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Abstract

Unsupervised neural machine translation

(NMT) is a recently proposed approach for

machine translation which aims to train

the model without using any labeled da-

ta. The models proposed for unsuper-

vised NMT often use only one shared en-

coder to map the pairs of sentences from

different languages to a shared-latent s-

pace, which is weak in keeping the u-

nique and internal characteristics of each

language, such as the style, terminology,

and sentence structure. To address this

issue, we introduce an extension by uti-

lizing two independent encoders but shar-

ing some partial weights which are re-

sponsible for extracting high-level repre-

sentations of the input sentences. Be-

sides, two different generative adversarial

networks (GANs), namely the local GAN

and global GAN, are proposed to enhance

the cross-language translation. With this

new approach, we achieve significant im-

provements on English-German, English-

French and Chinese-to-English translation

tasks.

1 Introduction

Neural machine translation (Kalchbrenner and

Blunsom, 2013; Sutskever et al., 2014; Cho et al.,

2014; Bahdanau et al., 2014), directly applying a

single neural network to transform the source sen-

tence into the target sentence, has now reached im-

pressive performance (Shen et al., 2015; Wu et al.,

2016; Johnson et al., 2016; Gehring et al., 2017;

Vaswani et al., 2017). The NMT typically consist-

s of two sub neural networks. The encoder net-

work reads and encodes the source sentence into a
1Feng Wang is the corresponding author of this paper

context vector, and the decoder network generates

the target sentence iteratively based on the contex-

t vector. NMT can be studied in supervised and

unsupervised learning settings. In the supervised

setting, bilingual corpora is available for training

the NMT model. In the unsupervised setting, we

only have two independent monolingual corpora

with one for each language and there is no bilin-

gual training example to provide alignment infor-

mation for the two languages. Due to lack of align-

ment information, the unsupervised NMT is con-

sidered more challenging. However, this task is

very promising, since the monolingual corpora is

usually easy to be collected.

Motivated by recent success in unsupervised

cross-lingual embeddings (Artetxe et al., 2016;

Zhang et al., 2017b; Conneau et al., 2017), the

models proposed for unsupervised NMT often as-

sume that a pair of sentences from two different

languages can be mapped to a same latent repre-

sentation in a shared-latent space (Lample et al.,

2017; Artetxe et al., 2017b). Following this as-

sumption, Lample et al. (2017) use a single en-

coder and a single decoder for both the source and

target languages. The encoder and decoder, act-

ing as a standard auto-encoder (AE), are trained to

reconstruct the inputs. And Artetxe et al. (2017b)

utilize a shared encoder but two independent de-

coders. With some good performance, they share

a glaring defect, i.e., only one encoder is shared

by the source and target languages. Although

the shared encoder is vital for mapping sentences

from different languages into the shared-latent s-

pace, it is weak in keeping the uniqueness and

internal characteristics of each language, such as

the style, terminology and sentence structure. S-

ince each language has its own characteristics, the

source and target languages should be encoded

and learned independently. Therefore, we conjec-

ture that the shared encoder may be a factor limit-
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ing the potential translation performance.

In order to address this issue, we extend the

encoder-shared model, i.e., the model with one

shared encoder, by leveraging two independent en-

coders with each for one language. Similarly, t-

wo independent decoders are utilized. For each

language, the encoder and its corresponding de-

coder perform an AE, where the encoder gener-

ates the latent representations from the perturbed

input sentences and the decoder reconstructs the

sentences from the latent representations. To map

the latent representations from different languages

to a shared-latent space, we propose the weight-

sharing constraint to the two AEs. Specifically,

we share the weights of the last few layers of two

encoders that are responsible for extracting high-

level representations of input sentences. Similar-

ly, we share the weights of the first few layer-

s of two decoders. To enforce the shared-latent

space, the word embeddings are used as a rein-

forced encoding component in our encoders. For

cross-language translation, we utilize the back-

translation following (Lample et al., 2017). Ad-

ditionally, two different generative adversarial net-

works (GAN) (Yang et al., 2017), namely the local

and global GAN, are proposed to further improve

the cross-language translation. We utilize the local

GAN to constrain the source and target latent rep-

resentations to have the same distribution, where-

by the encoder tries to fool a local discriminator

which is simultaneously trained to distinguish the

language of a given latent representation. We ap-

ply the global GAN to finetune the corresponding

generator, i.e., the composition of the encoder and

decoder of the other language, where a global dis-

criminator is leveraged to guide the training of the

generator by assessing how far the generated sen-

tence is from the true data distribution 1. In sum-

mary, we mainly make the following contribution-

s:

• We propose the weight-sharing constraint to

unsupervised NMT, enabling the model to u-

tilize an independent encoder for each lan-

guage. To enforce the shared-latent space, we

also propose the embedding-reinforced en-

coders and two different GANs for our mod-

el.

• We conduct extensive experiments on

1The code that we utilized to train
and evaluate our models can be found at
https://github.com/ZhenYangIACAS/unsupervised-NMT

English-German, English-French and

Chinese-to-English translation tasks. Ex-

perimental results show that the proposed

approach consistently achieves great success.

• Last but not least, we introduce the direction-

al self-attention to model temporal order in-

formation for the proposed model. Exper-

imental results reveal that it deserves more

efforts for researchers to investigate the tem-

poral order information within self-attention

layers of NMT.

2 Related Work

Several approaches have been proposed to train N-

MT models without direct parallel corpora. The

scenario that has been widely investigated is one

where two languages have little parallel data be-

tween them but are well connected by one pivot

language. The most typical approach in this sce-

nario is to independently translate from the source

language to the pivot language and from the piv-

ot language to the target language (Saha et al.,

2016; Cheng et al., 2017). To improve the transla-

tion performance, Johnson et al. (2016) propose a

multilingual extension of a standard NMT model

and they achieve substantial improvement for lan-

guage pairs without direct parallel training data.

Recently, motivated by the success of cross-

lingual embeddings, researchers begin to show in-

terests in exploring the more ambitious scenario

where an NMT model is trained from monolingual

corpora only. Lample et al. (2017) and Artetxe

et al. (2017b) simultaneously propose an approach

for this scenario, which is based on pre-trained

cross lingual embeddings. Lample et al. (2017)

utilizes a single encoder and a single decoder for

both languages. The entire system is trained to

reconstruct its perturbed input. For cross-lingual

translation, they incorporate back-translation into

the training procedure. Different from (Lample

et al., 2017), Artetxe et al. (2017b) use two in-

dependent decoders with each for one language.

The two works mentioned above both use a sin-

gle shared encoder to guarantee the shared latent

space. However, a concomitant defect is that the

shared encoder is weak in keeping the uniqueness

of each language. Our work also belongs to this

more ambitious scenario, and to the best of our

knowledge, we are one among the first endeav-

ors to investigate how to train an NMT model with

monolingual corpora only.



48

sx

tx

sEnc sDec

tEnc tDec

Enc Decs s
sx
Enc Decs sc Dec
sxs
Enc Dect s
tx
Enc Dect sc Dec
tx

Enc Dect t
tx
Enc Dect tDec
tx

Enc Decs t
sx
Enc Decs tc Dec
sx

1gD

lD

Z 2gD

Figure 1: The architecture of the proposed model. We implement the shared-latent space assumption

using a weight sharing constraint where the connection of the last few layers in Encs and Enct are

tied (illustrated with dashed lines) and the connection of the first few layers in Decs and Dect are

tied. x̃Encs−Decs
s and x̃Enct−Dect

t are self-reconstructed sentences in each language. x̃Encs−Dect
s is

the translated sentence from source to target and x̃Enct−Decs
t is the translation in reversed direction.

Dl is utilized to assess whether the hidden representation of the encoder is from the source or target

language. Dg1 and Dg2 are used to evaluate whether the translated sentences are realistic for each

language respectively. Z represents the shared-latent space.

3 The Approach

3.1 Model Architecture
The model architecture, as illustrated in figure 1,

is based on the AE and GAN. It consists of sev-

en sub networks: including two encoders Encs
and Enct, two decoders Decs and Dect, the lo-

cal discriminator Dl, and the global discriminators

Dg1 and Dg2. For the encoder and decoder, we

follow the newly emerged Transformer (Vaswani

et al., 2017). Specifically, the encoder is com-

posed of a stack of four identical layers 2. Each

layer consists of a multi-head self-attention and a

simple position-wise fully connected feed-forward

network. The decoder is also composed of four i-

dentical layers. In addition to the two sub-layers in

each encoder layer, the decoder inserts a third sub-

layer, which performs multi-head attention over

the output of the encoder stack. For more details

about the multi-head self-attention layer, we refer

the reader to (Vaswani et al., 2017). We implement

the local discriminator as a multi-layer perceptron

and implement the global discriminator based on

the convolutional neural network (CNN). Several

ways exist to interpret the roles of the sub network-

s are summarised in table 1. The proposed system

has several striking components , which are criti-

cal either for the system to be trained in an unsu-

2The layer number is selected according to our prelimi-
nary experiment, which is presented in appendix ??.

pervised manner or for improving the translation

performance.

Networks Roles

{Encs, Decs} AE for source language

{Enct, Dect} AE for target language

{Encs, Dect} translation source → target
{Enct, Decs} translation target → source
{Encs, Dl} 1st local GAN (GANl1)

{Enct, Dl} 2nd local GAN (GANl2)

{Enct, Decs, Dg1} 1st global GAN (GANg1)

{Encs, Dect, Dg2} 2nd global GAN (GANg2)

Table 1: Interpretation of the roles for the subnet-

works in the proposed system.

Directional self-attention Compared to recur-

rent neural network, a disadvantage of the simple

self-attention mechanism is that the temporal or-

der information is lost. Although the Transformer

applies the positional encoding to the sequence be-

fore processed by the self-attention, how to mod-

el temporal order information within an attention

is still an open question. Following (Shen et al.,

2017), we build the encoders in our model on the

directional self-attention which utilizes the posi-

tional masks to encode temporal order information

into attention output. More concretely, two posi-

tional masks, namely the forward mask Mf and
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backward mask M b, are calculated as:

Mf
ij =

{
0 i < j

−∞ otherwise
(1)

M b
ij =

{
0 i > j

−∞ otherwise
(2)

With the forward mask Mf , the later token on-

ly makes attention connections to the early token-

s in the sequence, and vice versa with the back-

ward mask. Similar to (Zhou et al., 2016; Wang

et al., 2017), we utilize a self-attention network

to process the input sequence in forward direc-

tion. The output of this layer is taken by an upper

self-attention network as input, processed in the

reverse direction.

Weight sharing Based on the shared-latent s-

pace assumption, we apply the weight sharing

constraint to relate the two AEs. Specifically, we

share the weights of the last few layers of the Encs
and Enct, which are responsible for extracting

high-level representations of the input sentences.

Similarly, we also share the first few layers of

the Decs and Dect, which are expected to decode

high-level representations that are vital for recon-

structing the input sentences. Compared to (Cheng

et al., 2016; Saha et al., 2016) which use the fully

shared encoder, we only share partial weights for

the encoders and decoders. In the proposed mod-

el, the independent weights of the two encoders

are expected to learn and encode the hidden fea-

tures about the internal characteristics of each lan-

guage, such as the terminology, style, and sentence

structure. The shared weights are utilized to map

the hidden features extracted by the independent

weights to the shared-latent space.

Embedding reinforced encoder We use pre-

trained cross-lingual embeddings in the encoder-

s that are kept fixed during training. And the

fixed embeddings are used as a reinforced encod-

ing component in our encoder. Formally, giv-

en the input sequence embedding vectors E =
{e1, . . . , et} and the initial output sequence of the

encoder stack H = {h1, . . . , ht}, we compute Hr

as:

Hr = g �H + (1− g)� E (3)

where Hr is the final output sequence of the en-

coder which will be attended by the decoder (In

Transformer, H is the final output of the encoder),

g is a gate unit and computed as:

g = σ(W1E +W2H + b) (4)

where W1, W2 and b are trainable parameters

and they are shared by the two encoders. The

motivation behind is twofold. Firstly, taking the

fixed cross-lingual embedding as the other encod-

ing component is helpful to reinforce the shared-

latent space. Additionally, from the point of multi-

channel encoders (Xiong et al., 2017), provid-

ing encoding components with different levels of

composition enables the decoder to take pieces of

source sentence at varying composition levels suit-

ing its own linguistic structure.

3.2 Unsupervised Training
Based on the architecture proposed above, we train

the NMT model with the monolingual corpora on-

ly using the following four strategies:

Denoising auto-encoding Firstly, we train the

two AEs to reconstruct their inputs respective-

ly. In this form, each encoder should learn to

compose the embeddings of its corresponding lan-

guage and each decoder is expected to learn to de-

compose this representation into its corresponding

language. Nevertheless, without any constraint,

the AE quickly learns to merely copy every word

one by one, without capturing any internal struc-

ture of the language involved. To address this

problem, we utilize the same strategy of denois-

ing AE (Vincent et al., 2008) and add some noise

to the input sentences (Hill et al., 2016; Artetxe

et al., 2017b). To this end, we shuffle the input

sentences randomly. Specifically, we apply a ran-

dom permutation ε to the input sentence, verifying

the condition:

|ε(i)− i| ≤ min(k([
steps

s
] + 1), n), ∀i ∈ {1, n}

(5)

where n is the length of the input sentence, steps
is the global steps the model has been updated, k
and s are the tunable parameters which can be set

by users beforehand. This way, the system needs

to learn some useful structure of the involved lan-

guages to be able to recover the correct word order.

In practice, we set k = 2 and s = 100000.

Back-translation In spite of denoising auto-

encoding, the training procedure still involves a s-

ingle language at each time, without considering

our final goal of mapping an input sentence from

the source/target language to the target/source lan-

guage. For the cross language training, we uti-

lize the back-translation approach for our unsu-

pervised training procedure. Back-translation has

shown its great effectiveness on improving NMT
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model with monolingual data and has been wide-

ly investigated by (Sennrich et al., 2015a; Zhang

and Zong, 2016). In our approach, given an input

sentence in a given language, we apply the cor-

responding encoder and the decoder of the other

language to translate it to the other language 3.

By combining the translation with its original sen-

tence, we get a pseudo-parallel corpus which is u-

tilized to train the model to reconstruct the original

sentence from its translation.

Local GAN Although the weight sharing con-

straint is vital for the shared-latent space assump-

tion, it alone does not guarantee that the corre-

sponding sentences in two languages will have the

same or similar latent code. To further enforce

the shared-latent space, we train a discriminative

neural network, referred to as the local discrimi-

nator, to classify between the encoding of source

sentences and the encoding of target sentences.

The local discriminator, implemented as a multi-

layer perceptron with two hidden layers of size

256, takes the output of the encoder, i.e., Hr calcu-

lated as equation 3, as input, and produces a bina-

ry prediction about the language of the input sen-

tence. The local discriminator is trained to predict

the language by minimizing the following cross-

entropy loss:

LDl
(θDl

) =

− Ex∈xs [log p(f = s|Encs(x))]

− Ex∈xt [log p(f = t|Enct(x))]

(6)

where θDl
represents the parameters of the local

discriminator and f ∈ {s, t}. The encoders are

trained to fool the local discriminator:

LEncs(θEncs) =

− Ex∈xs [log p(f = t|Encs(x))]
(7)

LEnct(θEnct) =

− Ex∈xt [log p(f = s|Enct(x))]
(8)

where θEncs and θEnct are the parameters of the

two encoders.

Global GAN We apply the global GANs to fine

tune the whole model so that the model is able to

generate sentences undistinguishable from the true

data, i.e., sentences in the training corpus. Differ-

ent from the local GANs which updates the param-

eters of the encoders locally, the global GANs are

3Since the quality of the translation shows little effect on
the performance of the model (Sennrich et al., 2015a), we
simply use greedy decoding for speed.

utilized to update the whole parameters of the pro-

posed model, including the parameters of encoder-

s and decoders. The proposed model has two glob-

al GANs: GANg1 and GANg2. In GANg1, the

Enct and Decs act as the generator, which gener-

ates the sentence x̃t
4 from xt. The Dg1, imple-

mented based on CNN, assesses whether the gen-

erated sentence x̃t is the true target-language sen-

tence or the generated sentence. The global dis-

criminator aims to distinguish among the true sen-

tences and generated sentences, and it is trained

to minimize its classification error rate. During

training, the Dg1 feeds back its assessment to fine-

tune the encoder Enct and decoder Decs. S-

ince the machine translation is a sequence gener-

ation problem, following (Yang et al., 2017), we

leverage policy gradient reinforcement training to

back-propagate the assessment. We apply a simi-

lar processing to GANg2 (The details about the ar-

chitecture of the global discriminator and the train-

ing procedure of the global GANs can be seen in

appendix ?? and ??).

There are two stages in the proposed unsuper-

vised training. In the first stage, we train the pro-

posed model with denoising auto-encoding, back-

translation and the local GANs, until no improve-

ment is achieved on the development set. Specif-

ically, we perform one batch of denoising auto-

encoding for the source and target languages, one

batch of back-translation for the two languages,

and another batch of local GAN for the two lan-

guages. In the second stage, we fine tune the pro-

posed model with the global GANs.

4 Experiments and Results

We evaluate the proposed approach on English-

German, English-French and Chinese-to-English

translation tasks 5. We firstly describe the dataset-

s, pre-processing and model hyper-parameters we

used, then we introduce the baseline systems, and

finally we present our experimental results.

4.1 Data Sets and Preprocessing

In English-German and English-French transla-

tion, we make our experiments comparable with

previous work by using the datasets from the

4The x̃t is x̃Enct−Decs
t in figure 1. We omit the super-

script for simplicity.
5The reason that we do not conduct experiments on

English-to-Chinese translation is that we do not get public
test sets for English-to-Chinese.
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WMT 2014 and WMT 2016 shared tasks respec-

tively. For Chinese-to-English translation, we use

the datasets from LDC, which has been widely u-

tilized by previous works (Tu et al., 2017; Zhang

et al., 2017a).

WMT14 English-French Similar to (Lample

et al., 2017), we use the full training set of 36M

sentence pairs and we lower-case them and re-

move sentences longer than 50 words, resulting

in a parallel corpus of about 30M pairs of sen-

tences. To guarantee no exact correspondence be-

tween the source and target monolingual sets, we

build monolingual corpora by selecting English

sentences from 15M random pairs, and selecting

the French sentences from the complementary set.

Sentences are encoded with byte-pair encoding

(Sennrich et al., 2015b), which has an English vo-

cabulary of about 32000 tokens, and French vo-

cabulary of about 33000 tokens. We report results

on newstest2014.

WMT16 English-German We follow the same

procedure mentioned above to create monolingual

training corpora for English-German translation,

and we get two monolingual training data of 1.8M

sentences each. The two languages share a vocab-

ulary of about 32000 tokens. We report results on

newstest2016.

LDC Chinese-English For Chinese-to-English

translation, our training data consists of 1.6M sen-

tence pairs randomly extracted from LDC corpora
6. Since the data set is not big enough, we just

build the monolingual data set by randomly shuf-

fling the Chinese and English sentences respec-

tively. In spite of the fact that some correspon-

dence between examples in these two monolingual

sets may exist, we never utilize this alignment in-

formation in our training procedure (see Section

3.2). Both the Chinese and English sentences are

encoded with byte-pair encoding. We get an En-

glish vocabulary of about 34000 tokens, and Chi-

nese vocabulary of about 38000 tokens. The re-

sults are reported on NIST02.

Since the proposed system relies on the pre-

trained cross-lingual embeddings, we utilize the

monolingual corpora described above to train the

embeddings for each language independently by

using word2vec (Mikolov et al., 2013). We then

apply the public implementation 7 of the method

proposed by (Artetxe et al., 2017a) to map these

6LDC2002L27, LDC2002T01, LDC2002E18, LD-
C2003E07, LDC2004T08, LDC2004E12, LDC2005T10

7https://github.com/artetxem/vecmap

embeddings to a shared-latent space 8.

4.2 Model Hyper-parameters and Evaluation

Following the base model in (Vaswani et al.,

2017), we set the dimension of word embedding

as 512, dropout rate as 0.1 and the head number

as 8. We use beam search with a beam size of 4

and length penalty α = 0.6. The model is im-

plemented in TensorFlow (Abadi et al., 2015) and

trained on up to four K80 GPUs synchronously in

a multi-GPU setup on a single machine.

For model selection, we stop training when the

model achieves no improvement for the tenth e-

valuation on the development set, which is com-

prised of 3000 source and target sentences extract-

ed randomly from the monolingual training cor-

pora. Following (Lample et al., 2017), we trans-

late the source sentences to the target language,

and then translate the resulting sentences back to

the source language. The quality of the model

is then evaluated by computing the BLEU score

over the original inputs and their reconstruction-

s via this two-step translation process. The per-

formance is finally averaged over two direction-

s, i.e., from source to target and from target to

source. BLEU (Papineni et al., 2002) is utilized

as the evaluation metric. For Chinese-to-English,

we apply the script mteval-v11b.pl to evaluate the

translation performance. For English-German and

English-French, we evaluate the translation per-

formance with the script multi-belu.pl 9.

4.3 Baseline Systems

Word-by-word translation (WBW) The first

baseline we consider is a system that perform-

s word-by-word translations using the inferred

bilingual dictionary. Specifically, it translates a

sentence word-by-word, replacing each word with

its nearest neighbor in the other language.

Lample et al. (2017) The second baseline is a

previous work that uses the same training and test-

ing sets with this paper. Their model belongs to the

standard attention-based encoder-decoder frame-

work, which implements the encoder using a bidi-

rectional long short term memory network (LST-

M) and implements the decoder using a simple for-

ward LSTM. They apply one single encoder and

8The configuration we used to run these open-source
toolkits can be found in appendix ??

9https://github.com/moses-
smt/mosesdecoder/blob/617e8c8/scripts/generic/multi-
bleu.perl;mteval-v11b.pl
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en-de de-en en-fr fr-en zh-en

Supervised 24.07 26.99 30.50 30.21 40.02

Word-by-word 5.85 9.34 3.60 6.80 5.09

Lample et al. (2017) 9.64 13.33 15.05 14.31 -

The proposed approach 10.86 14.62 16.97 15.58 14.52

Table 2: The translation performance on English-German, English-French and Chinese-to-English test

sets. The results of (Lample et al., 2017) are copied directly from their paper. We do not present the

results of (Artetxe et al., 2017b) since we use different training sets.

decoder for the source and target languages.

Supervised training We finally consider exact-

ly the same model as ours, but trained using the

standard cross-entropy loss on the original parallel

sentences. This model can be viewed as an upper

bound for the proposed unsupervised model.

4.4 Results and Analysis

4.4.1 Number of weight-sharing layers
We firstly investigate how the number of weight-

sharing layers affects the translation performance.

In this experiment, we vary the number of weight-

sharing layers in the AEs from 0 to 4. Shar-

ing one layer in AEs means sharing one lay-

er for the encoders and in the meanwhile, shar-

ing one layer for the decoders. The BLEU s-

cores of English-to-German, English-to-French

and Chinese-to-English translation tasks are re-

ported in figure 2. Each curve corresponds to a

different translation task and the x-axis denotes

the number of weight-sharing layers for the AEs.

We find that the number of weight-sharing layers

shows much effect on the translation performance.

And the best translation performance is achieved

when only one layer is shared in our system. When

all of the four layers are shared, i.e., only one

shared encoder is utilized, we get poor translation

performance in all of the three translation tasks.

This verifies our conjecture that the shared en-

coder is detrimental to the performance of unsu-

pervised NMT especially for the translation tasks

on distant language pairs. More concretely, for the

related language pair translation, i.e., English-to-

French, the encoder-shared model achieves -0.53

BLEU points decline than the best model where

only one layer is shared. For the more distant lan-

guage pair English-to-German, the encoder-shared

model achieves more significant decline, i.e., -0.85

BLEU points decline. And for the most distan-

t language pair Chinese-to-English, the decline is

as large as -1.66 BLEU points. We explain this as

that the more distant the language pair is, the more

different characteristics they have. And the shared

encoder is weak in keeping the unique characteris-

tic of each language. Additionally, we also notice

that using two completely independent encoders,

i.e., setting the number of weight-sharing layers

as 0, results in poor translation performance too.

This confirms our intuition that the shared layers

are vital to map the source and target latent rep-

resentations to a shared-latent space. In the rest

of our experiments, we set the number of weight-

sharing layer as 1.
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Figure 2: The effects of the weight-sharing layer

number on English-to-German, English-to-French

and Chinese-to-English translation tasks.

4.4.2 Translation results
Table 2 shows the BLEU scores on English-

German, English-French and English-to-Chinese

test sets. As it can be seen, the proposed ap-

proach obtains significant improvements than the

word-by-word baseline system, with at least +5.01

BLEU points in English-to-German translation

and up to +13.37 BLEU points in English-to-

French translation. This shows that the proposed

model only trained with monolingual data effec-
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en-de de-en en-fr fr-en zh-en

Without weight sharing 10.23 13.84 16.02 14.82 13.75

Without embedding-reinforced encoder 10.45 14.17 16.55 15.27 14.10

Without directional self-attention 10.60 14.21 16.82 15.30 14.29

Without local GANs 10.51 14.35 16.40 15.07 14.12

Without Global GANs 10.34 14.05 16.19 15.21 14.09

Full model 10.86 14.62 16.97 15.58 14.52

Table 3: Ablation study on English-German, English-French and Chinese-to-English translation tasks.

Without weight sharing means no layers are shared in the two AEs.

tively learns to use the context information and

the internal structure of each language. Compared

to the work of (Lample et al., 2017), our mod-

el also achieves up to +1.92 BLEU points im-

provement on English-to-French translation task.

We believe that the unsupervised NMT is very

promising. However, there is still a large room

for improvement compared to the supervised up-

per bound. The gap between the supervised and

unsupervised model is as large as 12.3-25.5 BLEU

points depending on the language pair and transla-

tion direction.

4.4.3 Ablation study
To understand the importance of different com-

ponents of the proposed system, we perform an

ablation study by training multiple versions of

our model with some missing components: the

local GANs, the global GANs, the directional

self-attention, the weight-sharing, the embedding-

reinforced encoders, etc. Results are reported in

table 3. We do not test the the importance of

the auto-encoding, back-translation and the pre-

trained embeddings because they have been wide-

ly tested in (Lample et al., 2017; Artetxe et al.,

2017b). Table 3 shows that the best performance is

obtained with the simultaneous use of all the test-

ed elements. The most critical component is the

weight-sharing constraint, which is vital to map

sentences of different languages to the shared-

latent space. The embedding-reinforced encoder

also brings some improvement on all of the trans-

lation tasks. When we remove the directional self-

attention, we get up to -0.3 BLEU points decline.

This indicates that it deserves more efforts to in-

vestigate the temporal order information in self-

attention mechanism. The GANs also significant-

ly improve the translation performance of our sys-

tem. Specifically, the global GANs achieve im-

provement up to +0.78 BLEU points on English-

to-French translation and the local GANs also ob-

tain improvement up to +0.57 BLEU points on

English-to-French translation. This reveals that

the proposed model benefits a lot from the cross-

domain loss defined by GANs.

5 Conclusion and Future work

The models proposed recently for unsupervised N-

MT use a single encoder to map sentences from

different languages to a shared-latent space. We

conjecture that the shared encoder is problem-

atic for keeping the unique and inherent char-

acteristic of each language. In this paper, we

propose the weight-sharing constraint in unsuper-

vised NMT to address this issue. To enhance the

cross-language translation performance, we also

propose the embedding-reinforced encoders, local

GAN and global GAN into the proposed system.

Additionally, the directional self-attention is intro-

duced to model the temporal order information for

our system.

We test the proposed model on English-

German, English-French and Chinese-to-English

translation tasks. The experimental results reveal

that our approach achieves significant improve-

ment and verify our conjecture that the shared en-

coder is really a bottleneck for improving the un-

supervised NMT. The ablation study shows that

each component of our system achieves some im-

provement for the final translation performance.

Unsupervised NMT opens exciting opportuni-

ties for the future research. However, there is

still a large room for improvement compared to

the supervised NMT. In the future, we would like

to investigate how to utilize the monolingual da-

ta more effectively, such as incorporating the lan-

guage model and syntactic information into unsu-

pervised NMT. Besides, we decide to make more

efforts to explore how to reinforce the temporal or-
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der information for the proposed model.
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