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Abstract

Inquiry is fundamental to communication,
and machines cannot effectively collabo-
rate with humans unless they can ask ques-
tions. In this thesis work, we explore
how can we teach machines to ask clari-
fication questions when faced with uncer-
tainty, a goal of increasing importance in
today’s automated society. We do a pre-
liminary study using data from StackEx-
change, a plentiful online resource where
people routinely ask clarifying questions
to posts so that they can better offer assis-
tance to the original poster. We build neu-
ral network models inspired by the idea of
the expected value of perfect information:
a good question is one whose expected an-
swer is going to be most useful. To build
generalizable systems, we propose two fu-
ture research directions: a template-based
model and a sequence-to-sequence based
neural generative model.

1 Introduction

A main goal of asking questions is to fill in-
formation gaps, typically through clarification
questions, which naturally occur in conversations
(Purver, 2004; Ginzburg, 2012). A good ques-
tion is one whose likely answer is going to be the
most useful. Consider the exchange in Figure 1,
in which an initial poster (who we’ll call “Terry”)
asks for help configuring environment variables.
This question is underspecified and a responder
(“Parker”) asks a clarifying question “(a) What ver-
sion of Ubuntu do you have?” Parker could alterna-
tively have asked one of:

(b) Is the moon waxing or waning?
(c) Are you running Ubuntu 14.10 kernel 4.4.0-59-

generic on an x86 64 architecture?

Figure 1: A post on an online Q & A forum
“askubuntu.com” is updated to fill the missing in-
formation pointed out by the question comment

Parker should not ask (b) because it’s not useful;
they should not ask (c) because it’s too specific and
an answer of “No” gives little help. Parker’s ques-
tion (a) is optimal: it is both likely to be useful,
and is plausibly answerable by Terry. Our goal in
this work is to automate Parker. Specifically, after
Terry writes their initial post, we aim to generate
a clarification question so that Terry can immedi-
ately amend their post in hopes of getting faster
and better replies.

Our work has two main contributions:
1. A novel neural-network model for addressing

this task that integrates the notion of expected
value of perfect information (§2).

2. A novel dataset, derived from StackEx-
change, that enables us to learn a model to
ask clarifying questions by looking at the
types of questions people ask (§4.1).1

To develop our model we take inspiration from
the decision theoretic framework of the Expected

1We use data from StackExchange; per license cc-by-sa
3.0, the data is “intended to be shared and remixed” (with
attribution). We will release all of the data we extract.
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Value of Perfect Information (EVPI) (Avriel and
Williams, 1970), a measure of the value of gath-
ering additional information. In our setting, we
use EVPI to calculate which question is most
likely to elicit an answer that would make the post
more informative. Formally, for an input post p,
we want to choose a question q that maximizes
Ea∼p,q[U(p+a)], where a is a hypothetical answer
andU is a utility function measuring the complete-
ness of post p if a were to be added to it. To
achieve this, we construct two models: (1) an an-
swer model, which estimates P[a | p, q], the like-
lihood of receiving answer a if one were to ask
question q on post p; (2) a completeness model,
U(p), which measures how complete a post is.
Given these two models, at prediction time we
search over a shortlist of possible questions for
that which maximizes the EVPI.

We are able to train these models jointly based
on (p, q, a) triples that we extract automatically
from StackExchange. Figure 1 depicts how we do
this using StackExchange’s edit history. In the fig-
ure, the initial post fails to state what version of
Ubuntu is being run. In response to Parker’s ques-
tion in the comments section, Terry, the author of
the post, edits the post to answer Parker’s clarifi-
cation question. We extract the initial post as p,
question posted in the comments section as q, and
edit to the original post as answer a to form our
(p, q, a) triples.

Our results show significant improvements from
using the EVPI formalism over both standard
feedforward network architectures and bag-of-
ngrams baselines, even when our system builds
on strong information retrieval scaffolding. In
comparison, without this scaffolding, the bag-of-
ngrams model outperforms the feedforward net-
work. We additionally analyze the difficulty of this
task for non-expert humans.

2 Related Work

The problem of question generation has received
sparse attention from the natural language pro-
cessing community. Most prior work focuses
on generating reading comprehension questions:
given text, write questions that one might find
on a standardized test (Vanderwende, 2008; Heil-
man, 2011; Rus et al., 2011). Comprehension
questions, by definition, are answerable from the
provided text. Clarification questions are not.
Outside reading comprehension questions, Labu-

tov et al. (2015) studied the problem of gener-
ating question templates via crowdsourcing, Liu
et al. (2010) use template-based question genera-
tion to help authors write better related work sec-
tions, Mostafazadeh et al. (2016) consider ques-
tion generation from images, and Artzi and Zettle-
moyer (2011) use human-generated clarification
questions to drive a semantic parser.

3 Model Description

In order to choose what question to ask, we build a
neural network model inspired by the theory of ex-
pected value of perfect information (EVPI). EVPI
is a measurement of: if I were to acquire informa-
tion X, how useful would that be to me? How-
ever, because we haven’t acquired X yet, we have
to take this quantity in expectation over all pos-
sible X, weighted by each X’s likelihood. In the
question generation setting, for any given ques-
tion q that we can ask, there is set A of possible
answers that could be given. For each possible an-
swer a ∈ A, there is some probability of getting
that answer, and some utility if that were the an-
swer we got. The value of this question q is the
expected utility, over all possible answers. The
theory of EVPI then states that we want to choose
the question q that maximizes:

arg max
q∈Q

∑

a∈A
P[a|p, q]U(p+ a) (1)

In Eq 1, p is the post, q is a potential question
from a set of candidate questions Q (§3.1) and a is
a potential answer from a set of candidate answers
A (§3.1). P[a|p, q] (§3.2) measures the probability
of getting an answer a given an initial post p and
a clarifying question q. U(p + a) (§3.3) measures
how useful it would be if p were augmented with
answer a. Finally, using these pieces, we build a
joint neural network that we can optimize end-to-
end over our data (§3.4). Figure 2 describes the
behavior of our model during test time.

3.1 Question & Answer Candidate Generator
Given a post, our first step is to generate a set
of candidate questions and answers. Our model
learns to ask questions by looking at questions
asked in previous similar situations. We first iden-
tify 10 posts similar to the given post in our dataset
using Lucene2 (a software extensively used in in-
formation retrieval) and then consider the ques-

2https://lucene.apache.org/
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Figure 2: The behavior of our model during test time. Given a post p, we retrieve 10 posts similar to p using Lucene and
consider the questions asked to those as question candidates and the edits made to the posts in response to the questions as
answer candidates. Our answer model generates an answer representation Fans(p, qj) for each question candidate qj and
calculates how close is an answer candidate ak to Fans(p, qj). Our utility calculator calculates the utility of the post if it were
updated with the answer ak. We select the question qj that maximizes the expected utility of the post p (Equation 1).

tions asked to these posts as our set of question
candidates and the edits made to the posts in re-
sponse to the questions as our set of answer candi-
dates.

3.2 Answer Modeling

Given a post p and a question candidate qi, our
second step is to calculate how likely is this ques-
tion to be answered using one of our answer can-
didates ak. To calculate this probability, we first
generate an answer representation Fans(p, qi) and
then measure how close is the answer candidate ak
to our answer representation using the equation:

P[ak|p, qi] =
1

Z
exp

[
−λ||ak − Fans(p, qi)||2

]

(2)

where λ is a tunable parameter that controls the
variance of the distribution.

We train our answer generator using the follow-
ing intuition: a question can be asked in several
different ways. For e.g. in Figure 1, the ques-
tion “What version of Ubuntu do you have?” can be
asked in other ways like “What version of operating
system are you using?”, “Version of OS?”, etc. Addi-
tionally, a question can generate several different
answers. For instance, “Ubuntu 14.04 LTS”, “Ubuntu
12.0”, “Ubuntu 9.0”, are all valid answers. To cap-
ture these generalizations, we define the following
loss function:

lossans(p̄, q̄, ā, Q) = ||Fans(p̄, q̄)− ā||2 (3)

+
∑

j∈Q

(
||Fans(p̄, q̄)− āj ||2(1− tanh (||q̄ − q̄j ||2))

)

In equation 3, the first term forces the answer rep-
resentation Fans(p̄i, q̄i) to be as close as possible
to the correct answer ai and the second term forces
it to be close to the answer aj corresponding to a
question qj very similar to qi (i.e. ||q̄i− q̄j || is near
zero).

3.3 Utility Calculator

Given a post p and an answer candidate ak, our
third step is to calculate the utility of the updated
post i.e. U(p + ak) which measures how use-
ful it would be if a given post p were augmented
with an answer ak. We use the intuition that a
post pi, when updated with the answer ai that it
is paired with in our dataset, would be more com-
plete than if it is updated with some other an-
swer aj . Therefore we label all the (pi, ai) pairs
from our dataset as positive (y = 1) and label
pi paired with other nine answer candidates gen-
erated using Lucene (§3.1) as negative (y = 0).
The utility of the updated post is then defined as
U(p + a) = σ(Futility(p̄, ā)) where Futility is a
feedforward neural network. We want this utility
to be close to one for all the positively labelled
(p, a) pairs and close to zero for all the negatively
labelled (p, a) pairs. We therefore define our loss
using the binary cross-entropy formulation below:

lossutil(y, p̄, ā) = y log(σ(Futility(p̄, ā))) (4)

3.4 Our joint neural network model

Our fundamental representation is based on re-
current neural network, specifically long short-
term memory architecture (LSTM) (Hochreiter
and Schmidhuber, 1997) over word embeddings
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Lucene negative candidates Random negative candidates
Models Acc MRR R@3 R@5 Acc MRR R@3 R@5

Random 10.0 29.3 30.0 50.0 10.0 29.3 30.0 50.0
Bag-of-ngrams 11.6 31.3 32.5 54.6 54.9 70.5 83.1 92.0
Feed-forward 17.4 37.8 43.2 63.9 49.0 66.8 81.3 92.8
EVPI 23.3 43.4 51.0 70.3 61.1 75.5 87.9 95.8

Table 1: Results of two setups ‘Lucene negative candidates’ and ‘Random negative candidates’ on askubuntu when trained
on a combination of three domains: askubuntu, unix and superuser. We report four metrics: accuracy (percent of time the top
ranked question was correct), mean reciprocal rank (the reciprocal of the ranked position of the correct question in the top 10
list), recall at 3 (percent of time the correct answer is in the top three) and recall at 5.

obtained using a GloVe (Pennington et al., 2014)
model trained on the entire datadump of StackEx-
change. We define three LSTMs corresponding to
p, q and a and two feedforward neural networks
corresponding to our answer model Fans(p̄, q̄) and
our utility calculator Futility(p̄, ā). We jointly
train the parameters of all our neural network mod-
els to minimize the sum of the loss of our answer
model (Eq 3) and our utility calculator (Eq 4):
∑

i

lossans(p̄i, q̄i, āi, Qi) + lossutil(yi, p̄i, āi) (5)

Given such an estimate P[a|p, q] of an answer and
a utility U(p+ a) of the updated post, predictions
can be done by choosing that “q” that maximizes
Eq 1.

4 Experiments and Results

4.1 Dataset
StackExchange is a network of online question
answering websites containing timestamped infor-
mation about the posts, comments on the post and
the history of the revisions made to the post. Us-
ing this, we create our dataset of {post, question,
answer} triples: where post is the initial unedited
post, question is the comment containing a ques-
tion and answer is the edit made to the post that
matches the question comment 3. We extract a to-
tal of 37K triples from the following three domains
of StackExchange: askubuntu, unix and superuser.

4.2 Experimental Setups
We define our task as given a post and 10 question
candidates, select the correct question candidate.
For every post p in our dataset of (p, q, a) triples,
the question q paired with p is our positive ques-
tion candidate. We define two approaches to gen-
erate negative question candidates:
Lucene Negative Candidates: We retrieve nine

3We measure the cosine similarity between the averaged
word embeddings of the question and the edit.

question candidates using Lucene (§3.1) and
Random Negative Candidates: We randomly
sample nine other questions from our dataset.

4.3 Primary Research Questions

Our primary research questions that we evaluate
experimentally are:
a. Does a neural architecture improve upon a sim-
ple bag-of-ngrams baseline?
b. Does the EVPI formalism provide leverage over
a similarly expressive feed-forward network?
c. How much harder is the task when the negative
candidate questions come from Lucene rather than
selected randomly?

4.4 Baseline Methods

Random: Randomly permute the set of 10 candi-
date questions uniformly.
Bag-of-ngrams: Construct a bag-of-ngrams rep-
resentation for the post, the question and the an-
swer and train a classifier to minimize hinge loss
on misclassification loss.
Feed-forward neural: Concatenate the post
LSTM representation, the question LSTM rep-
resentation and the answer LSTM representation
and feed it through a feed forward neural network
of two fully-connected hidden layers.

4.5 Results

We describe results on a test split of askubuntu
when our models are trained on the union of all
data, summarized in Table 1. The left half of this
table shows results when the candidate sets is from
Lucene—the “hard” setting and the right half of
this table shows the same results when the candi-
date set is chosen randomly—the “easy” setting.
Here, we see that for all the evaluation metrics,
EVPI outperforms all the baselines by at least a
few percentage points. A final performance of
51% recall at 3 in the “hard” setting is encourag-
ing, though clearly there is a long way to go for a
perfect system.
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5 How good are humans at this task?

In this section we address two natural questions:
(a) How does the performance of our system com-
pare to a human solving the same task? (b) Just be-
cause the system selects a question that is not the
exact gold standard question, is it certainly wrong?
To answer these questions, we had 14 computer
science graduate students perform the task on 50
examples. Most of these graduate students are not
experts in unix or ubuntu, but are knowledgable.
Given a post and a randomized list of ten possi-
ble questions, they were instructed to select what
they thought was the single best question to ask,
and additionally mark as “valid” any additional
questions that they thought would also be okay to
ask. We also asked them to rate their confidence
in {0, 1, 2, 3}. Most found this task quite challeng-
ing because many of the questions are about subtle
nuances of operating system behavior.

These annotator’s accuracy on the “hard” task
of Lucene-selected questions, was only 36%, sig-
nificantly better than our best system (23%), but
still far from perfect. If we limited to those ex-
amples on which they were more confident (con-
fidence of 2 or 3), their accuracy raised to 42%,
but never surpassed that. A major problem for
the human annotators is the amount of background
knowledge required to solve this problem. On an
easier domain, or with annotators who are truly ex-
perts, we might expect these numbers to be higher.

6 Proposed Research Directions

In our preliminary work, we focus on the question
selection problem i.e. select the right clarification
question from a set of prior questions. To enable
our system to generalize well to new context, we
propose two future research directions:

6.1 Template Based Question Generation

Consider a template like “What version of
are you running?”. This template can generate
thousands of specific variants found in the data
like “What version of Ubuntu are you running?”,
“What version of apt-get are you running?”, etc.
We propose the following four step approach to
our template-based question generation method:

1. Cluster questions based on their lexical and
semantic similarity.

2. Generate a template for each cluster by re-
moving topic specific words from questions.

3. Given a post, select a question template from
a set of candidate question templates using a
model similar to our preliminary work.

4. Finally, fill in the blanks in the template using
topic specific words retrieved from the post.

6.2 Neural Network Generative Model

Sequence-to-sequence neural network models
have proven to be effective for several lan-
guage generation tasks like machine translation
(Sutskever et al., 2014), dialog generation (Ser-
ban et al., 2016), etc. These models are based on
an encoder-decoder framework where the encoder
takes in a sequence of words and generates a vec-
tor representation which is then taken in by a de-
coder to generate the output sequence of words.

On similar lines, we propose a model for gener-
ating the clarification question one word at a time,
given the words of a post. A recent neural gener-
ative question answering model (Yin et al., 2016)
built an answer language model which decides, at
each time step, whether to generate a common vo-
cabulary word or an answer word retrieved from a
knowledge base. Inspired from this work, we pro-
pose to build a question generation model which
will decide, at each time step, whether to gener-
ate a common vocabulary word or a topic specific
word retrieved from the current post, thus incor-
porating the template-based method into a more
general neural network framework.

7 Conclusion

In our work, we introduce a novel dataset for clar-
ification question generation, and build a model
that integrates neural network structure with the
classic notion of expected value of perfect infor-
mation. Our preliminary model learns to select
the right question from a set of candidate ques-
tions. We propose two future directions for auto-
matically generating clarification questions.

One main avenue for improvement of this work
is in evaluation: given that this task is so diffi-
cult for humans, but also given that there is no
single right question to ask, how can we better
measure performance at this task? This is exactly
the same question faced in dialog and generation
(Paek, 2001; Lowe et al., 2015; Liu et al., 2016;
Kannan and Vinyals, 2017). Finally, asking ques-
tion is a natural component of dialog, and build-
ing a collaborative dialog system that can naturally
converse with a user is a broad long term goal.
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