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1 Tutorial Description

Learning representations to model the meaning
of text has been a core problem in natural lan-
guage understanding (NLP). The last several years
have seen extensive interests on distributional ap-
proaches, in which text spans of different gran-
ularities are encoded as continuous vectors. If
properly learned, such representations have been
shown to help achieve the state-of-the-art perfor-
mances on a variety of NLP problems.

In this tutorial, we will cover the fundamentals
and selected research topics on neural network-
based modeling for semantic composition, which
aims to learn distributed representations for larger
spans of text, e.g., phrases (Yin and Schütze, 2014)
and sentences (Zhu et al., 2016; Chen et al., 2016;
Zhu et al., 2015b,a; Tai et al., 2015; Kalchbrenner
et al., 2014; Irsoy and Cardie, 2014; Socher et al.,
2012), from the meaning representations of their
parts, e.g., word embedding.

We begin by briefly introducing traditional
approaches to semantic composition, including
logic-based formal semantic approaches and sim-
ple arithmetic operations over vectors based on
corpus word counts (Mitchell and Lapata, 2008;
Landauer and Dumais, 1997).

Our main focus, however, will be on distributed
representation-based modeling, whereby the rep-
resentations of words and the operations com-
posing them are jointly learned from a training
objective. We cover the generic ideas behind
neural network-based semantic composition and
dive into the details of three typical composi-
tion architectures: the convolutional composition
models (Kalchbrenner et al., 2014; Zhang et al.,
2015), recurrent composition models (Zhu et al.,
2016), and recursive composition models (Irsoy
and Cardie, 2014; Socher et al., 2012; Zhu et al.,
2015b; Tai et al., 2015). After that, we will
discuss several unsupervised approaches (Le and
Mikolov, 2014; Kiros et al., 2014; Bowman et al.,
2016; Miao et al., 2016).

We will then advance to discuss several se-
lected topics. We first cover the models that con-
sider compositional with non-compositional (e.g.,
holistically learned) semantics (Zhu et al., 2016,
2015a). Next, we discuss composition models
that integrate multiple architectures of neural net-
works. We also discuss semantic composition
and decomposition (Turney, 2014). In the end
we briefly discuss sub-word neural-network-based
composition models (Zhang et al., 2015; Sennrich
et al., 2016)

We will then summarize the tutorial, flesh out
limitations of current approaches, and discuss fu-
ture directions that are interesting to us.

2 Tutorial Outline

• Introduction
◦ Definition of semantic composition
◦ Conventional and basic approaches

� Formal semantics
� Bag of words with learned representa-

tions (additive, learned projection)
• Parametrising Composition Functions

◦ Convolutional composition models
◦ Recurrent composition models
◦ Recursive composition models

� TreeRNN/TreeLSTM
� SPINN and RL-SPINN

◦ Unsupervised models
� Skip-thought vectors and paragraph

vectors
� Variational auto-encoders for text

• Selected Topics
◦ Incorporating compositional and non-

compositional (e.g., holistically learned)
semantics

◦ Integrating multiple composition archi-
tectures

◦ Semantic composition and decomposition
◦ Sub-word composition models

• Summary
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3 Instructors

Xiaodan Zhu, Queen’s University; National Re-
search Council Canada.
zhu2048@gmail.com
http://www.xiaodanzhu.com
Xiaodan Zhu is an assistant professor of the De-
partment of Electrical and Computer Engineering
of Queen’s University, Canada. Before that, he
was a Research Officer of the National Research
Council Canada. His research interests are in Nat-
ural Language Processing and Machine Learning.
His recent work has focused on deep learning,
semantic composition, sentiment analysis, and
natural language inference.

Edward Grefenstette, Senior Research Scientist,
DeepMind.
etg@google.com
http://www.egrefen.com
Edward Grefenstette is a Staff Research Scientist
at DeepMind. His research covers the intersection
of Machine Learning, Computer Reasoning, and
Natural Language Understanding. Recent publica-
tions cover the topics of neural computation, rep-
resentation learning at the sentence level, recog-
nising textual entailment, and machine reading.
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