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Abstract

We introduce a modular approach for
literature-based discovery consisting of a
machine reading and knowledge assembly
component that together produce a graph
of influence relations (e.g., “A promotes
B”) from a collection of publications. A
search engine is used to explore direct and
indirect influence chains. Query results
are substantiated with textual evidence,
ranked according to their relevance, and
presented in both a table-based view, as
well as a network graph visualization. Our
approach operates in both domain-specific
settings, where there are knowledge bases
and ontologies available to guide reading,
and in multi-domain settings where such
resources are absent. We demonstrate that
this deep reading and search system re-
duces the effort needed to uncover “undis-
covered public knowledge”, and that with
the aid of this tool a domain expert was
able to drastically reduce her model build-
ing time from months to two days.

1 Introduction

Since at least 1990, there has been exponential
growth in the number of academic papers pub-
lished annually in the biomedical domain (Pau-
tasso, 2012). For example, the number of En-
glish language biomedical publications indexed by
PubMed1 alone since 1900 has now surpassed 25
million2. Over 17 million of these were published
between 1990 and 2015.

Although a number of information extraction
(IE) systems have been developed to mine indi-
vidual facts (e.g., biochemical interactions) from

1http://www.ncbi.nlm.nih.gov/pubmed
2https://www.ncbi.nlm.nih.gov/pubmed/

?term=%221900%22%5BPDAT%5D%20%3A%20%
222017%22%5BPDAT%5D&cmd=DetailsSearch

these publications, there is limited work on as-
sembling and interpreting these fragments. This
limitation may result in solutions to critical prob-
lems being overlooked, as many tasks today cross
several disciplines that interact only minimally.
Swanson (1986) described this problem as “undis-
covered public knowledge”.

In this work, we propose a machine reading and
assembly approach that facilitates connections be-
tween different research efforts and research com-
munities across several fields. Following past ef-
forts in literature-based discovery (Smalheiser and
Swanson, 1998; Bekhuis, 2006), we introduce a
modular system that performs (a) information ex-
traction and assembly from publications, and (b)
hypothesis exploration using a custom search en-
gine that queries the knowledge graph of direct
and indirect links uncovered by the machine.

We elected to focus on links that highlight influ-
ence relations between two concepts (e.g., “CTCF
activates FOXA1”) in the biomedical domain. Im-
portantly, our approach reads statements about in-
fluence relations from publications, and does not
attempt to verify these findings directly through
separate modeling.3 We apply our system to build
influence graphs for two scenarios: (a) biomolec-
ular explanations of cell signaling pathways with
applications to cancer research (this is a single do-
main rich with knowledge base (KB) resources to
guide information extraction), and (b) factors in-
fluencing children’s health (this task crosses mul-
tiple domains, and has limited supported from
KBs).

3In other words, we trust that the authors’ statements are
correct. Although these statements often contain causal lan-
guage (e.g., “A causes B”), we avoid referring to these rela-
tions as causal, since our approach does not attempt to verify
quantitative findings directly.

103

https://doi.org/10.18653/v1/P17-4018
https://doi.org/10.18653/v1/P17-4018


2 Previous Work

There is a substantial body of work addressing
open-domain machine reading (Banko et al., 2007;
Carlson et al., 2010; Zhang, 2015), as well as sys-
tems that target specific domains (Björne et al.,
2009; Nédellec et al., 2013; Peters et al., 2014).
All of these systems read individual facts, which
makes Swanson’s observation even more valid to-
day. Attempts have been made in the biomedi-
cal domain to assemble relations extracted by ma-
chine reading into coherent models (Hahn-Powell
et al., 2016). This domain is known for the com-
plexity of its models (Lander, 2010), which has
spurred research on improved visualizations for
actionable insights (Dang et al., 2015).

Our work builds on these previous efforts by
assembling complex influence graphs from the
extractions of a machine reading system, and
through a novel search engine that efficiently
searches this graph and visualizes the results in a
simple and intuitive interface.

3 Approach

Our approach consists of two stages: (a) machine
reading and assembly (MRA), which produces a
graph of influence relations from a collection of
publications, and (b) a search engine that explores
both direct and indirect connections in this graph.
In this section, we describe our machine reading
and assembly approach. In Section 4 we describe
the search engine over this influence graph.

We introduce methods for machine reading
and assembly in two scenarios: (a) a domain-
specific machine reading system for molecular bi-
ology, and (2) an open-domain system for discov-
ering factors influencing children’s health. Both
systems are rule-based, which has the desirable
property of producing an interpretable extraction
model that allows for incremental, isolated im-
provements by an end user that understands the
task at hand but is not a natural language process-
ing (NLP), or a machine learning (ML) expert (the
likely maintainer of such a system). Although the
IE models we discuss in the next section are rule-
based, the modular design of the system means
that the graph explorer interface is agnostic of and
independent to the IE component.

3.1 Domain-specific Reading and Assembly
Our MRA system for the biomedical literature is
called REACH (from REading and Assembling

Contextual and Holistic mechanisms from text)4.
This system extracts entities (e.g., proteins, other
chemicals, biological processes) and events (e.g.,
biochemical interactions) from biomolecular lit-
erature. REACH is built on top of the Odin
IE framework (Valenzuela-Escarcega et al., 2016)
and captures 17 kinds of events, including nested
events (i.e., events involving other events). The
event grammars are applied in cascades composed
of rules that describe patterns over both syntac-
tic dependencies and token sequences, using con-
straints over a token’s attributes (part-of-speech
tag, lemma, etc.). The system architecture is sum-
marized in Figure 1, and described below.

Preprocessing

Extraction of Entities

Grounding via KBs

Extraction of Simple Events

Extraction of Nested Events

Negation and Polarity Detection

Coreference Resolution

Figure 1: The REACH pipeline, which includes
detection of hedging and negation. In addition to
the components shown, REACH detects the scope
of biological contexts such as cell line, tissue type,
and species (not covered here).

Entity Extraction and Resolution
Because of its focus on a single domain (molec-
ular biology), REACH leverages domain-specific
resources such as curated knowledge bases (e.g.,
Uniprot5 for protein names, and PubChem6 for
other chemicals) to perform entity recognition and
resolution.

REACH’s named entity recognizer (NER) is a
hybrid model that combines a rule-based compo-
nent with a statistical one.7 The output of the NER
system is then matched against the set of knowl-
edge bases in order to “ground” these textual men-
tions to real-world entities through ID assignment.
This grounding component enables the dedupli-
cation of entity nodes during graph construction
(the assembly phase). That is, all synonyms of the

4https://github.com/clulab/reach
5http://www.uniprot.org
6https://pubchem.ncbi.nlm.nih.gov
7The details of this hybrid NER architecture are omited

for brevity.
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same protein are mapped to the same node in the
influence graph.

Event Extraction
REACH uses a two-stage bottom-up strategy for
event extraction, following biochemical seman-
tics inspired by BioPAX (Demir et al., 2010).
First, we identify biochemical reactions that op-
erate directly on entities, initially ignoring their
catalysts and other controllers, e.g., phosphory-
lation of a protein. We call these events “sim-
ple”. REACH uses a domain-specific taxon-
omy for specifying the selectional restrictions on
event arguments. Next, nested events are cap-
tured. For example, during this stage, catalysts
that control simple events such as phosphory-
lations are extracted. During graph construc-
tion, these nested events are “flattened” into bi-
nary influence links. For example, the nested in-
teraction PositiveRegulation(Controller:A,

Controlled:Phosphorylation(B)) is reduced to
A → B, where the arrow indicates a left-to-right
influence relation. Additionally, these links pre-
serve the type (e.g., phosphorylation) and polarity
of the biochemical interaction, e.g., a positive reg-
ulation is equivalent to a “promotes” link, whereas
a negative regulation reduces to “inhibits”.8

Coreference Resolution and Negation
The coreference resolution component in
REACH adapts the algorithm of Lee et al. (2013)
to the biomedical domain, where it operates
both over entity mentions (e.g., by resolving
pronominal and nominal mentions such as “it”
or “this protein” to the corresponding entity) and
event mentions (e.g., “this interaction” is resolved
to an actual event) (Bell et al., 2016).

The negation detection module identifies ex-
plicit statements that a reaction does not oc-
cur (e.g., “ZAP70 does not induce TRIM phos-
phorylation”) in a particular experimental con-
text. REACH also handles more subtle linguis-
tic phenomena such as reversing the polarity of
events. For example, the naive interpretation of
the text “decreased PTPN13 expression enhances
EphrinB1 phosphorylation” yields a positive reg-
ulation (due to “enhances”). The polarity correc-
tion module changes this to a negative regulation
due to the presence of the “decreased” modifier.

8Polarity detection is more complicated in practice, be-
cause some simple events have polarity information as well,
which needs to be taken into account when flattening events.
We ignore this situation here for brevity.

3.2 Multi-domain Reading and Assembly

Our second use case for MRA models children’s
health, which involves complex influence chains
that span multiple levels of abstraction, linking
low-level biomolecular processes with nutritional
and socio-economic issues.

In such a setting, comprehensive resources are
unavailable. Unlike in REACH, we cannot rely
on a taxonomy to guide our extractions. While
incomplete resources are available for a subset of
the covered domains, we treat this use case as an
opportunity to explore what can be extracted and
assembled when no knowledge base is available
for entity recognition or resolution.

Entity Extraction
Following Banko et al. (2007), we instead con-
sider expanded noun phrases as a coarse approx-
imation of the concepts we wish to link. Start-
ing at each noun, we traverse amod, advmod,
ccmod, dobj, nn, vmod, and prep_* Stanford
collapsed dependency relations and promote only
the longest span to our pool of candidate concepts.
For example, starting at infections in “viral infec-
tions among infants are [. . . ]”, the expansion pro-
cedure produces viral infections among infants as
a candidate entity.

Event Extraction and Resolution
For event extraction, we adapted the
REACH grammars that capture influence state-
ments (e.g., positive and negative regulations) to
the current task by removing selectional restric-
tions on the arguments of each event predicate.
That is, we extract any lexicalized variation of “A
causes B” where A and B are entities identified
in the previous step. Matches to these rules pro-
duce a directed influence relation that maintains
polarity (i.e., increase or decrease). Any mention
that is detected as being negated (e.g., “X was not
found to increase Y”) is discarded from further
consideration.

Surviving edges are consolidated through a
conservative deduplication procedure where two
edges are considered identical if and only if the set
of lemmatized content terms9 for corresponding
source-destination concepts between two edges is
identical (e.g., “children’s stunting” = “stunted
children”). When merging duplicates, textual
provenance of the extractions is aggregated.

9Function words are ignored.
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4 Influence Graph Search Engine

Conventional visualization of any sufficiently
complex network suffers from the “hairball” (Lan-
der, 2010) problem. To mitigate this obfuscation,
we introduce a search user interface (UI)10 that al-
lows for structured queries where a user can ex-
plore the influence neighborhood around a CAUSE

and/or EFFECT to a configurable distance in terms
of “hops” in the graph. Alternatively, the user may
choose to explore direct and indirect chains of in-
fluence linking a possible CAUSE and EFFECT pair
(see Figure 2 for a detailed description of the UI).

As the pool of analyzed documents grows, pos-
sible connections may become so numerous that
the results of a query could overwhelm a user. For
this reason, we rank query results using a rele-
vance score designed to bring surprising findings
to the attention of the user. The scoring procedure
is discussed in Section 4.1.

4.1 Estimating Event Relevance

In order to rank the results of extraction by an
estimate of their relative novelty, each dedupli-
cated edge is scored according to a relevance met-
ric based on the inverse document frequency (IDF)
of the lemmatized terms in its concept nodes. We
provide several scores for each edge, which differ
by (a) whether or not the score incorporates all of
the terms in the source and destination concepts or
only their head lemmas, and (b) whether the score
is an average or maximum. IDF scores were calcu-
lated for the lemma of each term in the vocabulary
using the entire open access subset of PubMed. To
simplify ranking, the scores were normalized us-
ing the maximum IDF possible for the dataset.

4.2 Influence Graphs

In Figure 3, we show an example of output for our
domain-specific IE system (see §3.1). The output
demonstrates the system’s ability to capture chains
of biomolecular interactions. Output for our open
domain IE system (see §3.2) is shown in Figure 4,
which showcases the system’s ability to uncover
indirect links between concepts across domains.

5 Evaluation

An early version of this system was evaluated by a
biologist who used the tool to augment her model

10More information on this system can be found
at http://clulab.cs.arizona.edu/demos/
influence-search

building process for the topic of children’s health.
The biologist provided the system a set of terms
as input. The terms were used to formulate a in-
formation retrieval query against the open access
subset of PubMed to identify papers relevant to
her use case. We then extracted influence rela-
tions from the retrieved documents and presented
the ranked results to the biologist.

Through her exploration, the biologist refined
her search terms of interest and the process was
repeated for three cycles over two days. The re-
sult was a model containing 35 core concepts such
as “EBF”, “improved water access”, and “govern-
ment subsidy”, and 48 directed influence relations
holding between these concepts (e.g., rapid ur-
banization PROMOTES (availability of) cheap pro-
cessed food). Importantly, all influence relations
incorporated in her model were substantiated by
evidence from the literature.

According to the biologist, the system reduced
the model building process from months to two
days, remarking that “finding one of these links
manually may well take 1–3 days – sometimes one
is lucky and comes across a review paper where
someone has already drawn a fairly mature mental
model – but filling in the details and making sure
they are not biased can take much longer.” We
consider this success as a first step toward bridg-
ing research islands through Swanson linking.

6 Conclusion

We introduced a search engine that operates over
influence graphs that were automatically mined
from scientific literature. Our approach consists
of two high-level components. The first compo-
nent is a machine reading and assembly system
that extracts entities of interest and influence re-
lations that hold between them (e.g., “promotes”
or “inhibits”). The reading system can operate
in both domain-specific settings, where there are
knowledge bases that can support reading (e.g.,
lists of protein names), and in multi-domain set-
tings where such resources are not available. The
second component of our approach is a search en-
gine interface that allows the user to explore not by
keywords, but by direct and indirect influence pat-
terns. The results are displayed in a network graph
format depicting the subgraph matching the query,
and in a table-based view that lists the match-
ing influence relations in descending order of rel-
evance. Through a user study we demonstrated
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Figure 2: The search engine UI for the conceptual influence graph. A: search boxes used to specify
the purported CAUSE and/or EFFECT, and the maximum number of intervening edges that connect these
concepts. B: search box used to further filter query results. C: network representation of the query
results, displaying how the concepts influence each other. Green edges indicate promotion; red ones
indicate inhibition. The width of a link is proportional to the amount of evidence supporting it. D: results
as a table in which each row corresponds to an edge in the graph shown in C. The provenance (textual
mentions) of an edge can be viewed by clicking on the “seen X times” entry corresponding to that row.

Figure 3: One result of MKP1’s role in apopto-
sis, which demonstrates multiple pathways with
competing downstream effects. The query for this
result was constrained to a maximum distance of
three intervening nodes.

that this deep reading and search approach reduces
the effort needed to uncover “undiscovered public
knowledge” (Swanson, 1986). With the aid of this
tool, a domain expert reduced her model building
time from months to two days.

In future work, we will strengthen our assem-
bly approach by improving node and edge dedu-
plication. This remains a challenging problem
in the multi-domain setting where comprehensive
knowledge bases are not available. For exam-
ple, minimal pairs differing in a single modifier
such as “acute diarrhea” vs. “chronic diarrhea”
have clinical definitions with clear distinctions.

Care must be taken in determining which syntac-
tic constituents (e.g., prepositional phrases) can be
safely ignored during comparisons. Additionally,
we plan to add a context filter to the search fields,
which will allow the user to focus results by con-
text, e.g., “show results just for pancreatic can-
cer”, or “show impact factors to children’s health
in Sudan.”
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Figure 4: A sample of the top 50 indirect connections between pollution and disease. In this example,
the connection is constrained to at most three intervening nodes between these two concepts.
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