a large portion of the
generated results is incorrect or not exe-
cutable due to the mismatch between ques-
tion words and table contents. Our ap-
proach addresses this problem by consid-
ering the structure of table and the syn-
tax of SQL language. The quality of
the generated SQL query is significant-
ly improved through (1) learning to repli-
cate content from column names, cells
or SQL keywords; and (2) improving the
generation of WHERE clause by leverag-
ing the column-cell relation. Experiments
are conducted on WikiSQL, a recently re-
leased dataset with the largest question-
SQL pairs. Our approach significantly im-
proves the state-of-the-art execution accu-
racy from 69.0% to 74.4%.

1 Introduction

We focus on semantic parsing that maps natu-
ral language utterances to executable programs
(Zelle and Mooney, 1996; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007; Kwiatkows-
ki et al., 2011; Pasupat and Liang, 2015; Iyer et al.,
2017; Iyyer et al., 2017). In this work, we regard
SQL as the programming language, which could
be executed on a table or a relational database to
obtain an outcome. Datasets are the main driv-
er of progress for statistical approaches in se-
mantic parsing (Liang, 2016). Recently, Zhong

∗ Work is done during internship at Microsoft Research
Asia.

et al. (2017) release WikiSQL, the largest hand-
annotated semantic parsing dataset which is an
order of magnitude larger than other datasets in
terms of both the number of logical forms and the
number of tables. Pointer network (Vinyals et al.,
2015) based approach is developed, which gener-
ates a SQL query word-by-word through replicat-
ing from a word sequence consisting of question
words, column names and SQL keywords. How-
ever, a large portion of generated results is incor-
rect or not executable due to the mismatch be-
tween question words and column names (or cell-
s). This also reflects the real scenario where users
do not always use exactly the same column name
or cell content to express the question.

To address the aforementioned problem, we
present a generative semantic parser that consid-
ers the structure of table and the syntax of SQL
language. The approach is partly inspired by the
success of structure/grammar driven neural net-
work approaches in semantic parsing (Xiao et al.,
2016; Krishnamurthy et al., 2017). Our approach
is based on pointer networks, which encodes the
question into continuous vectors, and synthesizes
the SQL query with three channels. The model
learns when to generate a column name, a cell or
a SQL keyword. We further incorporate column-
cell relation to mitigate the ill-formed outcomes.

We conduct experiments on WikiSQL. Results
show that our approach outperforms existing sys-
tems, improving state-of-the-art execution accura-
cy to 74.4% and logical form accuracy to 60.7%.
An extensive analysis reveals the advantages and
limitations of our approach.

2 Task Formulation and Dataset

As shown in Figure 1, we focus on sequence-to-
SQL generation in this work. Formally, the task
takes a question q and a table t consisting of n col-



362

Question： what 's the total number of songs 
originally performed by anna nalick ?

Sequence-to-SQL Generation 

𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇 𝑆𝑜𝑛𝑔 𝑐ℎ𝑜𝑖𝑐𝑒 𝑊𝐻𝐸𝑅𝐸 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑡𝑖𝑠𝑡 = 𝑎𝑛𝑛𝑎 𝑐ℎ𝑟𝑖𝑠𝑡𝑖𝑛𝑒 𝑛𝑎𝑙𝑖𝑐𝑘SQL：

SELECT aggregator

SELECT column

WHERE column

WHERE operator

WHERE value

1

Answer

Execution

Episode Song choice Original artist

Top 80 I Try Macy Gray

Top 40 Breathe (2 AM) Anna Christine Nalick

Top 22 Put Your Records On Corinne Bailey Rae

Top 18 Sweet Ones Sarah Slean

Top 10 Inside and Out Bee Gees

Table

SELECT clause WHERE clause

Figure 1: An brief illustration of the task. The focus of this work is sequence-to-SQL generation.

umn names and n×m cells as the input, and out-
puts a SQL query y. We do not consider the join
operation over multiple relational tables, which we
leave in the future work.

We use WikiSQL (Zhong et al., 2017), the
largest hand-annotated semantic parsing dataset
to date which consists of 87,726 questions and
SQL queries distributed across 26,375 tables from
Wikipedia.

3 Related Work

Semantic Parsing. Semantic parsing aims to
map natural language utterances to programs (e.g.,
logical forms), which will be executed to obtain
the answer (denotation) (Zettlemoyer and Collins,
2005; Liang et al., 2011; Berant et al., 2013; Poon,
2013; Krishnamurthy and Kollar, 2013; Pasupat
and Liang, 2016; Sun et al., 2016; Jia and Liang,
2016; Kočiský et al., 2016; Lin et al., 2017). Exist-
ing studies differ from (1) the form of the knowl-
edge base, e.g. facts from Freebase, a table (or
relational database), an image (Suhr et al., 2017;
Johnson et al., 2017; Hu et al., 2017; Goldman
et al., 2017) or a world state (Long et al., 2016);
(2) the programming language, e.g. first-order
logic, lambda calculus, lambda DCS, SQL, pa-
rameterized neural programmer (Yin et al., 2015;
Neelakantan et al., 2016), or coupled distribut-
ed and symbolic executors (Mou et al., 2017);
(3) the supervision used for learning the seman-
tic parser, e.g. question-denotation pairs, binary
correct/incorrect feedback (Artzi and Zettlemoy-
er, 2013), or richer supervision of question-logical
form pairs (Dong and Lapata, 2016). In this work,
we study semantic parsing over tables, which is
critical for users to access relational databases
with natural language, and could serve users’ in-

formation need for structured data on the web. We
use SQL as the programming language, which has
a broad acceptance to programmers.

Natural Language Interface for Databases.
Our work relates to the area of accessing database
with natural language interface (Dahl et al., 1994;
Brad et al., 2017). Popescu et al. (2003) use a
parser to parse the question, and then use lexi-
con matching between question and the table col-
umn names/cells. Giordani and Moschitti (2012)
parse the question with dependency parser, com-
pose candidate SQL queries with heuristic rules,
and use kernel based SVM ranker to rank the re-
sults. Li and Jagadish (2014) translate natural lan-
guage utterances into SQL queries based on de-
pendency parsing results, and interact with users
to ensure the correctness of the interpretation pro-
cess. Yaghmazadeh et al. (2017) build a semantic
parser on the top of SEMPRE (Pasupat and Liang,
2015) to get a SQL sketch, which only has the
SQL shape and will be subsequently completed
based on the table content. Iyer et al. (2017) map-
s utterances to SQL queries through sequence-to-
sequence learning. User feedbacks are incorporat-
ed to reduce the number of queries to be labeled.
Zhong et al. (2017) develop an augmented point-
er network, which is further improved with rein-
forcement learning for SQL sequence prediction.
Xu et al. (2017) adopts a sequence-to-set model to
predict WHERE columns, and uses an attentional
model to predict the slots in where clause.

Different from (Iyer et al., 2017; Zhong et al.,
2017), our approach leverages SQL syntax and ta-
ble structure. Compared to (Popescu et al., 2003;
Giordani and Moschitti, 2012; Yaghmazadeh
et al., 2017), our approach is end-to-end learning
and independent of a syntactic parser or manu-
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ally designed templates. We are aware of exist-
ing studies that combine reinforcement learning
and maximum likelihood estimation (MLE) (Guu
et al., 2017; Mou et al., 2017; Liang et al., 2017).
However, the focus of this work is the design of
the neural architecture, despite we also implement
an RL strategy (refer to §4.4).

Structure/Grammar Guided Neural Decoder
Our approach could be viewed as an extension
of the sequence-to-sequence learning (Sutskever
et al., 2014; Bahdanau et al., 2015) with a tai-
lored neural decoder driven by the characteristic
of the target language (Yin and Neubig, 2017; Ra-
binovich et al., 2017). Methods with similar in-
tuitions have been developed for language mod-
eling (Dyer et al., 2016), neural machine transla-
tion (Wu et al., 2017) and lambda calculus based
semantic parsing (Dong and Lapata, 2016; Krish-
namurthy et al., 2017). The difference is that our
model is developed for sequence-to-SQL genera-
tion, in which table structure and SQL syntax are
considered.

4 Methodology

We first describe the background on pointer net-
works, and then present our approach that consid-
ers the table structure and the SQL syntax.

4.1 Background: Pointer Networks
Pointer networks is originally introduced by
(Vinyals et al., 2015), which takes a sequence of
elements as the input and outputs a sequence of
discrete tokens corresponding to positions in the
input sequence. The approach has been success-
fully applied in reading comprehension (Kadlec
et al., 2016) for pointing to the positions of answer
span from the document, and also in sequence-
to-sequence based machine translation (Gulcehre
et al., 2016) and text summarization (Gu et al.,
2016) for replicating rare words from the source
sequence to the target sequence.

The approach of Zhong et al. (2017) is based
on pointer networks. The encoder is a recurrent
neural network (RNN) with gated recurrent unit
(GRU) (Cho et al., 2014), whose input is the con-
catenation of question words, words from column
names and SQL keywords. The decoder is anoth-
er GRU based RNN, which works in a sequential
way and generates a word at each time step. The
generation of a word is actually selectively repli-
cating a word from the input sequence, the prob-

ability distribution of which is calculated with an
attention mechanism (Bahdanau et al., 2015). The
probability of generating the i-th word xi in the in-
put sequence at the t-th time step is calculated as
Equation 1, where hdect is the decoder hidden state
at the t-th time step, henci is the encoder hidden
state of the word xi, Wa is the model parameter.

p(yt = xi|y<t, x) ∝ exp(Wa[h
dec
t ;henci ]) (1)

It is worth to note that if a column name con-
sists of multiple words (such as “original artist”
in Figure 1), these words are separated in the in-
put sequence. The approach has no guarantee that
a multi-word column name could be successively
generated, which would affect the executability of
the generated SQL query.

4.2 STAMP: Syntax- and Table- Aware
seMantic Parser

Figure 2 illustrates an overview of the proposed
model, which is abbreviated as STAMP. Different
from Zhong et al. (2017), the word is not the basic
unit to be generated in STAMP. As is shown, there
are three “channels” in STAMP, among which the
column channel predicts a column name, the value
channel predicts a table cell and the SQL channel
predicts a SQL keyword. Accordingly, the proba-
bility of generating a target token is formulated in
Equation 2, where zt stands for the channel select-
ed by the switching gate, pz(·) is the probability
to choose a channel, and pw(·) is similar to Equa-
tion 1 which is a probability distribution over the
tokens from one of the three channels.

p(yt|y<t, x) =
∑
zt

pw(yt|zt, y<t, x)pz(zt|y<t, x)

(2)
One advantage of this architecture is that it in-
herently addresses the problem of generating par-
tial column name/cell because an entire column
name/cell is the basic unit to be generated. Anoth-
er advantage is that the column-cell relation and
question-cell connection can be naturally integrat-
ed in the model, which will be described below.

Specifically, our encoder takes a question as the
input. Bidirectional RNN with GRU unit is ap-
plied to the question, and the concatenation of both
ends is used as the initial state of the decoder. An-
other bidirectional RNN is used to compute the
representation of a column name (or a cell), in
case that each unit contains multiple words (Dong
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TableQuestion SQL

𝑆𝐸𝐿𝐸𝐶𝑇,𝑊𝐻𝐸𝑅𝐸, 𝐶𝑂𝑈𝑁𝑇,
𝑀𝐼𝑁,𝑀𝐴𝑋, 𝐴𝑁𝐷,>, <,=.

Pick # CFL Team Player Position College

27 Hamilton Tiger-Cats Connor Healy DB Wilfrid Laurier

28 Calgary Stampeders Anthony Forgone OL York

29 Toronto Argonauts Frank Hoffman DL York

linking

Decoder

Table Structure SQL Syntax

Encoder

<𝑆> 𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇 𝐶𝐹𝐿 𝑇𝑒𝑎𝑚 𝑊𝐻𝐸𝑅𝐸 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 = “𝑌𝑜𝑟𝑘”
column valueSQL columnSQL SQL SQL

SQL SQL

value

column

SQL

value

column column

value

𝑆𝐸𝐿𝐸𝐶𝑇
𝑊𝐻𝐸𝑅𝐸

𝑀𝐼𝑁

𝐶𝑂𝑈𝑁𝑇

𝑀𝐴𝑋

𝐴𝑁𝐷
>

<

=

SQL

York

Wilfrid Laurier

York

𝒕 = 𝟎 𝒕 = 𝟐 𝒕 = 𝟔

Figure 2: An illustration of the proposed approach. At each time step, a switching gate selects a channel
to predict a column name (maybe composed of multiple words), a cell or a SQL keyword. The words in
green below the SQL tokens stand for the results of the switching gate at each time step.

et al., 2015). Essentially, each channel is an atten-
tional neural network. For cell and SQL channels,
the input of the attention module only contains the
decoder hidden state and the representation of the
token to be calculated as follows,

psqlw (i) ∝ exp(Wsql[h
dec
t ; esqli ]) (3)

where esqli stands for the representation of the i-
th SQL keyword. As suggested by (Zhong et al.,
2017), we also concatenate the question represen-
tation into the input of the column channel in or-
der to improve the accuracy of the SELECT col-
umn. We implement the switching gate with a
feed-forward neural network, in which the output
is a softmax function and the input is the decoder
hidden state hdect .

4.3 Improved with Column-Cell Relation
We further improve the STAMP model by consid-
ering the column-cell relation, which is important
for predicting the WHERE clause.

On one hand, the column-cell relation could im-
prove the prediction of SELECT column. We ob-
serve that a cell or a part of it typically appears at
the question acting as the WHERE value, such as
“anna nalick” for “anna christine nalick”). How-
ever, a column name might be represented with
a totally different utterance, which is a “seman-
tic gap”. Supposing the question is “How many
schools did player number 3 play at?” and the
SQL query is “Select count School

Club Team where No. = 3”. We could see that the
column names “School
Club Team” and “No.” are different from their
corresponding utterances “schools”, “number” in
natural language question. Thus, table cells could
be regarded as the pivot that connects the question
and column names (the “linking” component in
Figure 2). For instance, taking the question from
Figure 2, the word “York” would help to predict
the column name as “College” rather than “Play-
er”. There might be different possible ways to
implement this intuition. We use cell information
to enhance the column name representation in this
work. The vector of a column name is further con-
catenated with a question-aware cell vector, which
is weighted averaged over the cell vectors belong-
ing to the same column. The probability distribu-
tion in the column channel is calculated as Equa-
tion 4. We use the number of cell words occurring
in the question to measure the importance of a cel-
l, which is further normalized through a softmax
function to yield the final weight αcell

j ∈ [0, 1]. An
alternative measurement is to use an additional at-
tention model whose input contains the question
vector and the cell vector. We favor to the intuitive
and efficient way in this work.

pcolw (i) ∝ exp(Wcol[h
dec
t ;hcoli ;

∑
j∈coli

αcell
j hcellj ])

(4)
On the other hand, the column-cell relation

could improve the prediction of the WHERE val-
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ue. To yield an executable SQL, the WHERE
value should be a cell that belongs to the same
WHERE column1. Taking Figure 2 as an example,
it should be avoided to predict a where clause like
“Player = York” because the cell “York” does not
belong to the column name “Player”. To achieve
this, we incorporate a global variable to memorize
the last predicted column name. When the switch-
ing gate selects the value channel, the cell distri-
bution is only calculated over the cells belonging
to the last predicted column name. Furthermore,
we incorporate an additional probability distribu-
tion over cells based on the aforementioned word
co-occurrence between the question and cells, and
weighted average two cell distributions, which is
calculated as follows.

pcellw (j) = λp̂cellw (j) + (1− λ)αcell
j (5)

where p̂cellw (j) is the standard probability distribu-
tion obtained from the attentional neural network,
and λ is a hyper parameter which is tuned on the
dev set.

4.4 Improved with Policy Gradient
The model described so far could be convention-
ally learned via cross-entropy loss over question-
SQL pairs. However, different SQL queries might
be executed to yield the same result, and possi-
ble SQL queries of different variations could not
be exhaustively covered in the training dataset.
Two possible ways to handle this are (1) shuf-
fling the WHERE clause to generate more SQL
queries, and (2) using reinforcement learning (RL)
which regards the correctness of the executed out-
put as the goodness (reward) of the generated SQL
query. We follow Zhong et al. (2017) and adopt
a policy gradient based approach. We use a base-
line strategy (Zaremba and Sutskever, 2015) to de-
crease the learning variance. The expected reward
(Williams, 1992) for an instance is calculated as
E(yg) =

∑k
j=1 logp(yj)R(yj , y

g), where yg is the
ground truth SQL query, yj is a generated SQL
query, p(yj) is the probability of yj being generat-
ed by our model, and k is the number of sampled
SQL queries. R(yj , yg) is the same reward func-
tion defined by Zhong et al. (2017), which is +1
if yj is executed to yield the correct answer; −1 if

1This constraint is suitable in this work as we do not con-
sider the nested query in the where clause, such as “where
College = select College from table”, which is also the case
not included in the WikiSQL dataset. We leave generating
nested SQL query in the future work.

yj is a valid SQL query and is executed to get an
incorrect answer; and −2 if yj is not a valid SQL
query. In this way, model parameters could be up-
dated with policy gradient over question-answer
pairs.

4.5 Training and Inference

As the WikiSQL data contains rich supervision of
question-SQL pairs, we use them to train model
parameters. The model has two cross-entropy loss
functions, as given below. One is for the switching
gate classifier (pz) and another is for the attention-
al probability distribution of a channel (pw).

l = −
∑
t

logpz(zt|y<t, x)−
∑
t

logpw(yt|zt, y<t, x)

(6)
Our parameter setting strictly follows Zhong et al.
(2017). We represent each word using word em-
bedding2 (Pennington et al., 2014) and the mean of
the sub-word embeddings of all the n-grams in the
word (Hashimoto et al., 2016)3. The dimension
of the concatenated word embedding is 400. We
clamp the embedding values to avoid over-fitting.
We set the dimension of encoder and decoder hid-
den state as 200. During training, we random-
ize model parameters from a uniform distribution
with fan-in and fan-out, set batch size as 64, set the
learning rate of SGD as 0.5, and update the model
with stochastic gradient descent. Greedy search is
used in the inference process. We use the model
trained from question-SQL pairs as initialization
and use RL strategy to fine-tune the model. SQL
queries used for training RL are sampled based on
the probability distribution of the model learned
from question-SQL pairs. We tune the best model
on the dev set and do inference on the test set for
only once. This protocol is used in model compar-
ison as well as in ablations.

5 Experiment

We conduct experiments on the WikiSQL dataset4,
which includes 61, 297/9, 145/17, 284 examples
in the training/dev/test sets. Each instance con-
sists of a question, a table, a SQL query and a re-
sult. Following Zhong et al. (2017), we use two

2http://nlp.stanford.edu/data/glove.
840B.300d.zip

3http://www.logos.t.u-tokyo.ac.jp/
˜hassy/publications/arxiv2016jmt/jmt_
pre-trained_embeddings.tar.gz

4https://github.com/salesforce/WikiSQL
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Methods
Dev Test

Acclf Accex Acclf Accex
Attentional Seq2Seq 23.3% 37.0% 23.4% 35.9%
Aug.PntNet (Zhong et al., 2017) 44.1% 53.8% 43.3% 53.3%
Aug.PntNet (re-implemented by us) 51.5% 58.9% 52.1% 59.2%
Seq2SQL (no RL) (Zhong et al., 2017) 48.2% 58.1% 47.4% 57.1%
Seq2SQL (Zhong et al., 2017) 49.5% 60.8% 48.3% 59.4%
SQLNet (Xu et al., 2017) – 69.8% – 68.0%
Guo and Gao (2018) – 71.1% – 69.0%
STAMP (w/o cell) 58.6% 67.8% 58.0% 67.4%
STAMP (w/o column-cell relation) 59.3% 71.8% 58.4% 70.6%
STAMP 61.5% 74.8% 60.7% 74.4%
STAMP+RL 61.7% 75.1% 61.0% 74.6%

Table 1: Performances of different approaches on the WikiSQL dataset. Two evaluation metrics are
logical form accuracy (Acclf ) and execution accuracy (Accex). Our model is abbreviated as (STAMP).

evaluation metrics. One metric is logical form ac-
curacy (Acclf ), which measures the percentage of
the generated SQL queries that have exact string
match with the ground truth SQL queries. Since
different SQL queries might obtain the same re-
sult, another metric is execution accuracy (Accex),
which measures the percentage of the generated
SQL queries that obtain the correct answer.

5.1 Model Comparisons

After released, WikiSQL dataset has attracted a
lot of attentions from both industry and research
communities. Zhong et al. (2017) develop follow-
ing methods, including (1) Aug.PntNet which is
an end-to-end learning pointer network approach;
(2) Seq2SQL (no RL), in which two separate clas-
sifiers are trained for SELECT aggregator and S-
ELECT column, separately; and (3) Seq2SQL, in
which reinforcement learning is further used for
model training. Results of tattentional sequence-
to-sequence learning baseline (Attentional Se-
q2Seq) are also reported in (Zhong et al., 2017).
Xu et al. (2017) develop SQLNet, which predict-
s SELECT clause and WHERE clause separate-
ly. Sequence-to-set neural architecture and col-
umn attention are adopted to predict the WHERE
clause. Similarly, Guo and Gao (2018) develop
tailored modules to handle three components of
SQL queries, respectively. A parallel work from
(Yu et al., 2018) obtains higher execution accuracy
(82.6%) on WikiSQL, however, its model is slot-
filling based which is designed specifically for the
“select-aggregator-where” type and utilizes exter-
nal knowledge base (such as Freebase) to tag the

question words. We believe this mechanism could
improve our model as well, we leave this as a po-
tential future work.

Our model is abbreviated as (STAMP), which
is short for Syntax- and Table- Aware seMan-
tic Parser. The STAMP model in Table 1 stand-
s for the model we describe in §4.2 plus §4.3.
STAMP+RL is the model that is fine-tuned with
the reinforcement learning strategy as described in
§4.4. We implement a simplified version of our ap-
proach (w/o cell), in which WHERE values come
from the question. Thus, this setting differs from
Aug.PntNet in the generation of WHERE column.
We also study the influence of the relation-cell re-
lation (w/o column-cell relation) through remov-
ing the enhanced column vector, which is calcu-
lated by weighted averaging cell vectors.

From Table 1, we can see that STAMP per-
forms better than existing systems on WikiSQL.
Incorporating RL strategy does not significantly
improve the performance. Our simplified model,
STAMP (w/o cell), achieves better accuracy than
Aug.PntNet, which further reveals the effects of
the column channel. Results also demonstrate the
effects of incorporating the column-cell relation,
removing which leads to about 4% performance
drop in terms of Accex.

5.2 Model Analysis: Fine-Grained Accuracy

We analyze the STAMP model from different per-
spectives in this part.

Firstly, since SQL queries in WikiSQL consists
of SELECT column, SELECT aggregator, and
WHERE clause, we report the results with regard
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Methods
Dev Test

Accsel Accagg Accwhere Accsel Accagg Accwhere

Aug.PntNet (reimplemented by us) 80.9% 89.3% 62.1% 81.3% 89.7% 62.1%
Seq2SQL (Zhong et al., 2017) 89.6% 90.0% 62.1% 88.9% 90.1% 60.2%
SQLNet (Xu et al., 2017) 91.5% 90.1% 74.1% 90.9% 90.3% 71.9%
Guo and Gao (2018) 92.5% 90.1% 74.7% 91.9% 90.3% 72.8%
STAMP (w/o cell) 89.9% 89.2% 72.1% 89.2% 89.3% 71.2%
STAMP (w/o column-cell relation) 89.3% 89.2% 73.2% 88.8% 89.2% 71.8%
STAMP 89.4% 89.5% 77.1% 88.9% 89.7% 76.0%
STAMP+RL 89.6% 89.7% 77.3% 90.0% 89.9% 76.3%

Table 2: Fine-grained accuracies on the WikiSQL dev and test sets. Accuracy (Acclf ) is evaluated on
SELECT column (Accsel) , SELECT aggregator (Accagg), and WHERE clause (Accwhere), respectively.

to more fine-grained evaluation metrics over these
aspects. Results are given in Table 2, in which
the numbers of Seq2SQL and SQLNet are report-
ed in (Xu et al., 2017). We can see that the main
improvement of STAMP comes from the WHERE
clause, which is also the key challenge of the Wik-
iSQL dataset. This is consistent with our primary
intuition on improving the prediction of WHERE
column and WHERE value. The accuracies of
STAMP on SELECT column and SELECT aggre-
gator are not as high as SQLNet. The main rea-
son is that these two approaches train the SELECT
clause separately while STAMP learns all these
components in a unified paradigm.

5.3 Model Analysis: Difficulty Analysis

We study the performance of STAMP on different
portions of the test set according to the difficulties
of examples. We compare between Aug.PntNet
(re-implemented by us) and STAMP. In this work,
the difficulty of an example is reflected by the
number of WHERE columns.

Method #where Dev Test

Aug.PntNet
= 1 63.4% 63.8%
= 2 51.0% 51.8%
≥ 3 38.5% 38.1%

STAMP
= 1 80.9% 80.2%
= 2 65.1% 65.4%
≥ 3 44.1% 48.2%

Table 3: Execution accuracy (Accex) on different
groups of WikiSQL dev and test sets.

From Table 3, we can see that STAMP outper-
forms Aug.PntNet in all these groups. The accu-
racy decreases with the increase of the number of
WHERE conditions.

5.4 Model Analysis: Executable Analysis

We study the percentage of executable SQL
queries in the generated results. As shown in Table
4, STAMP significantly outperforms Aug.PntNet.
Almost all the results of STAMP are executable.
This is because STAMP avoids generating in-
complete column names or cells, and guarantees
the correlation between WHERE conditions and
WHERE values in the table.

Dev Test
Aug.PntNet 77.9% 78.7%
STAMP 99.9% 99.9%

Table 4: Percentage of the executable SQL queries
on WikiSQL dev and test sets.

5.5 Model Analysis: Case Study

We give a case study to illustrate the gener-
ated results by STAMP, with a comparison to
Aug.PntNet. Results are given in Figure 3. In
the first example, Aug.PntNet generates incom-
plete column name (“style”), which is addressed
in STAMP through replicating an entire column
name. In the second example, the WHERE value
(“brazilian jiu-jitsu”) does not belong to the gener-
ated WHERE column (“Masters”) in Aug.PntNet.
This problem is avoided in STAMP through incor-
porating the table content.

5.6 Error Analysis

We conduct error analysis on the dev set of Wik-
iSQL to show the limitation of the STAMP model
and where is the room for making further improve-
ments. We analyze the 2,302 examples which are
executed to wrong answers by the STAMP mod-
el, and find that 33.6% of them have wrong SE-
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Episode # Country City Martial Art/Style Masters Original Airdate

1.1 China Dengfeng Kung Fu ( Wushu ; Sanda ) Shi De Yang, Shi De Cheng 28-Dec-07

1.2 Philippines Manila Kali Leo T. Gaje Jr. Cristino Vasquez 4-Jan-08

1.3 Japan Tokyo Kyokushin Karate Yuzo Goda, Isamu Fukuda 11-Jan-08

1.4 Mexico Mexico City Boxing
Ignacio "Nacho" Beristáin

Tiburcio Garcia
18-Jan-08

1.5 Indonesia Bandung Pencak Silat Rita Suwanda Dadang Gunawan 25-Jan-08

1.7 South Korea Seoul Hapkido
Kim Nam Je, Bae Sung Book Ju 

Soong Weo
8-Feb-08

1.8 Brazil
Rio de 

Janeiro
Brazilian Jiu-Jitsu

Breno Sivak, Renato Barreto 

Royler Gracie
15-Feb-08

1.9 Israel Netanya Krav Maga Ran Nakash Avivit Oftek Cohen 22-Feb-08

how many masters fought using a boxing style ?Question #1:

select count masters from table where style = boxingAug.PntNet:

STAMP: select count masters from table where martial art/style = boxing

when did the episode featuring a master using brazilian jiu-jitsu air ?Question #2:

select  original airdate from table where masters = brazilian jiu-jitsuAug.PntNet:

STAMP: select  original airdate from table where martial art/style = brazilian jiu-jitsu

Figure 3: Case study on the dev set between Aug.PntNet and STAMP. These two questions are based on
the same table. Each question is followed by the generated SQL queries from the two approaches.

LECT columns, 15.7% of them have a different
number of conditions in the WHERE clause, and
53.7% of them have a different WHERE colum-
n set compared to the ground truth. Afterward-
s, we analyze a portion of randomly sampled dis-
satisfied examples. Consistent with the qualitative
results, most problems come from column predic-
tion, including both SELECT clause and WHERE
clause. Even though the overall accuracy of the
SELECT column prediction is about 90% and we
also use cell information to enhance the column
representation, this semantic gap is still the main
bottleneck. Extracting and incorporating various
expressions for a table column (i.e. relation in a re-
lational database) might be a potential way to mit-
igate this problem. Compared to column predic-
tion, the quality of cell prediction is much better
because cell content typically (partially) appears
in the question.

5.7 Transfers to WikiTableQuestions

WikiTableQuestions (Pasupat and Liang, 2015) is
a widely used dataset for semantic parsing. To fur-
ther test the performance of our approach, we con-
duct an additional transfer learning experiment.
Firstly, we directly apply the STAMP mod-
el trained on WikiSQL to WikiTableQuestions,
which is an unsupervised learning setting for the
WikiTableQuestions dataset. Results show that the
test accuracy of STAMP in this setting is 14.5%,
which has a big gap between best systems on
WikiTableQuestions, where Zhang et al. (2017)

and Krishnamurthy et al. (2017) yield 43.3% and
43.7%, respectively. Furthermore, we apply the
learnt STAMP model to generate SQL queries on
natural language questions from WikiTableQues-
tions, and regard the generated SQL queries which
could be executed to correct answers as addi-
tional pseudo question-SQL pairs. In this way,
the STAMP model learnt from a combination of
WikiSQL and pseudo question-SQL pairs could
achieve 21.0% on the test set. We find that this
big gap is caused by the difference between the
two datasets. Among 8 types of questions in Wik-
iTableQuestions, half of them including {“Union”,
“Intersection”, “Reverse”, “Arithmetic”} are not
covered in the WikiSQL dataset. It is an inter-
esting direction to leverage algorithms developed
from two datasets to improve one another.

5.8 Discussion

Compared to slot-filling based models that restric-
t target SQL queries to fixed forms of “select-
aggregator-where”, our model is less tailored. We
believe that it is easy to expand our model to gen-
erate nested SQL queries or JOIN clauses, which
could also be easily trained with back-propagation
if enough training instances of these SQL types are
available. For example, we could incorporate a hi-
erarchical “value” channel to handle nest queries.
Let us suppose our decoder works horizontally
that next generated token is at the right hand of the
current token. Inspired by chunk-based decoder
for neural machine translation (Ishiwatari et al.,
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2017), we could increase the depth of the “value”
channel to generates tokens of a nested WHERE
value along the vertical axis. During inference, an
addition gating function might be necessary to de-
termine whether to generate a nested query, fol-
lowed by the generation of WHERE value. An in-
tuitive way that extends our model to handle JOIN
clauses is to add the 4th channel, which predict-
s a table from a collection of tables. Therefore,
the decoder should learn to select one of the four
channels at each time step. Accordingly, we need
to add “from” as a new SQL keyword in order to
generate SQL queries including “from xxxTable”.

In terms of the syntax of SQL, the grammar we
used in this work could be regarded as shallow
syntax, such as three channels and column-cell re-
lation. We do not use deep syntax, such as the s-
ketch of SQL language utilized in some slot-filling
models, because incorporating them would make
the model clumpy. Instead, we let the model to
learn the sequential and compositional relations of
SQL queries automatically from data. Empirical
results show that our model learns these patterns
well.

6 Conclusion and Future Work

In this work, we develop STAMP, a Syntax- and
Table- Aware seMantic Parser that automatically
maps natural language questions to SQL queries,
which could be executed on web table or relational
dataset to get the answer. STAMP has three chan-
nels, and it learns to switch to which channel at
each time step. STAMP considers cell information
and the relation between cell and column name
in the generation process. Experiments are con-
ducted on the WikiSQL dataset. Results show that
STAMP achieves the new state-of-the-art perfor-
mance on WikiSQL. We conduct extensive exper-
iment analysis to show advantages and limitations
of our approach, and where is the room for others
to make further improvements.

SQL language has more complicated queries
than the cases included in the WikiSQL dataset,
including (1) querying over multiple relational
databases, (2) nested SQL query as condition val-
ue, (3) more operations such as “group by” and
“order by”, etc. In this work, the STAMP model is
not designed for the first and second cases, but it
could be easily adapted to the third case through
incorporating additional SQL keywords and of
course the learning of which requires dataset of the

same type. In the future, we plan to improve the
accuracy of the column prediction component. We
also plan to build a large-scale dataset that consid-
ers more sophisticated SQL queries. We also plan
to extend the approach to low-resource scenarios
(Feng et al., 2018).
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