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Introduction

Welcome to the ACL 2017 Student Research Workshop!

The ACL 2017 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research
community as well as from selected mentors.

Following the tradition of the previous years’ student research workshops, we have two tracks: research
papers and research proposals. The research paper track is a venue for Ph.D. students, Masters students,
and advanced undergraduates to describe completed work or work-in-progress along with preliminary
results. The research proposal track is offered for advanced Masters and Ph.D. students who have decided
on a thesis topic and are interested in feedback on their proposal and ideas about future directions for
their work.

We received in total 58 submissions: 16 research proposals and 42 research papers. We accepted 6
research proposals and 17 research papers, giving an acceptance rate of 40% overall. This year, all of the
accepted papers will be presented as posters in an evening poster session during the main conference.

Mentoring is at the heart of the SRW. In keeping with previous years, students had the opportunity
to participate in a pre-submission mentoring program prior to the submission deadline. This program
offered students a chance to receive comments from an experienced researcher, in order to improve the
quality of the writing and presentation before making their submission. Twenty-two authors participated
in the pre-submission mentoring. In addition, authors of accepted SRW papers are matched with
mentors who will meet with the students in person during the workshop. Each mentor prepares in-
depth comments and questions prior to the student’s presentation, and provides discussion and feedback
during the workshop.

We are grateful for the support of the Don and Betty Walker Scholarship Fund and the National Science
Foundation under award No. 1714855, which help support the travel expenses of workshop participants.

We would also like to thank our program committee members for their careful reviews of each paper,
and all of our mentors for donating their time to provide feedback to our student authors. Thank you to
our faculty advisors Cecilia Ovesdotter Alm, Marine Carpuat, and Mark Dredze for their essential advice
and guidance, and to members of the ACL 2017 organizing committee, including Chris Callison-Burch,
Min-Yen Kan, Regina Barzilay, Charley Chan, Christian Federmann and Priscilla Rasmussen, for their
helpful support. Finally, thank you to our student participants!
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Computational characterization of mental states: A natural language
processing approach

Facundo Carrillo
Computer Science Dept, School of Science,

Buenos Aires University
fcarrillo@dc.uba.ar

Abstract

Psychiatry is an area of medicine that
strongly bases its diagnoses on the psychi-
atrists subjective appreciation. The task
of diagnosis loosely resembles the com-
mon pipelines used in supervised learning
schema. Therefore, we propose to aug-
ment the psychiatrists diagnosis toolbox
with an artificial intelligence system based
on natural language processing and ma-
chine learning algorithms. This approach
has been validated in many works in which
the performance of the diagnosis has been
increased with the use of automatic classi-
fication.

1 Introduction

Psychiatry is an area of medicine that strongly
bases its diagnoses on the psychiatrists subjective
appreciation. More precisely, speech is used al-
most exclusively as a window to the patients mind.
Few other cues are available to objectively justify
a diagnostic, unlike what happens in other disci-
plines which count on laboratory tests or imag-
ing procedures, such as X-rays. Daily practice is
based on the use of semi-structured interviews and
standardized tests to build the diagnoses, heavily
relying on her personal experience. This method-
ology has a big problem: diagnoses are commonly
validated a posteriori in function of how the phar-
macological treatment works. This validation can-
not be done until months after the start of the
treatment and, if the patient condition does not
improve, the psychiatrist often changes the diag-
nosis and along with the pharmacological treat-
ment. This delay prolongs the patient’s suffering
until the correct diagnosis is found. According to
NIMH, more than 1% and 2 % of US population
is affected by Schizophrenia and Bipolar Disorder,

respectively. Moreover, the WHO reported that
the global cost of mental illness reached $2.5T in
2010 (Mathers et al., 2008) .

The task of diagnosis, largely simplified, mainly
consists of understanding the mind state through
the extraction of patterns from the patient’s speech
and finding the best matching pathology in the
standard diagnostic literature. This pipeline, con-
sisting of extracting patterns and then classify-
ing them, loosely resembles the common pipelines
used in supervised learning schema. Therefore,
we propose to augment the psychiatrists diagnosis
toolbox with an artificial intelligence system based
on natural language processing and machine learn-
ing algorithms. The proposed system would assist
in the diagnostic using a patients speech as input.
The understanding and insights obtained from cus-
tomizing these systems to specific pathologies is
likely to be more broadly applicable to other NLP
tasks, therefore we expect to make contributions
not only for psychiatry but also within the com-
puter science community. We intend to develop
these ideas and evaluate them beyond the lab set-
ting. Our end goal is to make it possible for a prac-
titioner to integrate our tools into her daily practice
with minimal effort.

2 Methodology

In order to complement the manual diagnosis it is
necessary to have samples from real patients. To
collect these samples, we have ongoing collabo-
rations with different psychiatric institutions from
many countries: United States, Colombia, Brazil
and Argentina. These centers provide us with ac-
cess to the relevant patient data and we jointly col-
laborate testing different protocols in a variety lan-
guages. We have already started studies with two
pathologies: Schizophrenia and Bipolar Disorder.

Regarding our technical setup, we are using and
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developing tools to capture different characteris-
tics of the speech. In all cases, we work with high-
quality transcriptions of speech. Our experiments
are focused on analyzing different aspects of the
speech: 1) Grammatical-morphological changes
based on topology of Speech Graphs. 2) Coher-
ence Algorithm: Semantic coherence using prox-
imity in semantic embeddings. 3) Changes in
Emotional language and other semantic categories

3 Preliminary Results

Many groups have already validated this paradigm
(Roark et al., 2011; Fraser et al., 2014; Resnik
et al., 2013; Lehr et al., 2012; Fraser et al., 2016;
Mitchell et al., 2015). First, Speech Graphs has
been used in different pathologies (schizophrenic
and bipolar), results are published in (Carrillo
et al., 2014; Mota et al., 2014, 2012). In (Carrillo
et al., 2014), the autors can automatically diag-
nose based on the graphs with an accuracy greater
than 85%. This approach consists in modeling the
language, or a transformation of it (for example
the part of speech symbols of a text), as a graph.
With this new representation the authors use graph
topology features (average grade of nodes, num-
ber of loops, centrality, etc) as features of patient
speech. Regarding coherence analysis, some re-
searchers has developed an algorithm that quanti-
fies the semantic divergence of the speech. To do
that, they used semantic embeddings (like Latent
Semantic Analysis(Landauer and Dumais, 1997),
Word2vec(Mikolov et al., 2013), or Twitter Se-
mantic Similarity(Carrillo et al., 2015)) to mea-
sure when consecutive sentences of spontaneous
speech differ too much. The authors used this
algorithm, combined with machine learning clas-
sifiers, to predict which high-risk subjects would
have their first psychotic episode within 2 years
(with 100% accuracy) (Bedi et al., 2015). The lat-
ter result was very relevant because it presented
evidence that this automatic diagnostic methodol-
ogy could not only perform at levels comparable to
experts but also, under some conditions, even out-
perform experts (classical medical tests achieved
40% of accuracy). Dr. Insel, former director of
National Institute of Mental Health cited this work
in his blog on his post: Look who is getting into
mental health research as one.

Regarding Emotional language, some re-
searchers presented evidence of how some en-
docrine regulations change the language. This

methods are based on quantifying different emo-
tional levels. This methodology has been used
to diagnose depression and postpartum depres-
sion by Eric Horvitz (De Choudhury et al., 2013).
Others researchers also have used this method to
diagnose patients with Parkinsons disease(Garcı́a
et al., 2016).

4 Current Work

Currently, we are working on the coherence al-
gorithm (Bedi et al., 2015), understanding some
properties and its potential applications, such as
automatic composition of text and feature extrac-
tion for bot detection. Meanwhile, we are receiv-
ing new speech samples from 3 different mental
health hospitals in Argentina provided by patients
with new pathologies like frontotemporal demen-
tia and anxiety. We are also building methods
to detect depression in young patients using the
change of emotions in time.

5 Future work

The tasks for the following 2/3 years are: 1) Im-
prove implementations of developed algorithms
and make them open source. 2) Integrate the dif-
ferent pipelines of features extraction and classi-
fication to generate a generic classifier for sev-
eral pathologies. 3) Build a mobile application
for medical use (for this aim, Google has awarded
our project with the Google Research Awards for
Latin America 2016: Prognosis in a Box: Compu-
tational Characterization of Mental State). At the
moment the data is recorded and then transcribed
by an external doctor. We want a full automatic
procedure, from the moment when the doctor per-
forms the interview to the moment when she re-
ceives the results. 4) Write the PhD thesis.
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Improving Distributed Representations of Tweets - Present and Future

Ganesh Jawahar
Information Retrieval and Extraction Laboratory

IIIT Hyderabad
Telangana, India

ganesh.j@research.iiit.ac.in

Abstract

Unsupervised representation learning for
tweets is an important research field which
helps in solving several business applica-
tions such as sentiment analysis, hashtag
prediction, paraphrase detection and mi-
croblog ranking. A good tweet represen-
tation learning model must handle the id-
iosyncratic nature of tweets which poses
several challenges such as short length, in-
formal words, unusual grammar and mis-
spellings. However, there is a lack of
prior work which surveys the represen-
tation learning models with a focus on
tweets. In this work, we organize the mod-
els based on its objective function which
aids the understanding of the literature.
We also provide interesting future direc-
tions, which we believe are fruitful in ad-
vancing this field by building high-quality
tweet representation learning models.

1 Introduction

Twitter is a widely used microblogging platform,
where users post and interact with messages,
“tweets”. Understanding the semantic represen-
tation of tweets can benefit a plethora of applica-
tions such as sentiment analysis (Ren et al., 2016;
Giachanou and Crestani, 2016), hashtag predic-
tion (Dhingra et al., 2016), paraphrase detec-
tion (Vosoughi et al., 2016) and microblog rank-
ing (Huang et al., 2013; Shen et al., 2014). How-
ever, tweets are difficult to model as they pose
several challenges such as short length, informal
words, unusual grammar and misspellings. Re-
cently, researchers are focusing on leveraging un-
supervised representation learning methods based
on neural networks to solve this problem. Once
these representations are learned, we can use off-

the-shelf predictors taking the representation as in-
put to solve the downstream task (Bengio, 2013a;
Bengio et al., 2013b). These methods enjoy sev-
eral advantages: (1) they are cheaper to train, as
they work with unlabelled data, (2) they reduce the
dependence on domain level experts, and (3) they
are highly effective across multiple applications,
in practice.

Despite this, there is a lack of prior work which
surveys the tweet-specific unsupervised represen-
tation learning models. In this work, we attempt to
fill this gap by investigating the models in an or-
ganized fashion. Specifically, we group the mod-
els based on the objective function it optimizes.
We believe this work can aid the understanding
of the existing literature. We conclude the pa-
per by presenting interesting future research direc-
tions, which we believe are fruitful in advancing
this field by building high-quality tweet represen-
tation learning models.

2 Unsupervised Tweet Representation
Models

There are various models spanning across differ-
ent model architectures and objective functions in
the literature to compute tweet representation in
an unsupervised fashion. These models work in a
semi-supervised way - the representations gener-
ated by the model is fed to an off-the-shelf pre-
dictor like Support Vector Machines (SVM) to
solve a particular downstream task. These mod-
els span across a wide variety of neural network
based architectures including average of word vec-
tors, convolutional-based, recurrent-based and so
on. We believe that the performance of these mod-
els is highly dependent on the objective function
it optimizes – predicting adjacent word (within-
tweet relationships), adjacent tweet (inter-tweet
relationships), the tweet itself (autoencoder), mod-
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Figure 1: Unsupervised Tweet Representation Models Hierarchy based on Optimized Objective Function

eling from structured resources like paraphrase
databases and weak supervision. In this section,
we provide the first of its kind survey of the recent
tweet-specific unsupervised models in an orga-
nized fashion to understand the literature. Specif-
ically, we categorize each model based on the op-
timized objective function as shown in Figure 1.
Next, we study each category one by one.

2.1 Modeling within-tweet relationships

Motivation: Every tweet is assumed to have a la-
tent topic vector, which influences the distribution
of the words in the tweet. For example, though
the appearance of the phrase catch the ball is fre-
quent in the corpus, if we know that the topic of a
tweet is about “technology”, we can expect words
such as bug or exception after the word catch (ig-
noring the) instead of the word ball since catch
the bug/exception is more plausible under the topic
“technology”. On the other hand, if the topic of
the tweet is about “sports”, then we can expect
ball after catch. These intuitions indicate that the
prediction of neighboring words for a given word
strongly relies on the tweet also.
Models: (Le and Mikolov, 2014)’s work is the first
to exploit this idea to compute distributed docu-
ment representations that are good at predicting
words in the document. They propose two mod-
els: PV-DM and PV-DBOW, that are extensions
of Continuous Bag Of Words (CBOW) and Skip-

gram model variants of the popular Word2Vec
model (Mikolov et al., 2013) respectively – PV-
DM inserts an additional document token (which
can be thought of as another word) which is shared
across all contexts generated from the same doc-
ument; PV-DBOW attempts to predict the sam-
pled words from the document given the document
representation. Although originally employed for
paragraphs and documents, these models work
better than the traditional models: BOW (Harris,
1954) and LDA (Blei et al., 2003) for tweet classi-
fication and microblog retrieval tasks (Wang et al.,
2016). The authors in (Wang et al., 2016) make the
PV-DM and PV-DBOW models concept-aware (a
rich semantic signal from a tweet) by augmenting
two features: attention over contextual words and
conceptual tweet embedding, which jointly exploit
concept-level senses of tweets to compute better
representations. Both the discussed works have
the following characteristics: (1) they use a shal-
low architecture, which enables fast training, (2)
computing representations for test tweets requires
computing gradients, which is time-consuming for
real-time Twitter applications, and (3) most impor-
tantly, they fail to exploit textual information from
related tweets that can bear salient semantic sig-
nals.
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2.2 Modeling inter-tweet relationships

Motivation: To capture rich tweet semantics,
researchers are attempting to exploit a type of
sentence-level Distributional Hypothesis (Harris,
1954; Polajnar et al., 2015). The idea is to infer the
tweet representation from the content of adjacent
tweets in a related stream like users’ Twitter time-
line, topical, retweet and conversational stream.
This approach significantly alleviates the context
insufficiency problem caused due to the ambigu-
ous and short nature of tweets (Ren et al., 2016;
Ganesh et al., 2017).
Models: Skip-thought vectors (Kiros et al., 2015)
(STV) is a widely popular sentence encoder,
which is trained to predict adjacent sentences in
the book corpus (Zhu et al., 2015). Although the
testing is cheap as it involves a cheap forward
propagation of the test sentence, STV is very slow
to train thanks to its complicated model architec-
ture. To combat this computational inefficiency,
FastSent (Hill et al., 2016) propose a simple ad-
ditive (log-linear) sentence model, which predicts
adjacent sentences (represented as BOW) taking
the BOW representation of some sentence in con-
text. This model can exploit the same signal, but
at a much lower computational expense. Paral-
lel to this work, Siamase CBOW (Kenter et al.,
2016) develop a model which directly compares
the BOW representation of two sentence to bring
the embeddings of a sentence closer to its adja-
cent sentence, away from a randomly occurring
sentence in the corpus. For FastSent and Siamese
CBOW, the test sentence representation is a sim-
ple average of word vectors obtained after train-
ing. Both of these models are general purpose
sentence representation models trained on book
corpus, yet give a competitive performance over
previous models on the tweet semantic similarity
computation task. (Ganesh et al., 2017)’s model
attempt to exploit these signals directly from Twit-
ter. With the help of attention technique and
learned user representation, this log-linear model
is able to capture salient semantic information
from chronologically adjacent tweets of a target
tweet in users’ Twitter timeline.

2.3 Modeling from structured resources

Motivation: In recent times, building represen-
tation models based on supervision from richly
structured resources such as Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013) (containing

noisy phrase pairs) has yielded high quality sen-
tence representations. These methods work by
maximizing the similarity of the sentences in the
learned semantic space.
Models: CHARAGRAM (Wieting et al., 2016a)
embeds textual sequences by learning a character-
based compositional model that involves addition
of the vectors of its character n-grams followed by
an elementwise nonlinearity. This simpler archi-
tecture trained on PPDB is able to beat models
with complex architectures like CNN, LSTM on
SemEval 2015 Twitter textual similarity task by a
large margin. This result emphasizes the impor-
tance of character-level models that address differ-
ences due to spelling variation and word choice.
The authors in their subsequent work (Wieting
et al., 2016b) conduct a comprehensive analysis
of models spanning the range of complexity from
word averaging to LSTMs for its ability to do
transfer and supervised learning after optimizing a
margin based loss on PPDB. For transfer learning,
they find models based on word averaging perform
well on both the in-domain and out-of-domain tex-
tual similarity tasks, beating LSTM model by a
large margin. On the other hand, the word averag-
ing models perform well for both sentence similar-
ity and textual entailment tasks, outperforming the
LSTM. However, for sentiment classification task,
they find LSTM (trained on PPDB) to beat the av-
eraging models to establish a new state of the art.
The above results suggest that structured resources
play a vital role in computing general-purpose em-
beddings useful in downstream applications.

2.4 Modeling as an autoencoder

Motivation: The autoencoder based approach
learns latent (or compressed) representation by re-
constructing its own input. Since textual data like
tweets contain discrete input signals, sequence-
to-sequence models (Sutskever et al., 2014) like
STV can be used to build the solution. The en-
coder model which encodes the input tweet can
typically be a CNN (Kim, 2014), recurrent models
like RNN, GRU, LSTM (Karpathy et al., 2015) or
memory networks (Sukhbaatar et al., 2015). The
decoder model which generates the output tweet
can typically be a recurrent model that predicts a
output token at every time step.
Models: Sequential Denoising Autoencoders
(SDAE) (Hill et al., 2016) is a LSTM-based
sequence-to-sequence model, which is trained to
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recover the original data from the corrupted ver-
sion. SDAE produces robust representations by
learning to represent the data in terms of fea-
tures that explain its important factors of varia-
tion. Tweet2Vec (Vosoughi et al., 2016) is a recent
model which uses a character-level CNN-LSTM
encoder-decoder architecture trained to construct
the input tweet directly. This model outper-
forms competitive models that work on word-level
like PV-DM, PV-DBOW on semantic similarity
computation and sentiment classification tasks,
thereby showing that the character-level nature of
Tweet2Vec is best-suited to deal with the noise and
idiosyncrasies of tweets. Tweet2Vec controls the
generalization error by using a data augmentation
technique, wherein tweets are replicated and some
of the words in the replicated tweets are replaced
with their synonyms. Both SDAE and Tweet2Vec
has the advantage that they don’t need a coherent
inter-sentence narrative (like STV), which is hard
to obtain in Twitter.

2.5 Modeling using weak supervision

Motivation: In a weakly supervised setup, we
create labels for a tweet automatically and pre-
dict them to learn potentially sophisticated mod-
els than those obtained by unsupervised learning
alone. Examples of labels include sentiment of
the overall tweet, words like hashtag present in
the tweet and so on. This technique can create a
huge labeled dataset especially for building data-
hungry, sophisticated deep learning models.
Models: (Tang et al., 2016) learns sentiment-
specific word embedding (SSWE), which encodes
the polarity information in the word representa-
tions so that words with contrasting polarities and
similar syntactic context (like good and bad) are
pushed away from each other in the semantic
space that it learns. SSWE utilizes the massive
distant-supervised tweets collected by positive and
negative emoticons to build a powerful tweet rep-
resentation, which are shown to be useful in tasks
such as sentiment classification and word simi-
larity computation in sentiment lexicon. (Dhin-
gra et al., 2016) observes that hashtags in tweets
can be considered as topics and hence tweets with
similar hashtags must come closer to each other.
Their model predicts the hashtags by using a Bi-
GRU layer to embed the tweets from its charac-
ters. Due to subword modeling, such character-
level models can approximate the representations

for rare words and new words (words not seen dur-
ing training) in the test tweets really well. This
model outperforms the word-level baselines for
hashtag prediction task, thereby concluding that
exploring character-level models for tweets is a
worthy research direction to pursue. Both these
works fail to study the model’s generality (Weston
et al., 2014), i.e., the ability of the model to trans-
fer the learned representations to diverse tasks.

3 Future Directions

In this section we present the future research di-
rections which we believe can be worth pursuing
to generate high quality tweet embeddings.

• (Ren et al., 2016) propose a supervised
neural network utilizing contextualized fea-
tures from conversation, author and topic
based context about a target tweet to per-
form well in classification of tweet. Apart
from (Ganesh et al., 2017)’s work which uti-
lizes author context, there is no other work
which builds unsupervised tweet representa-
tion model on Twitter-specific contexts such
as conversation and topical streams. We be-
lieve such a solution directly exploits seman-
tic signals (or nuances) from Twitter, unlike
STV or Siamese CBOW which are trained on
books corpus.

• (dos Santos and Gatti, 2014) propose a super-
vised, hybrid model exploiting both the char-
acter and word level information for Twit-
ter sentiment analysis task. Since the set-
tings when the character level model beats the
word level model is not well understood yet,
we believe it would be interesting to explore
such a hybrid compositional model to build
unsupervised tweet representations.

• Twitter provides a platform for the users to
interact with other users. To the best of our
knowledge, there is no related work that com-
putes unsupervised tweet representation by
exploiting the user profile attributes like pro-
file picture, user biography and set of fol-
lowers, and social interactions like retweet
context (set of surrounding tweets in a users
retweet stream) and favorite context (set of
surrounding tweets in a users favorite tweet
stream).
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• DSSM (Huang et al., 2013; Shen et al., 2014)
propose a family of deep models that are
trained to maximize the relevance of clicked
documents given a query. Such a ranking loss
function helps the model cater to a wide vari-
ety of applications1 such as web search rank-
ing, ad selection/relevance, question answer-
ing, knowledge inference and machine trans-
lation. We observe such a loss function has
not been explored for building unsupervised
tweet representations. We believe employing
a ranking loss directly on tweets using a large
scale microblog dataset2 can result in repre-
sentations which can be useful to Twitter ap-
plications beyond those studied in the tweet
representation learning literature.

• Linguists assume that language is best un-
derstood as a hierarchical tree of phrases,
rather than a flat sequence of words or charac-
ters. It’s difficult to get the syntactic trees for
tweets as most of them are not grammatically
correct. The average of word vectors model
has the most simplest compositional archi-
tecture with no additional parameters, yet
displays a strong performance outperforming
complex architectures such as CNN, LSTM
and so on for several downstream applica-
tions (Wieting et al., 2016a,b). We believe
a theoretical understanding of why word av-
eraging models perform well can help in em-
bracing these models by linguists.

• Models in (Wieting et al., 2016a,b) learn
from noisy phrase pairs of PPDB. Note that
the source of the underlying texts is com-
pletely different from Twitter. It can be inter-
esting to see the effectiveness of such mod-
els when directly trained on structural re-
sources from Twitter like Twitter Paraphrase
Corpus (Xu et al., 2014). The main challenge
with this approach is the small size of the an-
notated Twitter resources, which can encour-
age models like (Arora et al., 2017) that work
well even when the training data is scarce or
nonexistent.

• Tweets mostly have an accompanying im-
age which sometimes has visual correspon-
dence with its textual content (Chen et al.,

1https://www.microsoft.com/en-us/
research/project/dssm/

2http://trec.nist.gov/

2013; Wang et al., 2014) (‘visual’ tweet).
To the best of our knowledge, there is no
work which explores the following question:
can we build multimodal representations for
tweets accompanying correlated visual con-
tent and compare with traditional bench-
marks?. We can leverage insights from mul-
timodal skip-gram model (Lazaridou et al.,
2015) which builds multimodally-enhanced
word vectors that perform well in the tradi-
tional semantic benchmarks. However, it’s
hard to detect visual tweets and learning from
a non-visual tweet can degrade its tweet rep-
resentation. It would be interesting to see if
a dispersion metric (Kiela et al., 2014) for
tweets can be explored to overcome this prob-
lem of building a nondegradable, improved
tweet representation.

• Interpreting the tweet representations to un-
earth the encoded features responsible for
its performance on a downstream task is an
important, but a less studied research area.
(Ganesh et al., 2016)’s work is the first to
open the blackbox of vector embeddings for
tweets. They propose elementary property
prediction tasks which predicts the accuracy
to which a given tweet representation en-
codes the elementary property (like slang
words, hashtags, mentions, etc). The main
drawback of the work is that they fail to cor-
relate their study with downstream applica-
tions. We believe performing such a correla-
tion study can clearly highlight the set of el-
ementary features behind the performance of
a particular representation model over other
for a given downstream task.

4 Conclusion

In this work we study the problem of learning
unsupervised tweet representations. We believe
our survey of the existing works based on the ob-
jective function can give vital perspectives to re-
searchers and aid their understanding of the field.
We also believe the future research directions stud-
ied in this work can help in breaking the barriers in
building high quality, general purpose tweet repre-
sentation models.
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and Grégoire Mesnil. 2014. A Latent Semantic
Model with Convolutional-Pooling Structure for In-
formation Retrieval. In Proc. of the 23rd ACM Intl.
Conf. on Conference on Information and Knowledge
Management. pages 101–110.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In NIPS. pages 2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. pages 3104–3112.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting
Liu, and Ming Zhou. 2016. Sentiment Embeddings
with Applications to Sentiment Analysis. IEEE
Transactions on Knowledge and Data Engineering
28(2):496–509.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2Vec: Learning Tweet Embed-
dings Using Character-level CNN-LSTM Encoder-
Decoder. In Proc. of the 39th Intl. ACM SIGIR Conf.
on Research and Development in Information Re-
trieval. pages 1041–1044.

Yashen Wang, Heyan Huang, Chong Feng, Qiang
Zhou, Jiahui Gu, and Xiong Gao. 2016. CSE:
conceptual sentence embeddings based on attention
model. In Proc. of the 54th Annual Meeting of the
Association for Computational Linguistics.

Zhiyu Wang, Peng Cui, Lexing Xie, Wenwu Zhu,
Yong Rui, and Shiqiang Yang. 2014. Bilateral cor-
respondence model for words-and-pictures associ-
ation in multimedia-rich microblogs. TOMCCAP
10(4):34:1–34:21.

Jason Weston, Sumit Chopra, and Keith Adams. 2014.
#tagspace: Semantic embeddings from hashtags. In
Proc. of the 2014 Conf. on Empirical Methods in
Natural Language Processing. pages 1822–1827.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Charagram: Embedding words and
sentences via character n-grams. In Proc. of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP. pages 1504–1515.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016b. Towards universal paraphrastic
sentence embeddings. CoRR abs/1511.08198.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from twitter. TACL 2:435–
448.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In IEEE Intl. Conf. on
Computer Vision, ICCV . pages 19–27.

10



Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics- Student Research Workshop, pages 11–16
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-3003

Bilingual Word Embeddings with Bucketed CNN for Parallel Sentence
Extraction

Jeenu Grover
IIT Kharagpur
India - 721302

groverjeenu@gmail.com

Pabitra Mitra
IIT Kharagpur
India - 721302

pabitra@cse.iitkgp.ernet.in

Abstract

We propose a novel model which can be
used to align the sentences of two differ-
ent languages using neural architectures.
First, we train our model to get the bilin-
gual word embeddings and then, we cre-
ate a similarity matrix between the words
of the two sentences. Because of differ-
ent lengths of the sentences involved, we
get a matrix of varying dimension. We dy-
namically pool the similarity matrix into a
matrix of fixed dimension and use Convo-
lutional Neural Network (CNN) to classify
the sentences as aligned or not. To further
improve upon this technique, we bucket
the sentence pairs to be classified into dif-
ferent groups and train CNN’s separately.
Our approach not only solves sentence
alignment problem but our model can be
regarded as a generic bag-of-words sim-
ilarity measure for monolingual or bilin-
gual corpora.

1 Introduction

Parallel bilingual corpora are very crucial for
building natural language processing systems, in-
cluding machine translation, word disambigua-
tion, and cross-language information retrieval.
Machine translation tasks need a lot of parallel
data for training purposes (Brown et al., 1993).
Sentence alignment between two parallel mono-
lingual corpora is used for getting the parallel
data. But the present sentence alignment al-
gorithms rely mainly on surface based proper-
ties of the sentence pairs and lexicon-based ap-
proaches (Varga et al., 2007; Moore, 2002; Gale
and Church, 1993). A little work has been done
using the neural network models for sentence
alignment. We propose a novel approach based

on neural networks for sentence alignment which
performs exceedingly well as compared to stan-
dard alignment techniques which can not capture
the semantics being conveyed by the text. Our
model uses distributed word-embeddings which
have been behind the success of many NLP ap-
plications in recent years. We then leverage upon
the use of CNNs (Zou et al., 2013; Kusner et al.,
2015; Norouzi et al., 2013) for capturing the word-
overlapping and word-ordering features in similar-
ity matrix for classification.

2 Model

The different aspects of our model are presented
below.

2.1 Bilingual word embeddings

Bilingual Word embeddings (Bengio and Corrado,
2015; Luong et al., 2015) are a representation of
the words of two languages in the same seman-
tic space. The three ways of getting the bilin-
gual word representations as mentioned by Lu-
ong et al. are: bilingual mapping (Mikolov et al.,
2013a), monolingual adaptation (Zou et al., 2013)
and bilingual training (AP et al., 2014; Pham et al.,
2015).

The semantic relatedness of two words across
different languages have been compared by using
translation dictionaries for the purpose of sentence
alignment tasks. But, this method of telling if the
two words across languages are synonyms or not,
is very discrete, because a word would be called
a synonym only if it is present in list of top k
synonyms of the other word. Words having a lit-
tle similarity with each other would be totally ig-
nored. Our approach intends to mitigate this dif-
ference by using bilingual word embeddings. Our
method is not discrete, because even if the word
is not present in the list of top synonyms for the
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other, we would still get their similarity (albeit
low) using the bilingual embeddings.

In our paper, we would be using bilingual train-
ing for getting word representations as proposed
by (Luong et al., 2015). Bilingual training does
not depend on independently trained word repre-
sentation on monolingual corpora of either lan-
guage. Instead, we learn monolingual and bilin-
gual representations jointly on a parallel corpora.

2.2 Similarity Matrix
Two semantically similar sentences in same or dif-
ferent languages would use same or similar words
albeit with a change of order introduced by var-
ious factors like language grammar, change of
narrative, change of tense or even paraphrasing.
We assume that if a sentence pair has high word-
overlap, then it might be conveying the same se-
mantics. Here, we are ignoring the cases in which
same set of words may convey different seman-
tics because parallel corpora contains a few such
instances. Handling such instances would lead to
minor changes in precision or recall due to fewer
instances and is beyond the scope of this paper.
Moreover, none of the existing approaches to sen-
tence alignment deal with such cases.

To capture word-overlap, some alignment tech-
niques use measures like TF-IDF similarity (Fung
and Cheung, 2004) or even the basic Jaccard sim-
ilarity along with translation dictionaries. In our
approach, we generate a similarity matrix for each
sentence pair, where entries in rows are corre-
sponding to the words of the sentence of one lan-
guage in their order of occurrence. Same way,
columns denote the entries for the words of sen-
tence of second language. The entry S(i, j) of S
denotes a similarity measure between the words
wi of s1 and wj

′
of s2. If we find a word in the

sentence which is not present in the corresponding
vocabulary, we simply omit it. The different sim-
ilarity measures that we used include cosine simi-
larity and euclidean distance between the embed-
dings.

2.3 Bucketing and Dynamic Poling
Last step gave us the similarity matrix for the sen-
tences s1 and s2, but the size of the matrix is
variable owing to different sentence lengths. We
would pool this similarity matrix dynamically to
convert it into a matrix of fixed dimension. But
we were a bit skeptical of this step as even sen-
tences with very short and very long lengths would

be pooled to the same dimension. To overcome it,
we bucketed the sentences into different sentence
length ranges. Bucketing is done on the basis of
mean length of the two sentences in the pair to be
classified.

Thus, we trained different classifiers for each
range of the buckets. The main limitation of this
method is that the effective training data reduces
for each of the classifiers. This may degrade the
performance of the model as compared to a single
classifier which has all the data available for train-
ing. If parallel annotated data is available in abun-
dance, then this method would work better than a
single classifier.

To convert matrix to a fixed size representation,
we pool it dynamically to a matrix of fixed dimen-
sion as mentioned in Socher et al. We divide each
dimension of 2D matrix into dim chunks of

⌊
len
dim

⌋

size, where dim is the bucket size and len is the
length of dimension. If the length len of any di-
mension is lesser than dim, we duplicate the ma-
trix entries along that dimension till len becomes
greater than or equal to dim. If there are l left-
over entries where l = len − dim ∗

⌊
len
dim

⌋
, we

distribute them to the last l chunks. We do it for
both the dimensions.

Now, for a particular chunk, we can pool the
entries in it using methods like average, minimum
and maximum pooling. When we take cosine sim-
ilarity between words as the matrix entries, we
take max-pooling and with euclidean distance, we
take min-pooling. This is because we do not want
to fade the effect of two words with high similarity
entries in the same chunk and the mentioned pool-
ing methods for each similarity measure, take care
of it.

2.4 Convolution Neural Network

CNN’s have been found to be performing well
where we need to capture the spatial properties
of the input in the neural network (Krizhevsky
et al., 2012; Kim, 2014). The intention behind us-
ing CNN’s on matrix rather than training a simple
neural classifier on input of flattened data is that
the similarity matrices not only contain the simi-
larity scores between words but they also capture
the word-order. Thus a matching phrase would
appear as a high intensity diagonal streak in the
similarity matrix (Refer figure 4). A single 1D
vector would loose such visual word-ordering fea-
tures of the similarity matrix. We also report the
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performance of a multilayer perceptron classifier
as compared to CNN’s, justifying our choice.

3 Experiments

3.1 Data
We performed our experiment on the sentence
alignment dataset (Zweigenbaum et al., 2016)
provided by shared task of 10th BUCC work-
shop1. We performed experiments on the English-
German (en-de) dataset. The dataset consists of
399,337 sentences of monolingual English Cor-
pora and 413,869 sentences of monolingual Ger-
man corpora. The gold alignment has been pro-
vided with the data. The gold alignment between
the two languages consists of 9580 matching sen-
tence pairs.

3.2 Sampling
As described above, the sizes of monolingual cor-
pora are large as compared to actual aligned sen-
tences. The total possible sentence pairs are 165
billion which contains just 9580 positive sentence
pairs, creating a huge class imbalance. It would
be difficult to train or even store 165 billion sen-
tence pairs. Moreover, large presence of negative
data in the corpora would also make the classifiers
less sensitive towards positive data. To overcome
these difficulties, we sampled negative examples
from the data. Table 1 gives the sizes of datasets
after sampling.

3.3 Training of Word Embeddings
We used the English German word embeddings
as mentioned in the paper by Luong et al.2 The
dimension of all embeddings used in our exper-
iments is 128. The embeddings are trained on
parallel Europarl v7 corpus between German (de)
and English (en) (Koehn, 2005), which consists of
1.9M parallel sentences. The training settings as
described in Mikolov et al. and Luong et al. were
used. The hyper-parameter α is 1 and β is 4 in our
experiments as described in Luong et al. The vo-
cabulary size for en is 40,054 and for de is 95,195.

3.4 Similarity Matrix and Bucketing
We split the sentence pairs in data into training,
validation and testing set having a ratio of 6:1:3

1https://comparable.limsi.fr/bucc2017/
bucc2017-task.html

2The code and pre-trained embeddings can be down-
loaded from http://stanford.edu/˜lmthang/
bivec

B size Train Valid Test Par Ratio
[0,5] 0 0 0 4431 0
(5,8] 76 15 43 10281 7.392

(8,10] 1024 189 469 15681 65.302
(10,12] 3561 630 1829 22281 159.822
(12, 15] 8585 1630 4409 34431 249.339
(15,18] 4862 867 2602 49281 98.659
(18,20] 452 78 222 60681 7.449
(20,25] 4 2 7 94431 0.0424
Total 18654 3411 9581 34431 541.779

Table 1: Table showing bucket-ranges and the
number of sentence pairs in train, validation and
test set. Number of parameters (Par) and Ra-
tio of Training data to Parameter size (Ratio =
Train ÷ Par, in 10−3 units) are shown for each
bucket

respectively, giving data splits of size 18654, 3411
and 9581 respectively. The bucketed data ranges
for each data split are shown in Table1. There were
no sentence pairs in our dataset with mean length
of pair below 5 or above 25. More over, the splits
for range (5,8] and (20,25] do not contain enough
data for training, so we exclude them from the ex-
periments. Thus, out of total 8 buckets in Table 1,
we ran the experiments for only 5 buckets as well
as all non-bucketed data. We report our results us-
ing cosine similarity, as it performed better than
using euclidean distance as similarity measure.

3.5 Model Parameters
The neural network architecture is described be-
low:

• Convolution Layer 1 with Relu Activation:
We used a 3D convolution volume of area 3×
3 and depth 12 on input of size dim×dim×1
where dim is the bucket size. The strides of
1 unit were used in each direction. The zero
padding was done to keep output height and
width same as input. The convolution layer
was followed by a layer of Rectified Linear
Units (Relu) to introduce the non-linearity in
the model

• Max-Pooling Layer 1: We used max pooling
on the output of the previous layer to reduce
its size by half. This was done using strides
of 2 units for both height and width.

• Convolution Layer 2 with Relu : It uses a 3D
volume of area 3 × 3 and depth 16. Rest all
properties are same as Convolution Layer 1.

• Max-Pooling Layer 2: It again reduces the
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size of input by half using strides of 2 units
in both directions. The output of this layer
is flattened from 3D to 1D to pass it to next
layer as input.

• Fully Connected Layer 1 (FC1) with Relu:
This layer maps the flattened input to a hid-
den layer with 200 units. Relu Activation was
used here on the output of hidden units.

• Dropout Layer: We used a layer with dropout
probability of 0.2 to prevent over-fitting in the
model.

• Full Connected layer 2: This layer maps
the output of previous layer with 200 hidden
units into a single output, which is further
passed to sigmoid activation unit. The value
of the sigmoid unit is the predicted output.

The model was trained using 20 epochs with
batch-size of 5. The loss function is the mean
squared error between actual and predicted output.
The Adam optimizer (Kingma and Ba, 2014) was
used for stochastic optimization for backpropaga-
tion. The learning rate parameter (eta) is 0.0005.
The motivation behind using Relu as activation
function is to overcome gradient decays, which
hinder the training of the neural networks. All the
hyper-parameters were tuned by random search in
hyper-parameter space and testing on the valida-
tion dataset. The total number of parameters to
be trained in the model are 150 × dim2 + 681,
where dim is the bucket size. This gives us num-
ber of parameters ranging from 15,681 for lowest
size bucket with dim = 10 and 60,681 for largest
bucket with dim = 20 .

4 Results and Analysis

To evaluate, we ran our algorithm on the en-de Test
set mentioned beforehand. Our algorithm assigns
a score to each sentence pair, denoting the proba-
bility of two sentences conveying same semantics.
If the score is greater than a certain threshold th,
we take it as a positive. Table 2 shows results for
th = 0.5. When we performed experiments for
all data (Total in Table 2), without bucketing, we
chose dim = 15 as highest number of data entries
fall in that bucket. We expected that bucketing
data would yield better results compared to non-
bucketing as each sentence pair would be pooled
to a matrix of the dimension comparable to its

T Data TP FP FN P R F1
(8,10] 128 2 3 .9846 .9771 .9808

(10,12] 472 6 34 .9874 .9328 .9593
(12, 15] 1207 63 13 .9504 .9893 .9695
(15,18] 904 4 22 .9956 .9762 .9858
(18,20] 67 0 6 1.0000 .9178 .9571
Total* 2825 18 49 .9937 .9830 .9883
Macro - - - .9836 .9586 .9710
Micro 2778 75 78 .9737 .9726 .9731

Baseline 2221 92 653 .9603 .7728 .8564

Table 2: Table showing Test dataset type
(T Data), True Positives (TP), False Positives
(FP), False Negatives (FN), Precision (P), Recall
(R), and F1-score (F1).*Includes all non-bucketed
data

actual length. But as seen in Table 2, the non-
bucketed approach performs very well and in some
cases, even better than a few buckets. This hap-
pens because the training data available for non-
bucketed approach (18654 pairs) is atleast double
of any of the buckets. Ratio column in Table 1
shows the ratio of Training data to number of pa-
rameters in the model, which is highest for non-
bucketed data with dim = 15. If we had more
training data in each bucket, then all the buckets
might have achieved better performance than non-
bucketed approach. Macro and Micro in Table 2
denote the Macro-average and Micro-average re-
spectively for all the 5 buckets taken for experi-
ment.

Figure 1: Precision-Recall Curve for all the buck-
ets as well as total data. The different dimensions
have been zoomed appropriately to show relevant
parts of the plot.

We also used a multilayer perceptron classifier
on non-bucketed data with flattened matrices as
input (Baseline in Table 2), but that performed
poorly with F1 score of 0.8564. Figure 2 and 3 de-
pict the similarity matrices for True Positives and
True Negatives. We can clearly observe some vi-
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sual features of the similarity matrices, such as the
presence of high intensity streaks along diagonal,
which denote high similarity between the entries
in close vicinity in one sentence to the entries in
close vicinity in the other. This justifies our hy-
pothesis that, unlike multilayer perceptron, CNN
is able to capture the relations between word sim-
ilarity and their ordering, which is represented by
the matrices. Our method also performs much bet-
ter than other baseline methods such as a classifier
using sentence length features.

Figure 2: True Positive examples. Left image
shows a sentence pair with high overlap and right
image shows a sentence pair with low overlap.

Figure 3: True Negative examples. Both the im-
ages are visually different from True Positives.

As an abstraction, our model can be viewed as a
neural equivalent of bag-of-words similarity mea-
sures such as TF-IDF similarity or Jaccard sim-
ilarity as this approach covers the word-overlap
between two documents (sentences here). More-
over, rather just capturing the overlap, it also cap-
tures the order in which the words match in two
documents. So, it can be dubbed as neural-bag-
of-words like model which remembers matching
order.

5 Future Work

We have used the dynamically pooled similarity
matrices with CNN for the purpose of sentence
alignment. But as already mentioned, our ap-
proach specifies a general way of obtaining the
similarity between two texts whether they belong
to same or different languages. The sentences be-
longing to the same language can be handled in

the same way, but only monolingual word embed-
dings would suffice for that purpose.

A unique feature of our similarity measure is
that we get the similarity between two texts with-
out mapping them to their respective vectors in the
vector space. We can interpret it like a kernel func-
tion which gives dot product φ(x).φ(y) between
two entities without actually transforming x or y
to φ(x) or φ(y) respectively. Also, unlike TF-IDF,
where each vector is of the size of the vocabulary,
our similarity approach takes only dim2 space per
sentence pair, which is much lesser than the for-
mer.

Our current approach assumes that the two texts
are of comparable length, because that is generally
the case for aligned sentences and that’s why we
took the dynamically pooled matrices with both
dimensions of same size. But, if we want to use
our approach for information retrieval purposes,
then the size of documentD would be much larger
than size of the query q. In that case, we would
have to take rectangular dynamically pooled ma-
trices with appropriate dimensions. We would like
to study the efficacy of our approach in all such
scenarios.

Also, since our approach can tell the parts of
the document it is matching, unlike TF-IDF, we
can use it to assign different scores for matching
phrases in different parts of the document. For ex-
ample, to search for a query on a webpage which
has an article and comments from the readers (just
like a blog), our approach can be trained to give
more importance to the matches in the article as
compared to the reader comments, thus leading
to a better information retrieval approach. In the
future, we would also like to study how different
properties like time and space complexity of our
approach scale for large dataset. We would also
like to explore the applications of our approach for
tasks like cross-lingual as well as monolingual in-
formation retrieval, query expansion, cross-lingual
recommender systems etc.

6 Conclusion

The novelty of our approach lies in using neu-
ral word embeddings in bilingual semantic space
along with CNN to capture the sentence similar-
ity and we have achieved very good results over
the dataset by BUCC. Our model provides a new
equivalent of bag-of-words similarity measures
which is also aware of the matching order. The
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architecture proposed by our algorithm is not just
for this specific task but can be used for a number
of other tasks like Information Retrieval in mono-
lingual as well as bilingual corpora, query expan-
sion for cross-lingual search etc. We would like to
study the different properties and explore the ap-
plications of our approach in future.

7 Acknowledgements

We would like to thank all the anonymous review-
ers for their valuable feedback.

References
Sarath Chandar AP, Stanislas Lauly, Hugo Larochelle,

Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Advances in Neural Information Processing Sys-
tems. pages 1853–1861.

Yoshua Bengio and Greg Corrado. 2015. Bilbowa:
Fast bilingual distributed representations without
word alignments .

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics 19(2):263–311.

Pascale Fung and Percy Cheung. 2004. Mining very-
non-parallel corpora: Parallel sentence and lexicon
extraction via bootstrapping and e. In EMNLP. Cite-
seer, pages 57–63.

William A Gale and Kenneth W Church. 1993. A
program for aligning sentences in bilingual corpora.
Computational linguistics 19(1):75–102.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit. vol-
ume 5, pages 79–86.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems. pages 1097–1105.

Matt J Kusner, Yu Sun, Nicholas I Kolkin, Kilian Q
Weinberger, et al. 2015. From word embeddings
to document distances. In ICML. volume 15, pages
957–966.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing. pages 151–159.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Robert C Moore. 2002. Fast and accurate sentence
alignment of bilingual corpora. In Conference of the
Association for Machine Translation in the Ameri-
cas. Springer, pages 135–144.

Mohammad Norouzi, Tomas Mikolov, Samy Bengio,
Yoram Singer, Jonathon Shlens, Andrea Frome,
Greg S Corrado, and Jeffrey Dean. 2013. Zero-shot
learning by convex combination of semantic embed-
dings. arXiv preprint arXiv:1312.5650 .

Hieu Pham, Minh-Thang Luong, and Christopher D
Manning. 2015. Learning distributed representa-
tions for multilingual text sequences. In Proceed-
ings of NAACL-HLT . pages 88–94.

Richard Socher, Eric H Huang, Jeffrey Pennington,
Andrew Y Ng, and Christopher D Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In NIPS. vol-
ume 24, pages 801–809.
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Abstract
In this research, an intelligent system is de-
signed between the user and the database
system which accepts natural language in-
put and then converts it into an SQL query.
The research focuses on incorporating com-
plex queries along with simple queries irre-
spective of the database. The system accom-
modates aggregate functions, multiple condi-
tions in WHERE clause, advanced clauses like
ORDER BY, GROUP BY and HAVING. The
system handles single sentence natural lan-
guage inputs, which are with respect to se-
lected database. The research currently con-
centrates on MySQL database system. The
natural language statement goes through var-
ious stages of Natural Language Processing
like morphological, lexical, syntactic and se-
mantic analysis resulting in SQL query forma-
tion.

1 Introduction

Today, virtually every relational database man-
agement system (RDBMS) uses Structured Query
Language (SQL) for querying and maintaining the
database. Users accessing relational databases
need to learn SQL and build queries in the right
syntax for retrieving the data. It becomes a big
hurdle for all those who are not technically knowl-
edgeable in this domain to write the queries in
SQL. It would be very convenient if the relational
database system can be queried using natural lan-
guage like English.

Natural language processing (NLP) is the abil-
ity of a computer program to understand human
speech as it is spoken. While natural language
may be easy for people to learn and use, it has been
proved to be hard for a computer to master. De-
spite such challenges, natural language processing

is regarded as a promising and important endeavor
in the field of computer research.

nQuery will translate natural language queries
into SQL before retrieving data from database.
It will deal with single sentence inputs given by
the user using a particular database. The sys-
tem mainly focuses on data retrieval but also pro-
vides the facility to convert DML natural language
statements to SQL. However, the system will out-
put queries which can be used for querying the
MySQL database system only. The aim of the sys-
tem is to reduce the complexity of database query-
ing. The approach our system uses, extracts cer-
tain keywords from the natural language statement
and goes through various steps of Natural Lan-
guage Processing. This system focuses on table
mapping, attribute mapping and clause tagging to
generate the resultant query.

2 Related Work

Over the years, certain systems which focus only
on a particular database have been built to serve
a particular purpose. (Woods, 1973) developed
a system called LUNAR, that answered questions
about rock samples brought back from the moon.
LIFER/LADDER designed by (Hendrix, 1978)
was designed as a natural language interface to
a database of information about US Navy ships.
The system could only support simple one-table
queries on a specific database.

Some of the recent developments try to build
a complete system which can generate various
types of queries. An expert system was pro-
posed by (Siasar et al., May 2008) using the con-
cepts of syntactic and semantic knowledge. They
have also suggested a selection algorithm to select
most appropriate query from the suggested possi-
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Figure 1: nQuery - Data Flow Diagram

ble query. (Rao et al., 2010) have put forth a sys-
tem in which simple queries along with basic im-
plicit queries are covered. (Chaudhari, November
2013) implemented a system which handled sim-
ple queries and aggregate functions using a proto-
type approach. Both the above methods have not
handled multiple tables and advanced clauses. .
(Ghosh et al., 2014) built on the development done
by (Chaudhari, November 2013) and developed
an automatic query generator which took natural
language input in the form of text or speech. It
provided support for simple nested queries and ag-
gregate functions. The system handled sentences
which explicitly mention the attribute names as
they are in the Database. Our system handles the
problem by a specific substring algorithm we have
developed. We have looked to do the tasks which
the above systems do in a more efficient way by
building a different type of algorithm relying on
conditional substring matching to map the words
to attributes and tables. We also go beyond by in-
cluding various different types of queries.

A different type of approach was used by
(Reinaldha and Widagdo, 2014) in which the dif-
ferent kinds of questions which can be asked when
a database is to be queried were analyzed. They
have made use of semantic rules to find out de-
pendencies among the words present in the ques-
tion asked. (Palakurthi et al., 2015) provides in-
formation about the types of attributes and clas-
sification features. They describe how different

kinds of attributes are handled differently when
they occur in sentences. We handle explicit at-
tributes and certain types of implicit attributes in
sentences. (Ghosal et al., March 2016) proposed
a system which worked well on simple queries in-
volving multiple tables. But the data dictionar-
ies used for the system are limited and the gram-
mar is hard coded. (Kaur and J, Jan 2016) em-
phasized on simple queries and basic JOIN op-
erations. However, the system does not accom-
modate advance clauses like aggregate functions,
GROUP BY and HAVING Clauses. Our system
incorporates advanced clauses along with all the
simple queries and generalizes well on different
databases. (Singh and Solanki, 2016) proposed an
algorithm to convert natural language sentence to
SQL queries. They used verb lists, noun lists and
rules to map attributes and tables to the words in
the sentence. The system also handled ambiguity
among the inputs. We have tried to use concepts
discussed in this algorithm like noun and verb lists
in order to develop our algorithm.

From the above literature survey, we were able
to get a fair idea of the work carried out in this field
of research. The shortcomings of the referred pa-
pers and applications along with the future work
mentioned motivated us to take up this research.
The increasing importance of Natural Language
Processing lured us towards learning these con-
cepts. The system we propose looks to go beyond
the accomplished work.
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3 System Design

As we have seen from the literature survey, ev-
ery system had limitations. We propose a system
which looks to overcome the shortcomings of the
existing systems. Our system gets a natural lan-
guage sentence as an input, which is then passed
through various phases of NLP to form the final
SQL query. Refer Fig 1 for the data flow diagram
and Fig 2 for the running example.

3.1 Tokenize and Tag

The input natural language query gets split into
different tokens with the help of the tokenizer from
’NLTK’ package. The tokenized array of words is
tagged according to the part-of-speech tagger. All
processes following this step use these tagged to-
kens for processing.

3.2 Analyze tagged tokens

Based on the tagged tokens of earlier step, the
noun map and verb list is prepared through one it-
eration over the tokens. The tokens corresponding
to aggregate functions are also mapped with their
respective nouns. The decision whether the natu-
ral language statement represents a data retrieval
query (SELECT) or a DML query (INSERT, UP-
DATE, DELETE) is taken at this stage with the
help of certain ’data arrays’ for denoting type of
query. For example, when words like ’insert’ and
its certain synonyms appear in the input, the type
of query is ’INSERT’ and so on. In any type
of query, the tentative tags ’S’ (SELECT), ’W’
(WHERE), ’O’ (ORDER BY) are mapped to the
nouns indicating the clauses to which they belong.
For this, we have designed ’data dictionaries’ for
different clauses. These data dictionaries consist
of the token-clause term pair, for e.g. aggregate
clause data dictionary is ”number”: ”COUNT”,
”count”: ”COUNT”, ”total”: ”SUM”, ”sum”:
”SUM”, ”average”: ”AVG”, ”mean”: ”AVG”.
Thus, if any of these tokens is encountered, it is
likely to have aggregate clause and accordingly the
nouns are tagged with the clause tag.

3.3 Map to table names and attributes

Using the noun map and verb list, the table set
is prepared, which will hold the tables that are
needed in the query to be formed. This is based
on the fact that the table names are either nouns
or verbs. The noun map is used to find the at-
tributes which are needed in the final query. The

Find the names of all the instructors
from ’Comp Sci’ department

Tokenize & Tag

[’Find’, ’NNP’], [’names’, ’NNS’],
[’instructors’, ’NNS’], [’Comp’, ’NNP’],

[’Sci’, ’NNP’], [’department’, ’NN’]

Analyze tagged tokens

Noun map: ’name instructor’: [’S’],
’depart’: [’W’]

Map to table names
and attributes

Noun ’name instructor’ mapped
to table ’instructor’; Noun ’de-

part’ mapped to table ’department’
Noun: name instructor Table: in-
structor Attr: name; Noun: depart
Table: instructor Attr: dep name

Table: department Attr: dep name

Table set: [’instructor’, ’department’]
Table attribute map: ’department’:

[[’dep name’, ’W’]], ’instructor’:
[[’name’, ’S’], [’dep name’, ’W’]]

Filter redundancy
& finalize clauses

Table set: [’instructor’]
Table attribute map: ’instructor’:
[[’name’, ’S’], [’dep name’, ’W’]]

WHERE clause objects:
instructor dep name = Comp Sci

SQL Query Formation

SELECT DISTINCT instructor.name
FROM instructor WHERE

instructor.dep name = ’Comp Sci’

Figure 2: Algorithm with example
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attributes, the table associated with the attribute
and the clause tag are stored in an attribute-table
map which is used in the final stage of query for-
mation. This is done using the string matching al-
gorithm that we have implemented in our system.
The words in the input sentence need not exactly
be as they are in the database. The stemmer and
lemmatiser are applied on the words before they
are matched using our string matching algorithm.
The data obtained during this step i.e. table set and
attribute-table map, is most likely to be in the final
query, however, it might be refined later.

3.4 Filter redundancy and finalize clauses of
the query

Using the various data dictionaries defined, the
system has already decided which clauses are
likely to exist in the final query and has mapped
the data to the clauses. But, some of the data
has to be finalized at this stage. The data related
to GROUP BY and HAVING clause is collected
using the previous data and the basic rules of
SQL. For example, if aggregate function is com-
pared to a constant, i.e. ’MAX(salary) > 40000’,
then ’HAVING’ clause has to be used instead of
’WHERE’ clause.

As mentioned in the earlier step, the refinement
of data must be done. Here, the redundant tables
and attributes are removed using some filter algo-
rithms. For example, one of the algorithm filters
the table and their corresponding attributes which
are a subset of some other table in table set. i.e.
if table set has [table1, table2] and table1 has at-
tributes [a1, a2] and table2 has [a1, a2, a3] after
the previous steps, then table2 is enough to repre-
sent all the attributes required and hence table1 is
removed. There are various other algorithms ap-
plied in order to filter the results and finalize the
table set and table-attribute map.

3.5 Form the final query and execute
Currently, as our system handles only MySQL
queries, the templates used for the query forma-
tion will be according to the MySQL syntax. Ac-
cording to the type of query selected in the second
stage of the process (Analyze tagged tokens), the
appropriate template is chosen.
The template is selected from the following:

1. For data retrieval queries (SELECT):

• SELECT <select clause>
FROM <tables>

WHERE <where clause>
ORDER BY <order by clause >
GROUP BY <group by clause>
HAVING <having clause>
LIMIT <limit clause>.

2. For data manipulation queries (INSERT, UP-
DATE, DELETE):

• INSERT INTO <insert clause>
VALUES <values clause>
• UPDATE <update clause>

SET <set clause>
WHERE <where clause>
• DELETE FROM <delete clause>

WHERE <where clause>

Based on the data about various clauses col-
lected from earlier steps and the information about
attributes and tables stored in the attribute-table
map, the final query is formed by filling in the in-
formation into the appropriate template. Depend-
ing on the clause data collected from earlier steps,
corresponding <> are filled.
Depending on the relation between multiple ta-
bles, the decision of INNER JOIN or NATURAL
JOIN is taken. For example, if there are two ta-
bles. If these two tables have one common at-
tribute and is named the same in both, then there
is NATURAL JOIN between the tables. But if the
common attribute is named differently in the two
tables, then there is INNER JOIN between the ta-
bles. The final query is as shown in Fig 2.

4 Results and Analysis

The corpus that can be used to test our system
is not readily available and is dependent on a
database. Hence, we have tested our system on a
synthesized corpus of natural language statements
related to a bank and a university database. The
university and bank database consists of 11 and
6 tables respectively. However, system can work
on any complex database. The natural language
statement has to be a single sentence. The system
has been evaluated on a corpus of around 75 natu-
ral language statements of university database and
around 50 related to bank database. The accuracy
of the system is found out to be around 86%. The
system gives the same SQL query as the output
when the same natural language statement is rep-
resented in different ways. If the system fails to
generate SQL query corresponding to any natural
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language statement, an error message is displayed.
These are a few results given by the system on the
university corpus:

1. Find the student name where instructor name
is ’Crick’.

• SELECT DISTINCT student.stud name
FROM instructor
INNER JOIN advisor
ON instructor.ID = advisor.inst ID
INNER JOIN student
ON student.ID = advisor.stud ID
WHERE instructor.name = ’Crick’

In this database, the tables ’student’ and ’in-
structor’ are linked through the table ’advi-
sor’. So, we can see that this query deals with
multiple tables which are joined by INNER
JOIN.

2. Find all student name whose credits are be-
tween 90 and 100 and department name is
’Finance’ or ’Biology’.

• SELECT DISTINCT student.stud name
FROM student
WHERE ( student.tot cred
BETWEEN ’90’ AND ’100’ ) AND (
student.dep name = ’Finance’ OR
student.dep name = ’Biology’ )

The above query showcases multiple condi-
tions within the WHERE clause. This query
also involves use of BETWEEN clause and
logical clauses like AND, OR.

3. List all student names whose credits are 50 in
decreasing order of credits.

• SELECT DISTINCT student.stud name
FROM student
WHERE student.tot cred = ’50’
ORDER BY student.tot cred DESC

Another type of query is the one involving
sorting its result based on some attribute. For
this purpose, the query uses the ORDER BY
clause to sort the results in decreasing order.

4. Give the department name where maximum
salary of instructor is greater than 50000.

• SELECT DISTINCT
instructor.dep name
FROM instructor

GROUP BY instructor.dep name
HAVING
MAX(instructor.salary) >’50000’

In SQL, when an aggregate function is com-
pared to constant, like in this case maxi-
mum of salary is compared to 50000, then
the query involves use of HAVING clause in-
stead of a WHERE clause. Also, whenever
HAVING is used, the results are supposed to
be grouped by the attributes in the SELECT
clause.

5. Give the department name where salary of in-
structor is greater than average of salary.

• SELECT DISTINCT
instructor.dep name
FROM instructor
WHERE instructor.salary >
( SELECT AVG(instructor.salary)
FROM instructor )

This query showcases a special case of nested
queries. Whenever an attribute is compared
to the result of an aggregate function, i.e. in
this case salary greater than average of salary,
we have to use nested query.

6. Find the course taught by Crick.

• SELECT DISTINCT teaches.course id
FROM teaches NATURAL JOIN in-
structor
WHERE instructor.name = ’Crick’

Till now, we have seen cases in which an at-
tribute associated to the value is mentioned in
the natural language statement. In this case,
we handle cases where attribute is not men-
tioned. We find out the most appropriate at-
tribute for the given value.

7. (a) Publish in alphabetic order the names of
all instructors.

(b) Give names of all the instructors in al-
phabetic order.

(c) Give instructors names in ascending or-
der.

• SELECT DISTINCT instructor.name
FROM instructor
ORDER BY instructor.name ASC

As seen in this example, there can be multi-
ple ways of representing the same natural lan-
guage statement.The system gives the same
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SQL query as the output when the same nat-
ural language statement is represented in dif-
ferent ways.

8. Insert a student whose id is 5, name is Josh,
department name is Physics and credits are
150.

• INSERT INTO student
( student.ID, student.stud name,
student.dep name, student.tot cred )
VALUES
( ’5’ , ’Josh’ , ’Physics’ , ’150’ )

In addition to the data retrieval queries, our
system also provides a natural language in-
terface to insert data into the database. Other
DML queries such as UPDATE and DELETE
are also provided by the system.

5 Limitations

The following are some of the types of inputs that
are not presently handled by our system.

1. Find the capacity of the classroom number
3128 in building Taylor

• SELECT *
FROM classroom
WHERE classroom.capacity = ’3128’
AND classroom.building = ’Taylor’

In this particular example, the system fails
to decide whether to take ‘capacity of class-
room’ or ‘classroom number’ as an n-gram.
Hence, the mapping fails.

2. Who teaches Physics?

• SELECT *
FROM department
WHERE
department.dep name = ’Physics’

In this example, the implicit query module
of our system is able to map Physics to ’de-
partment name’ attribute from table ’depart-
ment’. But it fails to identify that ’who’ refers
to a person (an instructor).

6 Comparison and Conclusion

Similar existing systems:

1. Complex Queries are not handled very well.

2. Only a few types of aggregate functions have
been taken care of.

3. No system has incorporated HAVING,
GROUP BY and other clauses.

4. Many systems were specific use systems
which were limited to a certain database.

5. No system till date incorporates such a wide
range of queries.

Our System:

• The system is currently capable of generating

1. Simple queries.
2. Complex queries involving natural and

inner joins.
3. Aggregate functions in queries.
4. Advanced ’WHERE’ clauses.
5. ORDER BY, GROUP BY, HAVING and

LIMIT clauses.
6. Basic implicit queries.
7. DML Queries like INSERT, UPDATE

and DELETE.

• The system works irrespective of the selected
MySQL database.

• No system till date incorporates such a wide
range of queries.

7 Future Work

The following points are not yet incorporated in
the system and are hence left as future work. The
development on the points mentioned in future
work is in progress.

1. It is possible that a natural language state-
ment can result in multiple SQL queries.
Machine learning can be incorporated to
choose the most efficient query.

2. This system only considers MySQL database
system. It can be expanded to work for
any other database system or unstructured
databases.

3. More efficient algorithm to handle implicit
queries can be developed.

4. Only single sentence natural language input
is handled. Multiple sentences which result
in a single query can be incorporated.

5. Neural methods can be used to solve the
problem of indecisiveness of n-grams.
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Abstract

Students choose to use flashcard appli-
cations available on the Internet to help
memorize word-meaning pairs. This is
helpful for tests such as GRE, TOEFL or
IELTS, which emphasize on verbal skills.
However, monotonous nature of flashcard
applications can be diminished with the
help of Cognitive Science through Test-
ing Effect. Experimental evidences have
shown that memory tests are an impor-
tant tool for long term retention (Roediger
and Karpicke, 2006). Based on these evi-
dences, we developed a novel flashcard ap-
plication called “V for Vocab” that imple-
ments short answer based tests for learn-
ing new words. Furthermore, we aid this
by implementing our short answer grad-
ing algorithm which automatically scores
the user’s answer. The algorithm makes
use of an alternate thesaurus instead of tra-
ditional Wordnet and delivers state-of-the-
art performance on popular word similar-
ity datasets. We also look to lay the foun-
dation for analysis based on implicit data
collected from our application.

1 Introduction

In recent times, we have seen how Internet has
revolutionized the field of education through Mas-
sive Open Online Courses (MOOCs). Universities
are incorporating MOOCs as a part of their regu-
lar coursework. Since most of these courses are in
English, the students are expected to know the lan-
guage before they are admitted to the university.
In order to provide proof of English proficiency,
students take up exams such as TOEFL (Test Of
English as a Foreign Language), IELTS (Interna-
tional English Language Testing System),etc. In
addition, students are required to take up GRE

(Graduate Record Examination) in some universi-
ties. All these tests require the students to expand
their vocabulary.

Students use several materials and applications
in order to prepare for these tests. Amongst several
techniques that have known to be effective for ac-
quiring vocabulary, flashcard applications are the
most popular. We believe the benefits of flashcard
applications can be further amplified by incorpo-
rating techniques from Cognitive Science. One
such technique that has been supported by exper-
imental results is the Testing Effect, also referred
to as Test Enhanced Learning. This phenomenon
suggests that taking a memory test not only as-
sesses what one knows, but also enhances later re-
tention (Roediger and Karpicke, 2006).

In this paper, we start by briefly discussing Test-
ing Effect and other key works that influenced the
development of the automatic short answer grad-
ing algorithm, implemented in V for Vocab1 for
acquiring vocabulary. Next, we have an overview
of the application along with the methodology we
use to collect data. In the later section, we de-
scribe our automatic short answer grading algo-
rithm and present the evaluation results for vari-
ants of this algorithm on popular word similarity
datasets such as RG65, WS353, SimLex-999 and
SimVerb 3500. To conclude, we present a discus-
sion that provides fodder for future work in this
application.

2 Background

We have seen that flashcards have gained a lot of
popularity among language learners. Students ex-
tensively use electronic flashcards while prepar-
ing for tests such as TOEFL, GRE and IELTS.
Wissman et al. (2012) surveyed the use of flash-
cards among students and established that they are
mostly used for memorization. To understand the

1https://goo.gl/1BBWN4
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(a) Front Flip (b) Back Flip (c) Score Card

Figure 1: a) Front of the card showing a textbox b) Back of the card giving feedback to the user c)
Session Scorecard

decay of memory in humans, we delve into the
concept of forgetting curve. Hermann Ebbinghaus
was the first to investigate this concept way back
in the 19th century. Since then, researchers have
studied the benefits of several strategies which im-
prove long term memory retention in an attempt to
combat the forgetting curve. One such strategy is
Testing Effect.

Our application is an amalgamation of the regu-
lar flashcard concept and Testing Effect. Roediger
and Karpicke (2006) showed that repeated test-
ing facilitates long term retention when compared
to repeated studying. Further investigation re-
vealed that short answer based tests are more ef-
fective in comparison to multiple choice question
tests (Larsen and Butler, 2013). Experimental ev-
idence also suggested that providing feedback to
test takers improved their performance (Mcdaniel
and Fisher, 1991; Pashler et al., 2005). This mo-
tivated us to incorporate short answer based tests
with feedback in V for Vocab. To automate the
process of scoring these tests, we developed a
grading algorithm.

Since production tests allow the users to be
more expressive, we had to develop an algorithm
to grade answers that range from a single word to
several words. The task of grading anywhere be-
tween a fill-in-the-gap and an essay is known as
Automatic Short Answer Grading (ASAG) (Bur-
rows et al., 2015). Thomas (2003) used a boolean

pattern matching system to score answers which
makes use of a thesauri and uses a boolean func-
tion OR to check with alternate options. FreeText
Author (Jordan and Mitchell, 2009) provides an
interface for teachers to give templates for the an-
swer along with mandatory keywords. Different
permutations for these templates are generated us-
ing synonyms obtained from thesauri. On similar
lines, we developed an algorithm which employs
an online thesaurus as a knowledge base.

3 Our Application

V for Vocab is an electronic version of the flash-
card concept for learning new words. On these
flashcards, we populate words from a popular
wordlist2 supplemented with sentences from an
online dictionary3. These words have been divided
into 25 groups and are saved in a database. The
word, meaning and sentence combinations present
in the data were verified by a qualified person.
The interface we provide for our users is an An-
droid Application. The application is designed to
be simple and intuitive and is modelled based on
other popular flashcard softwares.

On signing up, the user is prompted with a sur-
vey. The survey asks basic profile questions such
as Name, Gender, Date of Birth, Occupation and

2https://quizlet.com/6876275/barrons-800-high-
frequency-gre-word-list-flash-cards/

3http://sentence.yourdictionary.com
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Number of Words Raw Answers(%) Bag of words of answers(%)
1 58.507 67.408
2 18.128 23.298
3 10.994 5.562
4 to N 12.369 2.356

Table 1: Statistical information regarding the data collected from our application where users had typed
a meaning. The first column indicates the number of tokens or words in user’s answers. N refers to
the highest number of words typed by the user. The second column represents the percentage of raw
answers or unprocessed responses, N = 16. The third column represents the percentage of answers after
processing its bag of words, N = 8. However, after computing bag of words we saw of loss of 1.37%
where the user’s meaning was reduced to 0 words. In that case, the user’s answer would not be graded.

Place of Origin. Apart from this, we ask whether
the user is a voracious reader, whether the user
is preparing for GRE and the background of the
user. This background has been described by Edu-
cational Testing Service (ETS) 4, the organization
that conducts tests such as TOEFL and GRE.

As mentioned earlier, the user can study from
any of the 25 groups. Flashcards from the selected
group are shown to the user one at a time in ran-
dom order. On the front of the card, we provide
a text field where the user may type his/her un-
derstanding of the word (Refer to Figure 1a). Re-
gardless of whether the user submits an answer,
the back of the card shows the word, its part-of-
speech, dictionary meaning and a sample sentence
(Refer to Figure 1b). This serves as feedback to
the user as they review the meaning of the word.
Before going to the next flashcard, we send im-
plicit data to the server. If the user has submitted
an answer, our algorithm scores it and returns back
a score. On quitting, the user is prompted with a
learning summary (Refer to Figure 1c).

3.1 Data Collection
During each flip of the card, V for Vocab collects
implicit data from the phone in order to facilitate
future analysis. The following data points are col-
lected -

• Time spent on the front of the card in mil-
liseconds

• Time spent on the back of the card in mil-
liseconds

• Ambient Sensor value data in SI lux units

The ambient sensor value data is calculated
by tapping into the mobile phone’s light sensor.

4www.ets.org/s/gre/pdf/snapshot test taker data 2014.pdf

These values are found to be dependent on the
manufacturer of the light sensor. They are only re-
trieved when there is a change in the sensor value
data and stored in an array.

4 Short Answer Grading Algorithm

Algorithm 1: Grading Algorithm
Input: B1 & B2, the sets of Bag of Words for

Text1 & Text2
Output: Similarity Score between Text1 &

Text2
1 score, match count, total count← 0
2 for wi in B1 do
3 total count← total count + 1
4 for wj in B2 do
5 flag ← 0
6 for si in synonym(wi) do
7 for sj in synonym(wj) do
8 if lemma(si) == lemma(sj)

then
9 match count←

match count + 1
10 flag ← 1
11 break

12 shortend

13 if flag == 1 then
14 break

15 if flag == 1 then
16 break

17 score← match count/total count
18 return score

In order to build a grading algorithm that suited
V for Vocab, we first needed to understand the
variation in the answers provided by our users. For
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Dataset S.L. W.L.
RG65 0.632 / 0.617 0.752 / 0.727
WS353 0.286 / 0.313 0.316 / 0.346
Simlex-999 0.443 / 0.440 0.523 / 0.521
SimVerb-3500 0.278 / 0.276 0.369 / 0.367

Table 2: Pearson and Spearman rank correla-
tion coefficients (separated by /; first one is Pear-
son correlation) computed between the human-
annotated similarity score and the score given by
our algorithm for a given pair of words from each
dataset (S.L : Spacy Lemmatizer and W.L. : Word-
net Lemmatizer )

our analysis, we used 3027 data points collected
over 2 months from different users. We found
that in 1528 data points users had typed an an-
swer. Based on statistical evidence, we observed
that 58.507% of the answers were one word re-
sponse. After performing bag of words computa-
tion on these answers, 67.408% of them were re-
duced to one word (See Table 1). This meant that
our algorithm had to be tailored to grade one word
answers, yet be versatile enough so as to grade an-
swers which contained more words.

The answers from the users included a mix of
synonyms for the main word or a paraphrase for
the definition of the word. Therefore, in order
to grade, we first compute the textual similarity
of the answer with the word itself and then with
the meaning from our database. These are consid-
ered as answer templates against which we com-
pare the user’s answers to compute the score. Our
grader resembles the algorithm described in (Pile-
hvar et al., 2013) with minuscule changes in simi-
larity measure, which is defined by the ratio of the
total number of synonym overlap between word
pairs in the answer templates and the user’s an-
swers to the total number of words in the answer
template (See Algorithm 1). It should be noted
that the bag of words is passed to the algorithm
for computing the score. The algorithm scores the
answers and returns a decimal score in the range
[0,1] with a score of 1 being the highest.

Traditionally, people have used Wordnet
(Miller, 1995) as a thesauri to find synonyms for a
given word. Majority of the words in our wordlist
being adjectives, Wordnet posed a disadvantage
as it does not work well with adjectives. We also
looked into word2vec (Mikolov et al., 2013), but
we decided to not go with that approach as we

got a high similarity score between a word and
its antonym. Therefore, we preferred to retrieve
the synonyms using a python module called
PyDictionary 5. This web scrapes synonyms from
21st Century Roget’s Thesaurus 6.

We preprocess the user’s answers with the help
of a lemmatizer and stopwords list in order to com-
pute the bag of words. The resulting bag of words
is passed to the algorithm and it computes the strict
synonym overlap between the user’s answers and
answer templates to calculate the score. Table 3
shows an example of the scores generated by our
algorithm 7.

We developed this algorithm using lemmatiz-
ers from two popular NLP libraries - NLTK and
Spacy, independently. Table 2 shows our evalua-
tion results on popular datasets. We noticed that
the algorithm produced higher correlation with
NLTK’s Wordnet lemmatizer, even though no ex-
plicit POS information was passed to the lemma-
tizer.

In case of an error caused due to absence of syn-
onyms while web scraping, our algorithm returned
a score of 0 which we have included during evalu-
ation with the datasets.

User’s Answers Score
Trustworthy 0
Providing 0.33
Providing for the future 0.67
Frugal 1

Table 3: The table shows the evaluation of user’s
short answer for the word - provident, with the
meaning - providing for future needs; frugal. Mul-
tiple meanings are separated by a ;(semicolon).

5 Discussion and Future Work

With trends showing that many applications curate
their business model around data, we believe that
the data collected from our application is valuable.
We have the unique opportunity of performing an-
alytics on an individual user and on all users as
a whole. By analyzing the individual’s data, we
can personalize the application to each user. One
way would be to observe the user’s scores on the
words studied and subsequently categorize them

5https://pypi.python.org/pypi/PyDictionary/1.5.2
6http://www.thesaurus.com
7The answers in Table 3 are compiled from the actual data

we have collected from our users
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into easy, medium and hard. We also have the po-
tential to carry out exploratory analysis and bring
out interesting patterns from our data. For exam-
ple, we are hoping to discover an optimal duration
to study words in a day so that the user can study
effectively. Similarly, light sensor values could be
used to understand how a user’s learning would
vary in a well lit environment versus a darker en-
vironment.

Spacing Effect is the robust phenomenon which
states that spacing the learning events results in
long term retention (Kornell, 2009). Anki, a pop-
ular flashcard application incorporates a schedul-
ing algorithm in order to implement spacing ef-
fect. More recently we have seen Duolingo, a
language learning application implement a ma-
chine learning based spacing effect called Half-
Life-Regression (Settles and Meeder, 2016). With
Testing Effect in place, it would be beneficial to
incorporate spacing effect as it has shown great
promise in practical applications . A thorough jux-
taposition of Testing Effect versus the combina-
tion of Testing Effect with Spacing Effect, in terms
of data, will help us better evaluate these memory
techniques.

We can further improve the system through a
mechanical turk. The turk could be any linguist or
a person well versed with the language. The me-
chanical turk compares the answer templates with
the user’s answer and provides a score that repre-
sents how close the two are according to the turk’s
intuition. With labelled data, we can apply super-
vised learning and improve the algorithm.

When learning a new language, people often try
to remember a word and its translation in a lan-
guage they already know. For example, a person
well versed in English who is trying to learn Ger-
man will try to recollect word-translation pairs.
With a bit of content curation for German-English
word pairs, our grading algorithm will work seam-
lessly, as our algorithm is tailored to grade short
answers in English. We believe that in future, V
for Vocab can be ported to other languages as well.

Therefore, with the help of this application we
are able to improve upon existing flashcard appli-
cations and lay groundwork for intelligent flash-
card systems.
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Abstract

Inquiry is fundamental to communication,
and machines cannot effectively collabo-
rate with humans unless they can ask ques-
tions. In this thesis work, we explore
how can we teach machines to ask clari-
fication questions when faced with uncer-
tainty, a goal of increasing importance in
today’s automated society. We do a pre-
liminary study using data from StackEx-
change, a plentiful online resource where
people routinely ask clarifying questions
to posts so that they can better offer assis-
tance to the original poster. We build neu-
ral network models inspired by the idea of
the expected value of perfect information:
a good question is one whose expected an-
swer is going to be most useful. To build
generalizable systems, we propose two fu-
ture research directions: a template-based
model and a sequence-to-sequence based
neural generative model.

1 Introduction

A main goal of asking questions is to fill in-
formation gaps, typically through clarification
questions, which naturally occur in conversations
(Purver, 2004; Ginzburg, 2012). A good ques-
tion is one whose likely answer is going to be the
most useful. Consider the exchange in Figure 1,
in which an initial poster (who we’ll call “Terry”)
asks for help configuring environment variables.
This question is underspecified and a responder
(“Parker”) asks a clarifying question “(a) What ver-
sion of Ubuntu do you have?” Parker could alterna-
tively have asked one of:

(b) Is the moon waxing or waning?
(c) Are you running Ubuntu 14.10 kernel 4.4.0-59-

generic on an x86 64 architecture?

Figure 1: A post on an online Q & A forum
“askubuntu.com” is updated to fill the missing in-
formation pointed out by the question comment

Parker should not ask (b) because it’s not useful;
they should not ask (c) because it’s too specific and
an answer of “No” gives little help. Parker’s ques-
tion (a) is optimal: it is both likely to be useful,
and is plausibly answerable by Terry. Our goal in
this work is to automate Parker. Specifically, after
Terry writes their initial post, we aim to generate
a clarification question so that Terry can immedi-
ately amend their post in hopes of getting faster
and better replies.

Our work has two main contributions:
1. A novel neural-network model for addressing

this task that integrates the notion of expected
value of perfect information (§2).

2. A novel dataset, derived from StackEx-
change, that enables us to learn a model to
ask clarifying questions by looking at the
types of questions people ask (§4.1).1

To develop our model we take inspiration from
the decision theoretic framework of the Expected

1We use data from StackExchange; per license cc-by-sa
3.0, the data is “intended to be shared and remixed” (with
attribution). We will release all of the data we extract.
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Value of Perfect Information (EVPI) (Avriel and
Williams, 1970), a measure of the value of gath-
ering additional information. In our setting, we
use EVPI to calculate which question is most
likely to elicit an answer that would make the post
more informative. Formally, for an input post p,
we want to choose a question q that maximizes
Ea∼p,q[U(p+a)], where a is a hypothetical answer
andU is a utility function measuring the complete-
ness of post p if a were to be added to it. To
achieve this, we construct two models: (1) an an-
swer model, which estimates P[a | p, q], the like-
lihood of receiving answer a if one were to ask
question q on post p; (2) a completeness model,
U(p), which measures how complete a post is.
Given these two models, at prediction time we
search over a shortlist of possible questions for
that which maximizes the EVPI.

We are able to train these models jointly based
on (p, q, a) triples that we extract automatically
from StackExchange. Figure 1 depicts how we do
this using StackExchange’s edit history. In the fig-
ure, the initial post fails to state what version of
Ubuntu is being run. In response to Parker’s ques-
tion in the comments section, Terry, the author of
the post, edits the post to answer Parker’s clarifi-
cation question. We extract the initial post as p,
question posted in the comments section as q, and
edit to the original post as answer a to form our
(p, q, a) triples.

Our results show significant improvements from
using the EVPI formalism over both standard
feedforward network architectures and bag-of-
ngrams baselines, even when our system builds
on strong information retrieval scaffolding. In
comparison, without this scaffolding, the bag-of-
ngrams model outperforms the feedforward net-
work. We additionally analyze the difficulty of this
task for non-expert humans.

2 Related Work

The problem of question generation has received
sparse attention from the natural language pro-
cessing community. Most prior work focuses
on generating reading comprehension questions:
given text, write questions that one might find
on a standardized test (Vanderwende, 2008; Heil-
man, 2011; Rus et al., 2011). Comprehension
questions, by definition, are answerable from the
provided text. Clarification questions are not.
Outside reading comprehension questions, Labu-

tov et al. (2015) studied the problem of gener-
ating question templates via crowdsourcing, Liu
et al. (2010) use template-based question genera-
tion to help authors write better related work sec-
tions, Mostafazadeh et al. (2016) consider ques-
tion generation from images, and Artzi and Zettle-
moyer (2011) use human-generated clarification
questions to drive a semantic parser.

3 Model Description

In order to choose what question to ask, we build a
neural network model inspired by the theory of ex-
pected value of perfect information (EVPI). EVPI
is a measurement of: if I were to acquire informa-
tion X, how useful would that be to me? How-
ever, because we haven’t acquired X yet, we have
to take this quantity in expectation over all pos-
sible X, weighted by each X’s likelihood. In the
question generation setting, for any given ques-
tion q that we can ask, there is set A of possible
answers that could be given. For each possible an-
swer a ∈ A, there is some probability of getting
that answer, and some utility if that were the an-
swer we got. The value of this question q is the
expected utility, over all possible answers. The
theory of EVPI then states that we want to choose
the question q that maximizes:

arg max
q∈Q

∑

a∈A
P[a|p, q]U(p+ a) (1)

In Eq 1, p is the post, q is a potential question
from a set of candidate questions Q (§3.1) and a is
a potential answer from a set of candidate answers
A (§3.1). P[a|p, q] (§3.2) measures the probability
of getting an answer a given an initial post p and
a clarifying question q. U(p + a) (§3.3) measures
how useful it would be if p were augmented with
answer a. Finally, using these pieces, we build a
joint neural network that we can optimize end-to-
end over our data (§3.4). Figure 2 describes the
behavior of our model during test time.

3.1 Question & Answer Candidate Generator
Given a post, our first step is to generate a set
of candidate questions and answers. Our model
learns to ask questions by looking at questions
asked in previous similar situations. We first iden-
tify 10 posts similar to the given post in our dataset
using Lucene2 (a software extensively used in in-
formation retrieval) and then consider the ques-

2https://lucene.apache.org/
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Figure 2: The behavior of our model during test time. Given a post p, we retrieve 10 posts similar to p using Lucene and
consider the questions asked to those as question candidates and the edits made to the posts in response to the questions as
answer candidates. Our answer model generates an answer representation Fans(p, qj) for each question candidate qj and
calculates how close is an answer candidate ak to Fans(p, qj). Our utility calculator calculates the utility of the post if it were
updated with the answer ak. We select the question qj that maximizes the expected utility of the post p (Equation 1).

tions asked to these posts as our set of question
candidates and the edits made to the posts in re-
sponse to the questions as our set of answer candi-
dates.

3.2 Answer Modeling

Given a post p and a question candidate qi, our
second step is to calculate how likely is this ques-
tion to be answered using one of our answer can-
didates ak. To calculate this probability, we first
generate an answer representation Fans(p, qi) and
then measure how close is the answer candidate ak
to our answer representation using the equation:

P[ak|p, qi] =
1

Z
exp

[
−λ||ak − Fans(p, qi)||2

]

(2)

where λ is a tunable parameter that controls the
variance of the distribution.

We train our answer generator using the follow-
ing intuition: a question can be asked in several
different ways. For e.g. in Figure 1, the ques-
tion “What version of Ubuntu do you have?” can be
asked in other ways like “What version of operating
system are you using?”, “Version of OS?”, etc. Addi-
tionally, a question can generate several different
answers. For instance, “Ubuntu 14.04 LTS”, “Ubuntu
12.0”, “Ubuntu 9.0”, are all valid answers. To cap-
ture these generalizations, we define the following
loss function:

lossans(p̄, q̄, ā, Q) = ||Fans(p̄, q̄)− ā||2 (3)

+
∑

j∈Q

(
||Fans(p̄, q̄)− āj ||2(1− tanh (||q̄ − q̄j ||2))

)

In equation 3, the first term forces the answer rep-
resentation Fans(p̄i, q̄i) to be as close as possible
to the correct answer ai and the second term forces
it to be close to the answer aj corresponding to a
question qj very similar to qi (i.e. ||q̄i− q̄j || is near
zero).

3.3 Utility Calculator

Given a post p and an answer candidate ak, our
third step is to calculate the utility of the updated
post i.e. U(p + ak) which measures how use-
ful it would be if a given post p were augmented
with an answer ak. We use the intuition that a
post pi, when updated with the answer ai that it
is paired with in our dataset, would be more com-
plete than if it is updated with some other an-
swer aj . Therefore we label all the (pi, ai) pairs
from our dataset as positive (y = 1) and label
pi paired with other nine answer candidates gen-
erated using Lucene (§3.1) as negative (y = 0).
The utility of the updated post is then defined as
U(p + a) = σ(Futility(p̄, ā)) where Futility is a
feedforward neural network. We want this utility
to be close to one for all the positively labelled
(p, a) pairs and close to zero for all the negatively
labelled (p, a) pairs. We therefore define our loss
using the binary cross-entropy formulation below:

lossutil(y, p̄, ā) = y log(σ(Futility(p̄, ā))) (4)

3.4 Our joint neural network model

Our fundamental representation is based on re-
current neural network, specifically long short-
term memory architecture (LSTM) (Hochreiter
and Schmidhuber, 1997) over word embeddings
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Lucene negative candidates Random negative candidates
Models Acc MRR R@3 R@5 Acc MRR R@3 R@5

Random 10.0 29.3 30.0 50.0 10.0 29.3 30.0 50.0
Bag-of-ngrams 11.6 31.3 32.5 54.6 54.9 70.5 83.1 92.0
Feed-forward 17.4 37.8 43.2 63.9 49.0 66.8 81.3 92.8
EVPI 23.3 43.4 51.0 70.3 61.1 75.5 87.9 95.8

Table 1: Results of two setups ‘Lucene negative candidates’ and ‘Random negative candidates’ on askubuntu when trained
on a combination of three domains: askubuntu, unix and superuser. We report four metrics: accuracy (percent of time the top
ranked question was correct), mean reciprocal rank (the reciprocal of the ranked position of the correct question in the top 10
list), recall at 3 (percent of time the correct answer is in the top three) and recall at 5.

obtained using a GloVe (Pennington et al., 2014)
model trained on the entire datadump of StackEx-
change. We define three LSTMs corresponding to
p, q and a and two feedforward neural networks
corresponding to our answer model Fans(p̄, q̄) and
our utility calculator Futility(p̄, ā). We jointly
train the parameters of all our neural network mod-
els to minimize the sum of the loss of our answer
model (Eq 3) and our utility calculator (Eq 4):
∑

i

lossans(p̄i, q̄i, āi, Qi) + lossutil(yi, p̄i, āi) (5)

Given such an estimate P[a|p, q] of an answer and
a utility U(p+ a) of the updated post, predictions
can be done by choosing that “q” that maximizes
Eq 1.

4 Experiments and Results

4.1 Dataset
StackExchange is a network of online question
answering websites containing timestamped infor-
mation about the posts, comments on the post and
the history of the revisions made to the post. Us-
ing this, we create our dataset of {post, question,
answer} triples: where post is the initial unedited
post, question is the comment containing a ques-
tion and answer is the edit made to the post that
matches the question comment 3. We extract a to-
tal of 37K triples from the following three domains
of StackExchange: askubuntu, unix and superuser.

4.2 Experimental Setups
We define our task as given a post and 10 question
candidates, select the correct question candidate.
For every post p in our dataset of (p, q, a) triples,
the question q paired with p is our positive ques-
tion candidate. We define two approaches to gen-
erate negative question candidates:
Lucene Negative Candidates: We retrieve nine

3We measure the cosine similarity between the averaged
word embeddings of the question and the edit.

question candidates using Lucene (§3.1) and
Random Negative Candidates: We randomly
sample nine other questions from our dataset.

4.3 Primary Research Questions

Our primary research questions that we evaluate
experimentally are:
a. Does a neural architecture improve upon a sim-
ple bag-of-ngrams baseline?
b. Does the EVPI formalism provide leverage over
a similarly expressive feed-forward network?
c. How much harder is the task when the negative
candidate questions come from Lucene rather than
selected randomly?

4.4 Baseline Methods

Random: Randomly permute the set of 10 candi-
date questions uniformly.
Bag-of-ngrams: Construct a bag-of-ngrams rep-
resentation for the post, the question and the an-
swer and train a classifier to minimize hinge loss
on misclassification loss.
Feed-forward neural: Concatenate the post
LSTM representation, the question LSTM rep-
resentation and the answer LSTM representation
and feed it through a feed forward neural network
of two fully-connected hidden layers.

4.5 Results

We describe results on a test split of askubuntu
when our models are trained on the union of all
data, summarized in Table 1. The left half of this
table shows results when the candidate sets is from
Lucene—the “hard” setting and the right half of
this table shows the same results when the candi-
date set is chosen randomly—the “easy” setting.
Here, we see that for all the evaluation metrics,
EVPI outperforms all the baselines by at least a
few percentage points. A final performance of
51% recall at 3 in the “hard” setting is encourag-
ing, though clearly there is a long way to go for a
perfect system.
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5 How good are humans at this task?

In this section we address two natural questions:
(a) How does the performance of our system com-
pare to a human solving the same task? (b) Just be-
cause the system selects a question that is not the
exact gold standard question, is it certainly wrong?
To answer these questions, we had 14 computer
science graduate students perform the task on 50
examples. Most of these graduate students are not
experts in unix or ubuntu, but are knowledgable.
Given a post and a randomized list of ten possi-
ble questions, they were instructed to select what
they thought was the single best question to ask,
and additionally mark as “valid” any additional
questions that they thought would also be okay to
ask. We also asked them to rate their confidence
in {0, 1, 2, 3}. Most found this task quite challeng-
ing because many of the questions are about subtle
nuances of operating system behavior.

These annotator’s accuracy on the “hard” task
of Lucene-selected questions, was only 36%, sig-
nificantly better than our best system (23%), but
still far from perfect. If we limited to those ex-
amples on which they were more confident (con-
fidence of 2 or 3), their accuracy raised to 42%,
but never surpassed that. A major problem for
the human annotators is the amount of background
knowledge required to solve this problem. On an
easier domain, or with annotators who are truly ex-
perts, we might expect these numbers to be higher.

6 Proposed Research Directions

In our preliminary work, we focus on the question
selection problem i.e. select the right clarification
question from a set of prior questions. To enable
our system to generalize well to new context, we
propose two future research directions:

6.1 Template Based Question Generation

Consider a template like “What version of
are you running?”. This template can generate
thousands of specific variants found in the data
like “What version of Ubuntu are you running?”,
“What version of apt-get are you running?”, etc.
We propose the following four step approach to
our template-based question generation method:

1. Cluster questions based on their lexical and
semantic similarity.

2. Generate a template for each cluster by re-
moving topic specific words from questions.

3. Given a post, select a question template from
a set of candidate question templates using a
model similar to our preliminary work.

4. Finally, fill in the blanks in the template using
topic specific words retrieved from the post.

6.2 Neural Network Generative Model

Sequence-to-sequence neural network models
have proven to be effective for several lan-
guage generation tasks like machine translation
(Sutskever et al., 2014), dialog generation (Ser-
ban et al., 2016), etc. These models are based on
an encoder-decoder framework where the encoder
takes in a sequence of words and generates a vec-
tor representation which is then taken in by a de-
coder to generate the output sequence of words.

On similar lines, we propose a model for gener-
ating the clarification question one word at a time,
given the words of a post. A recent neural gener-
ative question answering model (Yin et al., 2016)
built an answer language model which decides, at
each time step, whether to generate a common vo-
cabulary word or an answer word retrieved from a
knowledge base. Inspired from this work, we pro-
pose to build a question generation model which
will decide, at each time step, whether to gener-
ate a common vocabulary word or a topic specific
word retrieved from the current post, thus incor-
porating the template-based method into a more
general neural network framework.

7 Conclusion

In our work, we introduce a novel dataset for clar-
ification question generation, and build a model
that integrates neural network structure with the
classic notion of expected value of perfect infor-
mation. Our preliminary model learns to select
the right question from a set of candidate ques-
tions. We propose two future directions for auto-
matically generating clarification questions.

One main avenue for improvement of this work
is in evaluation: given that this task is so diffi-
cult for humans, but also given that there is no
single right question to ask, how can we better
measure performance at this task? This is exactly
the same question faced in dialog and generation
(Paek, 2001; Lowe et al., 2015; Liu et al., 2016;
Kannan and Vinyals, 2017). Finally, asking ques-
tion is a natural component of dialog, and build-
ing a collaborative dialog system that can naturally
converse with a user is a broad long term goal.
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Abstract

We propose a novel sentential paraphrase
acquisition method. To build a well-
balanced corpus for Paraphrase Identifi-
cation, we especially focus on acquiring
both non-trivial positive and negative in-
stances. We use multiple machine trans-
lation systems to generate positive can-
didates and a monolingual corpus to ex-
tract negative candidates. To collect non-
trivial instances, the candidates are uni-
formly sampled by word overlap rate. Fi-
nally, annotators judge whether the candi-
dates are either positive or negative. Using
this method, we built and released the first
evaluation corpus for Japanese paraphrase
identification, which comprises 655 sen-
tence pairs.

1 Introduction

When two sentences share the same meaning but
are written using different expressions, they are
deemed to be a sentential paraphrase pair. Para-
phrase Identification (PI) is a task that recognizes
whether a pair of sentences is a paraphrase. PI is
useful in many applications such as information
retrieval (Wang et al., 2013) or question answer-
ing (Fader et al., 2013).

Despite this usefulness, there are only a few cor-
pora that can be used to develop and evaluate PI
systems. Moreover, such corpora are unavailable
in many languages other than English. This is be-
cause manual paraphrase generation tends to cost
a lot. Furthermore, unlike a bilingual parallel cor-
pus for machine translation, a monolingual paral-
lel corpus for PI cannot be spontaneously built.

Even though some paraphrase corpora are avail-
able, there are some limitations on them. For ex-
ample, the Microsoft Research Paraphrase Corpus

Figure 1: Overview of candidate pair generation.

(MSRP) (Dolan and Brockett, 2005) is a standard-
ized corpus in English for the PI task. However,
as Rus et al. (2014) pointed out, MSRP collects
candidate pairs using short edit distance, but this
approach is limited to collecting positive instances
with a low word overlap rate (WOR) (non-trivial
positive instances, hereafter)1. In contrast, the
Twitter Paraphrase Corpus (TPC) (Xu et al., 2014)
comprises short noisy user-generated texts; hence,
it is difficult to acquire negative instances with a
high WOR (non-trivial negative instances, here-
after)2.

To develop a more robust PI model, it is impor-
tant to collect both “non-trivial” positive and neg-
ative instances for the evaluation corpus. To cre-
ate a useful evaluation corpus, we propose a novel
paraphrase acquisition method that has two view-
points of balancing the corpus: positive/negative
and trivial/non-trivial. To balance between posi-
tive and negative, our method has a machine trans-
lation part collecting mainly positive instances and
a random extraction part collecting negative in-
stances. In the machine translation part, we gen-
erate candidate sentence pairs using multiple ma-
chine translation systems. In the random extrac-
tion part, we extract candidate sentence pairs from
a monolingual corpus. To collect both trivial and
non-trivial instances, we sample candidate pairs

1Non-trivial positive instances are difficult to identify as
semantically equivalent.

2Non-trivial negative instances are difficult to identify as
semantically inequivalent.
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using WOR. Finally, annotators judge whether the
candidate pairs are paraphrases.

In this paper, we focus on the Japanese PI
task and build a monolingual parallel corpus for
its evaluation as there is no Japanese sentential
paraphrase corpus available. As Figure 1 shows,
we use phrase-based machine translation (PBMT)
and neural machine translation (NMT) to gener-
ate two different Japanese sentences from one En-
glish sentence. We expect the two systems provide
widely different translations with regard to sur-
face form such as lexical variation and word order
difference because they are known to have differ-
ent characteristics (Bentivogli et al., 2016); for in-
stance, PBMT produces more literal translations,
whereas NMT produces more fluent translations.

We believe that when the translation succeeds,
the two Japanese sentences have the same mean-
ing but different expressions, which is a positive
instance. On the other hand, translated candidates
can be negative instances when they include fluent
mistranslations. This occurs since adequacy is not
checked during an annotation phase. Thus, we can
also acquire some negative instances in this man-
ner.

To actively acquire negative instances, we use
Wikipedia to randomly extract sentences. In gen-
eral, it is rare for sentences to become paraphrase
when sentence pairs are collected randomly, so it
is effective to acquire negative instances in this re-
gard.

Our contributions are summarized as follows:

• Generated paraphrases using multiple ma-
chine translation systems for the first time

• Adjusted for a balance from two viewpoints:
positive/negative and trivial/non-trivial

• Released3 the first evaluation corpus for the
Japanese PI task

2 Related Work

Paraphrase acquisition has been actively studied.
For instance, paraphrases have been acquired from
monolingual comparable corpora such as news ar-
ticles regarding the same event (Shinyama et al.,
2002) and multiple definitions of the same con-
cept (Hashimoto et al., 2011). Although these
methods effectively acquire paraphrases, there are
not many domains that have comparable corpora.
In contrast, our method can generate paraphrase

3https://github.com/tmu-nlp/paraphrase-corpus

candidates from any sentences, and this allows us
to choose any domain required by an application.

Methods using a bilingual parallel corpus are
similar to our method. In fact, our method
is an extension of previous studies that ac-
quire paraphrases using manual translations of the
same documents (Barzilay and McKeown, 2001;
Pang et al., 2003). However, it is expensive to
manually translate sentences to create large num-
bers of translation pairs. Thus, we propose a
method that inexpensively generates translations
using machine translation and Quality Estimation.

Ganitkevitch et al. (2013) and Pavlick et al.
(2015) also use a bilingual parallel corpora to
build a paraphrase database using bilingual piv-
oting (Bannard and Callison-Burch, 2005). Their
methods differ from ours in that they aim to ac-
quire phrase level paraphrase rules and carry out
word alignment instead of machine translation.

There are also many studies on building a large
scale corpora utilizing crowdsourcing in related
tasks such as Recognizing Textual Entailment
(RTE) (Marelli et al., 2014; Bowman et al., 2015)
and Lexical Simplification (De Belder and Moens,
2012; Xu et al., 2016). Moreover, there are
studies collecting paraphrases from captions
to videos (Chen and Dolan, 2011) and im-
ages (Chen et al., 2015). One advantage of lever-
aging crowdsourcing is that annotation is done
inexpensively, but it requires careful task design
to gather valid data from non-expert annotators.
In our study, we collect sentential paraphrase
pairs, but we presume that it is difficult for non-
expert annotators to provide well-balanced senten-
tial paraphrase pairs, unlike lexical simplification,
which only replaces content words. For this rea-
son, annotators classify paraphrase candidate pairs
in our study similar to the method used in the TPC
and previous studies on RTE.

As for Japanese, there exists a paraphrase
database (Mizukami et al., 2014) and an evalua-
tion dataset that includes some paraphrases for
lexical simplification (Kajiwara and Yamamoto,
2015; Kodaira et al., 2016). They provide either
lexical or phrase-level paraphrases, but we fo-
cus on collecting sentence-level paraphrases for PI
evaluation. There is also an evaluation dataset for
RTE (Watanabe et al., 2013) containing 70 senten-
tial paraphrase pairs; however, as there is a lim-
itation in terms of size, we aim to build a larger
corpus.
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Jaccard # Sentence Average Sentence Length # Sample # Positive # Negative # Unnatural # Other
source PBMT NMT

[0.0, 0.1) 228 19.42 20.65 19.75 200 2 1 (0) 80 117
[0.1, 0.2) 2,117 21.56 24.81 22.01 200 11 14 (0) 147 28
[0.2, 0.3) 14,080 21.56 26.50 23.37 200 20 9 (0) 162 9
[0.3, 0.4) 51,316 23.48 29.69 26.29 200 24 15 (0) 161 0
[0.4, 0.5) 100,674 24.40 31.35 28.08 200 27 16 (0) 151 6
[0.5, 0.6) 134,101 23.16 29.90 27.26 200 34 16 (0) 142 8
[0.6, 0.7) 100,745 21.04 27.32 25.30 200 38 13 (0) 129 20
[0.7, 0.8) 55,610 18.83 24.57 23.04 200 53 12 (40) 131 4
[0.8, 0.9) 26,884 16.23 21.31 20.24 200 81 3 (80) 94 22
[0.9, 1.0) 8,071 13.79 18.40 17.55 200 73 3 (70) 56 68
[1.0, 1.0] 6,174 10.10 13.07 12.96 0 0 0 (0) 0 0

Total 500,000 19.42 24.32 22.35 2,000 363 102 (190) 1,253 282

Table 1: Statistics on our corpus. The number inside ( ) of Negative column is the number of instances
extracted from Wikipedia and the other is that of machine-translated instances.

3 Candidate Generation

3.1 Paraphrase Generation using Multiple
Machine Translation Systems

We use different types of machine translation sys-
tems (PBMT and NMT) to translate source sen-
tences extracted from a monolingual corpus into a
target language. This means that each source sen-
tence has two versions in the target language, and
we use the sentences as a pair.

To avoid collecting ungrammatical sentences as
much as possible, we use Quality Estimation and
eliminate inappropriate sentences for paraphrase
candidate pairs. At WMT2016 (Bojar et al., 2016)
in the Shared Task on Quality Estimation, the win-
ning system YSDA (Kozlova et al., 2016) shows
that it is effective for Quality Estimation to employ
language model probabilities of source and target
sentences, and BLEU scores between the source
sentence and back-translation. Therefore, we cal-
culate the language model probabilities of source
sentences and translate them in the order of their
probabilities. To further obtain better translations,
we select sentence pairs in the descending order
of machine translation output quality, which is de-
fined as follows:

QEi = SBLEU(ei, BTPBMT(ei))

× SBLEU(ei, BTNMT(ei))
(1)

Here, ei denotes the i-th source sentence,
BTPBMT denotes the back-translation using
PBMT, BTNMT denotes the back-translation us-
ing NMT, and SBLEU denotes the sentence-level
BLEU score (Nakov et al., 2012). When this score
is high, it indicates that the difference in sentence

meaning before and after translation is small for
each machine translation system.

3.2 Non-Paraphrase Extraction from a
Monolingual Corpus

This extraction part of our method is for acquiring
non-trivial negative instances. Although the ma-
chine translation part of our method is expected
to collect non-trivial negative instances too, there
will be a certain gap between positive and nega-
tive instances. To fill the gap, we randomly collect
sentence pairs from a monolingual corpus written
in the target language.

To check whether the negative instances ac-
quired by machine translation and those ex-
tracted directly from a monolingual corpus are dis-
cernible, we asked three people to annotate ran-
domly extracted 100 instances whether a pair is
machine-translated or not. The average F-score on
the annotation was 0.34. This means the negative
instances are not distinguishable, so this does not
affect the balance of the corpus.

3.3 Balanced Sampling using Word Overlap
Rate

To collect both trivial and non-trivial instances, we
carefully sample candidate pairs. We classify the
pairs into eleven ranges depending on the WOR
and sample pairs uniformly for each range, except
for the exact match pairs. The WOR is calculated
as follows:

Jaccard(TPBMT(ei), TNMT(ei))

=

∣∣∣∣
TPBMT(ei) ∩ TNMT(ei)

TPBMT(ei) ∪ TNMT(ei)

∣∣∣∣
(2)
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Label Example
Positive Input: My father was a very strong man.

PBMT: 私の父は非常に強い男でした。 My father was a very strong man.
NMT: 父はとても強い男だった。 My father was a very strong man.

Negative Input: It is available as a generic medication.
PBMT: これは、一般的な薬として利用可能です。 It is available as a generic medicine.
NMT: ジェネリック医薬品として入手できます。 It is available as a generic medication.

Unnatural Input: I want to wake up in the morning
PBMT: 私は午前中に目を覚ますしたいです* I wake up want to in the morning*
NMT: 私は朝起きたい I want to wake up in the morning

Other Input: Academy of Country Music Awards :
PBMT: アカデミーオブカントリーミュージックアワード： Academy of Country Music Awards :
NMT: アカデミー・オブ・カントリー・ミュージック賞： Academy of Country Music Awards :

Table 2: Annotation labels and examples.

Here, TPBMT and TNMT denote the sentence in
the target language translated by PBMT and NMT
respectively.

4 Corpus Creation

4.1 Acquiring Candidate Pairs in Japanese

We built the first evaluation corpus for Japanese
PI using our method. We used Google Trans-
late PBMT4 and NMT5 (Wu et al., 2016) to trans-
late English sentences extracted from English
Wikipedia 6 into Japanese sentences7. We cal-
culated the language model probabilities using
KenLM (Heafield, 2011), and built a 5-gram lan-
guage model from the English Gigaword Fifth
Edition (LDC2011T07). Then we translated the
top 500,000 sentences and sampled 200 pairs in
the descending order of machine translation output
quality for each range, except for the exact match
pairs (Table 1).

4.2 Annotation

We used four types of labels; Positive, Negative,
Unnatural, and Other (Table 2). When both sen-
tences of a candidate pair were fluent and semanti-
cally equivalent, we labeled it as Positive. In con-
trast, when the sentences were fluent but seman-
tically inequivalent, the pair was labeled as Nega-
tive. Positive and Negative pairs were included in
our corpus. The label Unnatural was assigned to
pairs when at least one of the sentences was un-
grammatical or not fluent. In addition, the label

4GOOGLETRANSLATE function on Google Sheets.
5https://translate.google.co.jp/
6https://dumps.wikimedia.org/enwiki/20160501/
7We trained Moses and translated the sentences from

Wikipedia; however, it did not work well. This is the reason
why we chose Google machine translation systems, which
work sufficiently well on Wikipedia.

Other was assigned to sentences and phrases that
comprise named entities or that have minor differ-
ences such as the presence of punctuation, even
though they are paraphrases. Unnatural or Other
pairs were discarded from our corpus.

One of the authors annotated 2,000 machine-
translated pairs, then another author annotated the
pairs labeled either Positive or Negative by the first
annotator. The inter-annotator agreement (Co-
hen’s Kappa) was κ=0.60. Taking into considera-
tion the fact that PI deals with a deep understand-
ing of sentences and that there are some ambigu-
ous instances without context (e.g., good child and
good kid), the score is considered to be sufficiently
high. There were 89 disagreements, and the final
label was decided by discussion. As a result, we
acquired 363 positive and 102 negative machine-
translated pairs.

Although the machine translation part of our
method successfully collected non-trivial positive
instances, it acquired only a few non-trivial nega-
tive instances as we expected. To fill the gap be-
tween positive and negative in higher WOR, we
randomly collected sentence pairs from Japanese
Wikipedia8 and added 190 non-trivial negative in-
stances. At the end of both parts of our method,
we acquired 655 sentence pairs in total, compris-
ing 363 positive and 292 negative instances.

Figures 2 and 3 indicate the distribution of the
instances in each corpus. Compared to MSRP and
TPC, our corpus covers all ranges of WOR both
for positive and negative instances.

8https://dumps.wikimedia.org/jawiki/20161001/
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Figure 2: Distributions of positive sentence
pairs in each WOR.

Figure 3: Distributions of negative sentence
pairs in each WOR.

Category %
Content word replacement 63.1
Phrasal/Sentential replacement 25.0
Function word replacement 23.2
Function word insertion/deletion 14.3
Content word insertion/deletion 9.5
Word order 6.5
Lexical entailment 4.2

Table 3: The result of corpus analysis.

5 Discussion

5.1 Corpus Analysis

Table 3 shows the result of corpus analysis on
machine-translated instances. We randomly sam-
pled ten pairs from each range of WOR for both
positive and negative pairs, i.e., 168 pairs in total,
and investigated what type of pairs are included.

We found that most of the data comprises con-
tent word replacement (63.1%). Further investiga-
tion of this category shows that 30.2% are related
to a change in the origin of words and transliter-
ations. In Example # 1 in Table 4, PBMT out-
puts a transliteration of a member, and NMT out-
puts a Japanese translation. Next, the second most
common type of pair is phrasal/sentential replace-
ment (25.0%). When a pair has a bigger chunk
of sentence or the sentence as a whole is replaced,
it is assigned to this category. This implies that
our method, which focuses on sampling by WOR,
works to collect non-trivial instances like Exam-
ples # 2 and # 3. On the contrary, Example # 4
is an example of instances where machine trans-
lations demonstrate each characteristic like that
mentioned in Section 1 (PBMT is more literal and

Figure 4: Accuracy of PI using WOR.

NMT is more fluent), so negative instances are
produced as we expected. The outputs are seman-
tically close, but the surface is very different. In
this example, the PBMT output entails the NMT
output.

5.2 Paraphrase Identification

We conducted a simple PI experiment ― an un-
supervised binary classification. Here, we clas-
sified each sentence pair as either paraphrase or
non-paraphrase using WOR thresholds and evalu-
ated its accuracy. Figure 4 shows the results from
each corpus. Achieving around accuracy of 80%
does not mean that the corpus is well built in any
language. In that respect, this result proves that
our corpus includes more instances that are diffi-
cult to be solved with only superficial clues, which
helps develop a more robust PI model.

6 Conclusion

We proposed a paraphrase acquisition method to
create a well-balanced corpus for PI. Our method
generates positive instances using machine trans-
lations, extracts negative instances from a mono-
lingual corpus, and uses WOR to collect both triv-
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# Type of Replacement Jaccard Label Trivial/Non-Trivial Example
1 Lexical 0.60 P Trivial Input: He was a member of the Republican Party.

PBMT: 彼は共和党のメンバーでした。
NMT: 彼は共和党の一員だった。

2 Lexical 0.90 N Non-Trivial Input: There is also a strong Roman Catholic presence.
PBMT: 強力なローマカトリックの存在感もあります。
NMT: 強力なローマカトリックの存在もあります。

3 Phrasal 0.07 P Non-Trivial Input: It is rarely used.
PBMT: めったに使われることはありません。
NMT: まれに使用されます。

4 Phrasal 0.15 N Trivial Input: Why do you work so hard?
PBMT: なぜあなたは一生懸命働くのですか？
NMT: どうしてそんなに頑張ってるの？

Table 4: Examples from our corpus. Bold words/phrases were replaced.

ial and non-trivial instances. With this method, we
built the first evaluation corpus for Japanese PI.
According to our PI experiment, our method made
the corpus difficult to be solved.

Our method can be used in other languages, as
long as machine translation systems and monolin-
gual corpora exist. In addition, more candidates
could be added by including additional machine
translation systems. A future study will be under-
taken to explore these possibilities.
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Abstract

In this paper we propose to solve the prob-
lem of Visual Question Answering by us-
ing a novel segmentation guided attention
based network which we call SegAttend-
Net. We use image segmentation maps,
generated by a Fully Convolutional Deep
Neural Network to refine our attention
maps and use these refined attention maps
to make the model focus on the relevant
parts of the image to answer a question.
The refined attention maps are used by the
LSTM network to learn to produce the an-
swer. We presently train our model on the
visual7W dataset and do a category wise
evaluation of the 7 question categories.
We achieve state of the art results on this
dataset and beat the previous benchmark
on this dataset by a 1.5% margin improv-
ing the question answering accuracy from
54.1% to 55.6% and demonstrate improve-
ments in each of the question categories.
We also visualize our generated attention
maps and note their improvement over the
attention maps generated by the previous
best approach.

1 Introduction

Visual Question Answering (VQA) is a recent
problem in the intersection of the fields of Com-
puter Vision and Natural Language Processing,
where a system is required to answer arbitrary
questions about the images, which may require
reasoning about the relationships of objects with
each other and the overall scene.
There are many potential applications for VQA.
The most immediate is as an aid to blind and vi-
sually impaired individuals, enabling them to get
information about images both on the web and in

the real world.
The task of Image Question answering has

received a lot of traction from the research com-
munity of late (Ren et al. (2015), Gao et al. (2015),
Antol et al. (2015a), Malinowski et al. (2015)) due
to the inherent challenging nature of the problem
which involves combining question understanding
in context of the image, scene understanding and
common sense reasoning to be able to answer the
question effectively. The problem is much more
complicated than the purely text based Question
answering problem which has been extensively
studied in the past (Berant and Liang (2014),
Kumar et al. (2015), Bordes et al. (2014), Weston
et al. (2014)) and needs the model to be able to
combine information from multiple sources and
reason about them together.

Most recent approaches are based on Neural
Networks, where a Convolutional Neural is first
used to extract out image features and then these
image features are used along with some RNN
model to understand the question and generate
an answer. However the problem with such
approaches is that they do not know where to
look. Recent approaches solve this problem by
calculating an attention over the image by using
the question embeddings to try and guide the
model where to look, however such attention
maps are still not very precise and not grounded
at the image level. Moreover, there is no way to
explicitly train these attention maps and the hope
is that the model will implicitly learn them during
training. In this paper we propose an approach
which tries to guide these attention maps to learn
to focus on the right regions in this image by
giving them pixel level grounded annotations
in the form of segmentation maps which we
generate using a Fully Convolutional Deep Neural
Network.
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The rest of the paper is organized as follows.
The existing literature on this problem is pre-
sented in Section 2 followed by a description of
the datasets we used in Section 3. Section 4 in-
troduces our approach and gives a detailed expla-
nation of how we generate the segment maps and
use them to guide our model to learn better atten-
tion maps which are subsequently used to perform
the task of visual question answering. Finally we
present the results in Section 5 and outline the pa-
pers conclusions and directions for future research
in Section 6.

2 Literature Review

VQA is a fairly recent problem and was proposed
by Antol et al. (2015b). Despite being a recent
problem, several researchers from across the
world have attempted to solve it. However, the
performance still remains a long way off from the
human performance which means there is still
scope for improvement.

One of the early neural network based model for
this problem proposed by Malinowski et al. (2015)
combines a CNN and a LSTM into an end-to-end
architecture that predict answers conditioning on
a question and an image. In this model at each
time step the LSTM is fed with a vector which is
an one hot vector encoding of word in the question
and the CNN encoding of the whole image. In Ren
et al. (2015), a similar kind of approach was em-
ployed, with the main differnce that CNN features
was fed to LSTM only once for each question; ei-
ther before the question or after the last word of
the question. This model achieved better accuracy
than Malinowski et al. (2015).

In Agrawal et al. (2015) the best model model
uses a two layer LSTM to encode the questions
and the last hidden layer of VGGNet Simonyan
and Zisserman (2014) to encode the images.
Both the question and image features are then
transformed to a common space and fused by
a hadamard product and passed through a fully
connected layer followed by a softmax layer to
obtain a score over 1000 most frequent answers.
The model proposed in Gao et al. (2015) had four
components: Two separate LSTM modules for
question representation and context of answer
generated so far with a shared word embedding
layer, a CNN to extract the image representation

and a fusing component to fuse the information
from other three components and generate the
answer. All of these models look at the CNN
feature of the whole image whereas to answer the
real word questions concentrating to parts of the
image is more useful in most of the cases. Many
of the proposed VQA systems afterwards have
incorporated spatial attention to CNN features,
instead of using global features from the entire
image. Both Shih et al. (2016); Ilievski et al.
(2016) used Edge Boxes Zitnick and Dollr (2014)
to generate Bounding Box proposals in the
image. In Shih et al. (2016) a CNN was used
for local features extraction of the images from
each of these boxes. The input to their model
was consisting of these CNN features, question
features and one of the multiple choice answer.
Weighted average score for each of the proposed
region’s features was used to calculate the score
for an answer. In Ilievski et al. (2016) the authors
use region proposals for the objects present in the
question. At training time the objects labels and
bounding boxes are taken from the annotation of
COCO dataset and at test time bounding box pro-
posals are classified using ResnetHe et al. (2015).
Word2vecMikolov et al. (2013) is used to get a
similarity between bounding box labels and ob-
jects present in question. Any bounding box with
a similarity score greater than 0.5 is successively
fed to an LSTM and at last time step the global
CNN features for the image is also fed to the
LSTM. A separate LSTM was used to represent
the question. The output of these two LSTMs are
then fed to a fully connected layer to predict the
question. In Zhu et al. (2015) the model actually
learns which region of the image to attend rather
than feeding the model any specific region of
the image. Here the LSTM is fed with the CNN
feature of the whole image and the question word
by word. Based on the image features and hidden
state, the model actually learns which part of the
image it should look at and generates an attention
vector. This attention vector is operated on the
CNN feature of the whole image resulting in some
focused parts of the image. The model computes
the log-likelihood of an answer by a dot product
between CNN features of the image and the last
LSTM hidden state.

We build on this model by proposing how to
generate better attention maps and use them to
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improve the performance on the VQA task.
Several newer approaches also propose novel
methods of computing these attention maps.
Notable among these are Z. Yang and Smola.
(2015) and J. Lu and Parikh (2016). The former
among these uses the question’s semantic repre-
sentation to search for the regions in an image that
are related to the answer and used a multilayer
approach to attend important parts of the image.
In each layer of the attention it actually refines
where to look at in the image.

3 Dataset

We did our experimentation on the Visual7W
Dataset which was introduced by Zhu et al. (2015).
Visual7W is named after the seven categories of
questions it contains: What, Where, How, When,
Who, Why, and Which. The dataset also provides
object level groundings in the form of bounding
boxes for the objects occuring in the question. The
Visual7W dataset is collected on 47,300 COCO
images. In total, it has 327,939 QA pairs, together
with 1,311,756 human-generated multiple-choices
and 561,459 object groundings from 36,579 cat-
egories. In addition, it also provides complete
grounding annotations that link the object men-
tioned in the QA sentences to their bounding boxes
in the images and therefore introduce a new QA
type with image regions as the visually grounded
answers.

We use this dataset for our task as we wanted
to study how having pixel level groundings in
form of segmentation maps affect each particu-
lar question type among how, when, where, why
etc. We expect the improvement to be substan-
tial for questions like ‘how many’ and ‘where’
which intuitively should benefit most from such
pixel level groundings. This study allows us to
validate this. We can also compare how these seg-
mentation maps correspond with the provided ob-
ject level groundings. Hence this dataset is our
dataset of choice for this study.

4 Approach

We now present the approach we used to solve the
problem of Visual Question Answering. A com-
plete diagrammatic representation of our SegAt-
tendNet model is presented in Figure 2. Each
component of this model is explained in the sub-
sequent subsections.

4.1 Generating segmentation masks for the
image using the question

We first use the question to determine the objects
whose segmentation maps we need to extract. This
is done by using a POS tagging of the question
to determine the nouns occurring in the question.
After pre-processing these nouns, we match them
to the 60 object categories from the Pascal context
dataset Mottaghi et al. (2014) to know which of
these objects might occur in the image. We then
generate the segmentation maps from the question
using the following steps:

• The Image is then fed to a Fully Convo-
lutional Neural Network (FCN) Long et al.
(2015), trained on the Pascal Context dataset
to perform semantic segmentation on it based
on the 60 classes of PASCAL Context dataset

• The FCN-16 feature map is generated using
the architecture described in Figure 1. The
lower resolution segment map (16X lower
spatial resolution than the original image) is
obtained from the fuse pooled layer, which
combines both local features from lower lay-
ers and global features from higher layers to
generate a segmentation map. We take a soft-
max over the 60 channels (corresponding to
the 60 object categories) to obtain a probabil-
ity map over the various classes.

• Now we extract the channels from this seg-
mentation map which correspond to the
nouns occurring in the question. We sum
the segmentation map probabilities for these
channels to obtain a single channel combined
segmentation map. The intuition behind sum-
ming these channels is that, a particular pixel
location in the image can have any of the ob-
jects occurring in the question with a proba-
bility which is the sum of the probability of
each individual object occurring at that loca-
tion.

• This map is further used in the attention net-
work to refine the attention maps as described
in the next subsection.

4.2 Using segmentation maps to guide the
attention network for VQA

Once we have generated the segment maps and
combined them into a single map based on the ob-
jects occuring in the question, we use this map to
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Figure 1: Fully Convolutional Neural Networks for Semantic segmentation

Figure 2: Our SegAttendNet for Visual Question Answering

Model What Where When Who Why How Overall

Human(Question only) 0.356 0.322 0.393 0.342 0.439 0.337 0.353
Human(Question + Image) 0.965 0.957 0.944 0.965 0.927 0.942 0.964

Logistic Regression (Ques + Image) 0.429 0.454 0.621 0.501 0.343 0.356 0.359
LSTM (Question + Image) 0.489 0.544 0.713 0.581 0.513 0.503 0.521

Visual7W, LSTM-Attn(Ques+Image) 0.529 0.560 0.743 0.602 0.522 0.466 0.541
SegAttendNet(Ours)(Ques+Image) 0.539 0.581 0.754 0.611 0.542 0.494 0.556

Table 1: Comparison of results of our model against some existing approaches on the VQA task

guide our attention model to help it know where to
look. We use the following steps to combine our
segmentation maps with the attention based VQA
network:

• The image is first passed through a VGG 16
network Simonyan and Zisserman (2014) in
a feed forward manner and the fc7 features
are extracted from the VGG network giving
us a 4096 dimensional vector. These image
features are fed as input to the LSTM at t = 0

and forms an initializing mechanism for the
LSTM network.

• The question is passed through an LSTM net-
work word by word, with a one hot word em-
bedding being fed to the network at each time
step. We also record the LSTM state at each
time step. Lets say the previous such state
was h(t− 1). The LSTM’s ability to remem-
ber temporal context allows the network to
understand the question with reference to the
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Figure 3: Question: “How many people are in the image?” Answer: “three”
a) Original image b) Attention map generated by previous state of the art approach c) Our low resolution
segmentation map guidance d) Attention map generated by our SegAttendnet Model

input image and to subsequently refine it’s in-
ternal representation at each time step based
on the new input it receives.

• The above steps can be represented by the
equations:

v0 = Wi[F (I)] + bi,

vi = Ww[OH(ti)], i = 1, ...,m

Here F is the transformation function which
uses the VGG’s fc7 layer to convert an image
into a 4096 dimensional embedding. OH(.)
represents he one-hot encoding for the word
ti. The weight matrices Wi and Ww embed
the image and word embeddings into di and
dw dimensional embedding spaces such that
di and dw are both 512. The embedded image
vector is used as the initial input to the LSTM
network.

• Now lets call our segmentation map obtained
from the FCN-16 as S(I). Also let’s call
the pool5 features extracted from the VGG
network as C(I) Now we compute the
attention by the following set of equations:

et = Wa
T · tanh(Wheh(t− 1) +WceC(I)

+WseS(I)) + ba

at = softmax(et)
rt = aT t · C(I)

Here at is the generated attention map which
helps the model decide how much attention
to pay to various parts of the image by taking
a dot product with the convolutional feature
map of the image to generate rt.

• Now this computed attention weighted con-
volution map is fed back to the LSTM net-

work and the whole process repeats till the
whole question is exhausted.

• In the end, the final state of the LSTM net-
work and the pool 5 convolutional features
are used to generate the final answer to the
question. The end of the question is denoted
by the question mark token.

• A decoder LSTM is used for open ended
question and a softmax for multiple choice
questions. In case of open ended questions,
the previous word output is fed back to the
LSTM network as input for generating the
next answer word.

• A cross entropy loss is used to train the model
using Backpropagation using Adam update
rule. Hyperparameter tuning is done on the
validation set and the results are reported af-
ter testing on a held out test set. The train, val
and test sets are kept exactly the same as the
original Visual7W paper to allow for a fair
comparison. We also compare our approach
with the human performance on this task.

5 Results

We evaluated our model for the telling questions
in the Visual7W dataset using the approach we de-
scribed in the previous section. The results of the
same are presented in Table 1.

We note that our model outperforms the exist-
ing best reported result on this dataset by close
to 1.5% margin. We also notice that we achieve
substantial improvements in all the question cat-
egories. A closer observation of Figure 3 also re-
veals that our intuition that the model will perform
substantially better on ‘how many’ and ‘where’
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kind of questions does seem to be empirically jus-
tified as we can see a 3% improvement in the
‘how’ questions and a 2.1% improvement in the
‘where’ questions. Visualizing the attention maps
also tells us that our attention maps are much more
refined than the ones produced by the older ap-
proaches.

6 Conclusion and Future Work

In this paper we presented our model SegAttend-
Net to use segmentation maps to guide our atten-
tion model to focus on the right parts of an im-
age to answer a question. We demonstrate that
our model outperforms all other approaches on
this dataset and attains superior performance in all
question categories.
Right now we haven’t tried combining our ap-
proach with more complicated attention mecha-
nisms like the Stacked Attention Networks and Hi-
erarchical Co-Attention networks. Our approach
can easily be extended to the same and can help us
achieve even better performances. We also plan to
experiment with other much larger datasets which
too can let our model train much better.
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Abstract

We propose a convolutional neural network
model for text-based speaker identification
on multiparty dialogues extracted from the
TV show, Friends. While most previous
works on this task rely heavily on acoustic
features, our approach attempts to identify
speakers in dialogues using their speech
patterns as captured by transcriptions to the
TV show. It has been shown that different
individual speakers exhibit distinct idiolec-
tal styles. Several convolutional neural net-
work models are developed to discriminate
between differing speech patterns. Our re-
sults confirm the promise of text-based ap-
proaches, with the best performing model
showing an accuracy improvement of over
6% upon the baseline CNN model.

1 Introduction

Speakers verbalize their thoughts in different ways
through dialogues. The differences in their expres-
sions, be they striking or subtle, can serve as clues
to the speakers’ identities when they are withheld.
This paper investigates the possibility of identify-
ing speakers in anonymous multiparty dialogues.

Impressive advancements have been achieved
in the field of speech recognition prior to this pa-
per (Sadjadi et al., 2016; Fine et al., 2001; Camp-
bell et al., 2006). Research on dialogue systems has
also involved considerable efforts on speaker identi-
fication, as it constitutes an important step in build-
ing a more natural and human-like system (Raux
et al., 2006; Hazen et al., 2003). Research in this
area, however, has mostly been focused on acoustic
features, which are absent in many situations (e.g.,
online chats, discussion forums, text messages). In
addition, it is commonly acknowledged that nat-
ural language texts themselves reflect the person-
alities of speakers, in addition to their semantic
content (Mairesse et al., 2007).

Various experiments have demonstrated significant
differences in the linguistic patterns generated by
different participants, suggesting the possibility to
perform speaker identification with text-based data.
An increasing number of large unstructured dia-
logue datasets are becoming available, although
they comprise only the dialogue transcripts with-
out speaker labels (Tiedemann, 2012; Lowe et al.,
2015). This paper attempts to identify the six main
characters in the dialogues occurring in the first 8
seasons of the TV show, Friends. The minor char-
acters in the show are to be identified collectively
as Other.

For each episode, we first withhold the identity
of the speaker to each utterance in its transcript,
and have prediction models label the speakers. The
accuracy and the F1 score of the labeling against
the gold labels are used to measure the model per-
formance. Our best model using multi-document
convolutional neural network shows an accuracy of
31.06% and a macro average F1 score of 29.72, ex-
hibiting promising performance on the text-based
speaker identification task. We believe that the
application of text-based speaker identification is
extensive since data collected from online chat-
ting and social media contains no acoustic infor-
mation. Building accurate speaker identification
models will enable the prediction of speaker labels
in such datasets.

2 Related Work

Reynolds and Rose (1994) introduced the Gaussian
Mixture Models (GMM) for robust text indepen-
dent speaker identification. Since then, GMM has
been applied to a number of datasets and achieved
great results (Fine et al., 2001; Campbell et al.,
2006). Knyazeva et al. (2015) proposed to perform
sequence labeling and structured prediction in TV
show speaker identification, and achieved better
performance on sequential data. Despite the poten-
tial of text-based speaker identification in targeted
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Speaker Utterance
Monica No . Not after what happened with Steve .
Chandler What are you talking about ? We love Schhteve ! Schhteve was schhexy !.. Sorry .
Monica Look , I do n’t even know how I feel about him yet . Just give me a chance to figure that out .
Rachel Well , then can we meet him ?
Monica Nope . Schhorry .

Table 1: An excerpt from the transcripts to the TV show Friends.

Internet surveillance, research into this area has
been scant. So far, there have been only a handful
of attempts at text-based speaker identification.
Kundu et al. (2012) proposed to use the K Near-
est Neighbor Algorithm, Naive Bayes Classifier
and Conditional Random Field to classify speak-
ers in the film dialogues based on discrete stylistic
features. Although their classification accuracies
increase significantly from the random assignment
baseline, there remains significant room for im-
provement. Serban and Pineau (2015) proposed
their text-based speaker identification approach us-
ing Logistic Regression and Recurrent Neural Net-
work (RNN) to learn the turn changes in movie
dialogues. Their task is fundamentally different
from the task of this paper, as their main focus is
on the turn changes of dialogues instead of the iden-
tities of speakers. To the best of our knowledge, it
is the first time the multi-document CNN has been
applied to the speaker identification task.

3 Corpus

The Character Mining project provides transcripts
to the TV show Friends; transcripts to the first 8
seasons of the show are publicly available in JSON
format. Moreover, the first 2 seasons are annotated
for the character identification task (Chen and Choi,
2016). Each season contains a number of episodes,
and each episode is comprised of separate scenes.1

The scenes in an episode, in turn, are divided at
the utterance level. An excerpt from the data is
shown in Table 1. In total, this corpus consists of
194 episodes, 2,579 scenes and 49,755 utterances.
The utterance distribution by speaker is shown in
Figure 1. The percentages for major speakers are
fairly consistent. However, the Other speaker has
a larger percentage in the dataset than any of the
major speakers. The frequencies of interactions
between pairs of speakers exhibit significant vari-
ance. For instance, Monica talks with Chandler

1http://nlp.mathcs.emory.edu/
character-mining

more often than any other speaker, whereas Phoebe
does not talk with Rachel and Joey very frequently.
It will be of interest to note whether the variance
of interaction rates can affect the performance of
our identification model.

Monica

Phoebe

Rachel

Ross

Joey

Chandler

Others

13.52%

11.89%

14.73%

15.04%
13.2%

13.64%

17.96%

Figure 1: Data distribution

The first dataset is structured such that each utter-
ance is considered as one discrete sample. To test
the prediction performance for samples of greater
lengths, all utterances of the same speaker in a
scene are concatenated together as one single sam-
ple in the second dataset. Additional summary of
the dataset is presented in Table 2.

4 Approaches

4.1 K Nearest Neighbor

In Kundu et al. (2012), the best result is reported
using the K Nearest Neighbor algorithm (KNN),
which is selected as the baseline approach for this
paper, and implemented according to the original
authors’ specifications. Each utterance is treated as
one sample, and 8 discrete stylistic features defined
in the original feature template are extracted from
each sample. Cosine similarity is used to locate
the 15 nearest neighbors to each utterance. Ma-
jority voting of the neighbors, weighted by cosine
similarity, is used to make predictions.
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4.2 Recurrent Neural Network

A recurrent neural network (RNN) model is also
considered in the course of the experiments, where
each utterance in the transcripts is handled sepa-
rately. The RNN model treats the speaker iden-
tification task as a variant of sequence classifica-
tion. For each instance, the concatenation of word
embedding vectors is fed into the model, with a
dense layer and softmax activation to model the
probability for each speaker. The model is unable
to demonstrate significantly above random accu-
racy on labeling, achieving a maximal accuracy of
16.05% after training. We conclude that a simple
RNN model is unable to perform speaker identifica-
tion based on textual data. Variations on the hyper-
parameters, including the dimension of the RNN,
the dimension of word embeddings, and dropout
rate, produced no appreciable improvements.

4.3 Convolutional Neural Network

Widely utilized for computer vision, Convolutional
Neural Network (CNN) models have recently been
applied to natural language processing and showed
great results for many tasks (Yih et al., 2014; Kim,
2014; Shen et al., 2014). Speaker identification can
be conceptualized as a variant of document classifi-
cation. Therefore, we elected to use the traditional
CNN for our task. The model is a minor modifica-
tion to the proposal of Kim (2014), which consists
of a 1-dimensional convolution layer with different
filter sizes, a global max pooling layer, and a fully
connected layer. Each utterance is treated as one
sample and classified independently.

One of the challenges is the large number of
misspellings and colloquialisms in the dataset as
a result of the mistakes in the human transcription
process and the nature of human dialogues. It is
unlikely for these forms to appear in pre-trained
word embeddings. The bold instances in Table 1
provide a glimpse into these challenges. It should
also be noted that these irregularities oftentimes
only deviate slightly from the standard spellings.
A character-aware word embedding model is ex-
pected to produce similar vectors for the irregular
forms and the standard spellings. Most of the col-
loquialisms appear frequently in the dataset, and
the challenge they pose can be resolved by a pre-
trained character-aware word embedding model,
such as fastText (Bojanowski et al., 2016). The
word embeddings used in this paper are trained on
a dataset consisting of the New York Times corpus,

U-#1

U-#2

U-#3

U-#4

PredictionPoolingConvolution

Figure 2: The baseline CNN model.

Scene

PredictionPoolingConvolution

Figure 3: The multi-document CNN model.

the Wikipedia text dump, the Amazon Book Re-
views,2 and the transcripts from several TV shows.

4.4 CNN with Surrounding Utterance

Unlike other types of short documents such as
movie reviews, where each sample is independent
from the others, dialogues within a typical TV show
are highly structured (Knyazeva et al., 2015). Ev-
ery utterance is highly related to its prior and sub-
sequent utterances, and it is important to take se-
quential information into account in predicting the
speakers. However, contextual information is com-
pletely ignored by the basic CNN model. Each
batch of input to the model consists of discrete ut-
terances from different episodes and seasons, as
shown in Figure 2.

To remedy the loss of contextual information,
the CNN model is modified in a manner similar to
the one proposed by Lee and Dernoncourt (2016).
After the global max pooling layer, each utterance
vector is concatenated with both the previous two
utterances and the subsequent utterance in the same
scene. Then, the vector is fed into the fully con-

2snap.stanford.edu/data/web-Amazon.
html
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Dataset M P R1 R2 J C O Total

Training 5,017 4,349 5,308 5,527 4,738 5,268 7,006 37,213
Development 898 799 1,092 821 930 846 931 6,317
Evaluation 810 769 1,082 983 909 673 999 6,225

Training 919 840 934 931 943 994 1,199 6,760
Development 151 148 151 131 148 139 159 1,027
Evaluation 116 116 137 132 129 119 156 905

Table 2: Dataset distribution by speakers. M: Monica, P: Phoebe, R1: Rachel, R2: Ross, J: Joey, C:
Chandler, O: Other. Non-main speakers (all the others), are collectively grouped as the Other speaker.

nected layer. In this model, some information on
the original dialogue sequence is preserved. Each
scene is padded to the maximal sequence length,
and fed into the model as one batch for both train-
ing and decoding. Figure 3 illustrates the structure
of the model. Although topics within the scene are
closely related, any single utterance is usually only
relevant to its surrounding utterances. Based on
this observation, including additional utterances in
the prediction process can result in noisy input to
the prediction model.

In a typical TV show, only a subset of characters
are present in any particular scene. To further boost
our model’s ability to distinguish between speakers,
the model optionally considers the set of speakers
appearing in the scene. At the decoding stage, the
Softmax probabilities for speakers absent from the
scene are set to 0. The model benefits from the
restrictions on its prediction search space. Such
restrictions are applicable in the domain of targeted
surveillance, where a vast number of speakers can
be precluded from consideration during the identifi-
cation process. For instance, speaker identification
on a surveilled dialogue inside a criminal syndicate
need only consider the members of the organiza-
tion. In the majority of cases, however, the set
of possible speakers may be difficult to ascertain.
Therefore, we exclude this information in the deter-
mination of the best performing model.

4.5 CNN with Utterance Concatenation

Many individual utterances appearing in the dataset
are fairly laconic and generic, as exemplified by
the last utterance shown in Table 1, rendering them
challenging to classify even with the help of con-
textual information. The proposed solution is to
group multiple utterances together as one sample.
Specifically, all of the utterances for each speaker
in one scene are concatenated in the original dia-

logue order. We assign consistent unknown labels
to all speakers in this dataset so that all the utter-
ances in a single scene maintain their trackable
provenances from the same speakers. The concate-
nated individual utterances can be fairly reasonable
and consistent speech. As documents increase in
length, it becomes easier for the CNN model to
capture the speech pattern of each speaker. Once
again, this model also optionally restricts its predic-
tion search space to the set of speakers appearing
in the scene for each batch of input.

5 Experiments

In the KNN experiment, the transcript to season
8 of Friends is used as evaluation data, and the
first 7 seasons as training data. In the rest of the
experiments, season 8 is used as evaluation data,
and season 7 is used as the development set. The
first 6 seasons are used as the training dataset. In
each experiment, the F1 scores for the speakers, the
average F1 score for major speakers, the average F1
score for all speakers, and the accuracy are reported
in Tables 3 and 4.

In Kundu et al. (2012), the highest accuracy
achieved by the KNN approach on the paper’s film
dialogue dataset was 30.39% , which is compa-
rable to the best result of this paper. In contrast,
the KNN approach did not perform well on the
Friends dataset. Upon further examination of the
KNN model’s prediction process, we observe that
the cosine similarities between any given utterance
and its 15 nearest neighbors are consistently above
98%. The speaker labels are not linearly separable
due to the low dimensionality of the feature space.
The basic CNN model is able to outperform the
baseline by almost 9% because the highly differ-
ing n-grams frequencies in the dataset enabled the
model to distinguish between speakers. It is also
worth noting that when the surrounding utterances
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Individual F1 Score

Model M P R1 R2 J C O MF1 F1 ACC

KNN 13.30 12.13 17.34 19.23 14.68 14.61 19.23 15.22 15.80 16.18
RNN 17.87 15.22 14.98 17.51 17.42 13.48 12.02 15.39 15.50 16.05
CNN 20.55 17.52 24.20 24.70 28.15 14.05 31.81 21.36 22.86 25.01
Multi-Document-CNN 20.65 25.20 29.67 35.76 37.29 23.93 35.55 28.75 29.72 31.06

CNN-Concatenation 29.35 28.49 33.11 30.05 44.18 26.20 39.42 31.90 32.97 34.19

Table 3: Model performance. MF1: Average of F1 scores for major speakers, F1: Average of F1 scores
for all speakers, ACC: Accuracy

Individual F1 Score

Model M P R1 R2 J C O MF1 F1 ACC

Multi-Document-CNN-2 28.13 29.59 41.49 48.15 45.72 36.06 46.98 38.19 39.45 41.36

CNN-Concatenation-2 36.43 33.16 50.09 45.03 53.67 39.90 51.02 43.05 44.19 46.48

Table 4: Model performance where the prediction labels are restricted to speakers present in each scene.

are taken into account, identification accuracy in-
creases significantly from that achieved by the sim-
ple CNN. With more contextual information, the
model is able to identify speakers with higher ac-
curacy, as individual speakers react differently in
comparable situations.

The experiment on the utterance concatenation
dataset yields a relatively high identification accu-
racy, corroborating our theory that the prediction
model can better capture different speech patterns
on longer documents. When prediction labels are
restricted to the speakers present in a scene, accu-
racy boosts of 10% and 12% are achieved on the
two datasets, respectively.

Table 5 shows the confusion matrix produced by
the multi-document CNN, i.e., the best performing
model. The speakers for whom the model produces
higher accuracies (Ross and Other) are also con-
fused by the model more often than other speakers.
The cause can be accounted for by the model’s
overzealousness in assigning these two labels to
utterances due to their relatively large percentages
in the training data. In addition, Monica and Chan-
dler are often confused with each other. Due to
their romantic relationship, it is possible that there
is a convergence between their idiolectal styles. On
the other hand, the confusion rates between Phoebe
and Rachel, and between Phoebe and Joey are both
fairly low. Such results confirm the observation
that the frequency of interactions between speaker
pairs correlates with the rate of confusion.

6 Conclusion

This paper presents a neural network-based ap-
proach to speaker identification in multiparty dia-
logues relying only on textual transcription data.
The promising experimental results confirm the
value of textual features in speaker identification
on multiparty dialogues. The improvements pro-
duced by the consideration of neighboring utter-
ances in the CNN’s prediction process indicate that
contextual information is essential to the perfor-
mance of text-based speaker identification. Prior to
this paper, Serban and Pineau (2015) used scripted
dialogues to identify turn-taking and differences in
speakers, where the actual identities of the speak-
ers are irrelevant. However, this paper enables an
identification where the names of the speakers are
associated with their own utterances, a novel at-
tempt in text-based speaker identification. Because
of the ability of the model to uncover speaker iden-
tities in the absence of audio data, applications and
interests in the intelligence and surveillance com-
munity are expected.

Although speaker verification based on acoustic
signals is a helpful tool, it can conceivably be de-
feated by voice modulating algorithms. Whereas
text-based speaker identification can discern the
involuntary and unconscious cues of speakers. It
is of interest to incorporate text-based features in a
larger system of speaker identification to enhance
its security. Several dialogue emotion recogni-
tion systems have incorporated both acoustic and
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S
P

M P R1 R2 J C O

M 22.10 8.40 6.17 17.90 8.27 20.37 16.79
P 12.09 20.16 6.63 18.21 4.81 17.95 20.16
R1 13.22 6.38 18.39 19.50 4.25 15.90 22.37
R2 8.75 4.17 4.68 45.17 5.70 14.95 16.58
J 9.13 4.51 6.38 19.03 29.59 16.61 14.74
C 18.28 6.39 3.42 10.85 6.84 34.92 19.32
O 13.21 3.80 5.01 12.71 4.80 15.02 45.45

Table 5: Confusion Matrix between speakers. S: true speaker, P: predicted speaker.

textual features, and resultant performances show
improvements upon previous systems which rely
only on one kind of features(Chuang* and Wu,
2004; Polzehl et al., 2009). Similarly, integration
of acoustic and textual information in the speaker
identification task can result in improved perfor-
mance in future works.
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Abstract

Network representation is the basis of
many applications and of extensive in-
terest in various fields, such as infor-
mation retrieval, social network analy-
sis, and recommendation systems. Most
previous methods for network represen-
tation only consider the incomplete as-
pects of a problem, including link struc-
ture, node information, and partial integra-
tion. The present study introduces a deep
network representation model that seam-
lessly integrates the text information and
structure of a network. The model cap-
tures highly non-linear relationships be-
tween nodes and complex features of a
network by exploiting the variational au-
toencoder (VAE), which is a deep unsu-
pervised generation algorithm. The repre-
sentation learned with a paragraph vector
model is merged with that learned with the
VAE to obtain the network representation,
which preserves both structure and text in-
formation. Comprehensive experiments is
conducted on benchmark datasets and find
that the introduced model performs better
than state-of-the-art techniques.

1 Introduction

Information network representation is an impor-
tant research issue because it is the basis of many
applications, such as document classification in
citation networks, functional label prediction in
protein-protein interaction networks, and potential
friend recommendations in social networks. Al-
though there are not a few recent work proposed to
study the issue (Belkin and Niyogi, 2003; Tenen-
baum et al., 2001; Cao et al., 2015; Tian et al.,
2014; Cao, 2016), it is still far from satisfactory

because of the intrinsic difficulty. In essence, the
rich and complex information (i.e., link structure
and node contents) embedded in information net-
works poses a significant challenge in the effective
representation of networks.

Network-distributed representation learning can
be viewed as a problem using low-dimensional
vectors to represent nodes in a network. Most net-
work representation methods are based on a net-
work structure. The traditional representation is
based on matrix decomposition and uses eigenvec-
tors as representation (Belkin and Niyogi, 2003;
Roweis and Saul, 2000; Tenenbaum et al., 2001).
Furthermore, they extend to high-order informa-
tion (Cao et al., 2015). However, these meth-
ods are not applicable to large-scale networks,
and although many approximate approaches have
been developed to solve this problem, they are
not effective enough. Some methods are based
on optimization objective functions (Tang et al.,
2015; Pan et al., 2016; Yang et al., 2015). Al-
though they are suitable for large-scale network
data, they adopt shallow models that are limited
in terms of performance and are difficult to use
to obtain highly non-linear relationships that are
vital to the preservation of network structure. In-
spired by deep learning techniques in natural lan-
guage processing, (Perozzi et al., 2014; Grover
and Leskovec, 2016) adopted several stunted ran-
dom walks in networks to generate node se-
quences serving as sentence corpus and then ap-
plied the skip-gram model to these sequences to
learn node representation. However, they cannot
easily handle additional information during ran-
dom walks in a network.

To capture highly non-linear structures for
large-scale networks, (Tian et al., 2014; Cao,
2016) introduced an autoencoder to model train-
ing instead of using a sampling based method
to generate linear sequences. Motivated by this
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model, we develop the variational autoencoder
(VAE) (Kingma and Welling, 2014), which is a
deep generation model, instead of a basic autoen-
coder. Most previous studies utilized only one
type of information in networks. The work in (Le
and Mikolov, 2014) focused on node content, and
others (Grover and Leskovec, 2016; Perozzi et al.,
2014) explored link structure. Although a few
previous models (Pan et al., 2016; Yang et al.,
2015) combined both text information and net-
work structure, they did not preserve the complete
network structure and only partially utilized node
content. A straightforward method is to learn rep-
resentations from text features and network struc-
ture independently, and then concatenate the two
separate representations.

To address the above issues, we introduce a
deep generative model to learn network represen-
tation by modeling both node content information
and network structure comprehensively. First, the
representation based on node content through the
paragraph vector model is obtained. Then, we feed
the network adjacency matrix and representation
obtained into a deep generative model, the build-
ing block of which is the VAE. After stacking sev-
eral layers of the VAE, the result of the first layer is
chosen before decoding as the final representation.
Intuitively, we can obtain the representation con-
taining both content information and structure in
a d-dimensional feature space. The experimental
evaluation demonstrates the superior performance
of the model on the benchmark datasets.

2 Preliminary

Notation: Let G = (V,E,C) denote a given net-
work, where V = {vi}i=1...N is the node set and
E = {eij} is the edge set that indicates the re-
lation of nodes. If a direct link exists between vi
and vj then eij = 1; otherwise, eij = 0 when
network is unweighted. C = {ci} is the set of
content information. let A denote the adjacency
matrix for a network, and let x = {ei,k, ..., en,k}
be an adjacency vector. Our goal is to seek a low-
dimensional vector ~yj for each node vi of a given
network.
Autoencoder: We first provide a brief description
of a basic autoencoder and the VAE. The basic au-
toencoder first compresses the input into a small
form and then transforms it back into an approx-
imation of the input. The encoding part aims to
find the compression representation z of a given

data x, and the decoding part is a reflection of the
encoder used to reconstruct the original input x.
The VAE (Kingma and Welling, 2014) imposes
a prior distribution on the hidden layer vector of
the autoencoder and re-parameterizes the network
according to the parameters of the prior distribu-
tion. Through the parameterization process, the
means and variance values of the input data can
be learned. We extended VAE to generate two
means and variances of input data, which can be
considered correspond to the content and structure
respectively.

3 Model Description

The architecture of the proposed model is shown
in Fig. 1. The whole architecture consists of two
main modules, namely, the content2vec module
and the union training module. For an informa-
tion network, such as a paper citation network, we
can obtain the node link and content information
(e.g., paper abstract). We learn an effective feature
representation vector that preserves both structure
information and node content information and can
thus be applied to many tasks (e.g., paper classifi-
cation).

3.1 Content2vec Module

We employ the state-of-the-art approach called
doc2vec (Le and Mikolov, 2014), which uti-
lizes text to learn vector representations of docu-
ments, as our content2vec module. Specifically, if
one node contains other information (e.g., author
name), we treat it as a word and merge it into the
comprehensive text information (e.g., the abstract
of the paper in the citation network) as the con-
tent of the node. A representation ui that includes
the node content information is obtained from this
module.

3.2 Union-training Module

The union training module is the core part of our
model, in which content information and structure
information are integrated. The details are shown
in Fig 1. The VAE is adopted as the main block.
Given a network, the adjacency matrix A can be
obtained. A can describe the relationship among
the nodes and reflect the overall structure of the
network. We extract each adjacency vector ai and
concatenate it with the corresponding ui as the in-
put xi of our model. Therefore, the content and
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Figure 1: Architecture of our model. wi can be seen as a word of the content information, ui is a node
in the network, ui is a representation vector learned by the Content2Vec Module, xi is a vector of the
adjacency matrix. The input of the union-training module is combination of xi and ui, the encoder
and decoder are stack full-connected layer, σi1,σi2,µi1,µi2 can be seen the mean and variance of the
distribution of the content and structure data, respectively. εi1 and εi2 are the sample data from two
Gaussian distributions.

structure information is able to be learned simul-
taneously.

During the encoding phase, we adapt several
fully connected layers composed of multiple non-
linear mapping functions to map the input data to a
highly nonlinear latent space. Therefore, given the
input xi, the output hk for the kth layer is shown
as follow:

h1 = π(W 1xi + b
1)

hk = π(W khk−1 + bk), k = 1, 2...K
(1)

where π is the nonlinear activation function of
each layer. The value of K varies with the data.

In the last layer of encoder, we obtain four out-
put: µi1, σi1 µi2 and σi2. They can be treated
as the means and variances of the distribution of
content information and structure information re-
spectively. Furthermore, we sample two values
εi1 and εi2 from two previous distributions (e.g.,
Gaussian distribution). Then we can obtain the re-
parameterized zi1 and z21. Through concatenate
zi1 and z21, content and structure information can
be integrated together, yi is the representation of
the network. Nonlinear operations are not per-
formed in this phase. Thus, the gradient descent
method can be safely applied in optimization. The
operations can be expressed as follows:

zik = f(µik,σik, εi), k = 1, 2

yi =Merge[zi1, zi2]
(2)

where f is a linear function that can re-
parameterize yi, Merge concatenate the two vec-
tors together directly.

The decoding phase is a reflection of the en-
coder; its output x̂i should be close to the input
xi. The loss function of this module that should
be minimized is as follows:

L(xi) = −
2∑

k=1

KL(q(zik|xi)||p(zik))+H(xi, x̂i)

(3)
where KL is the KL divergence which is always

used as a measure of the difference between two
distributions, H is a cross-entropy function that is
used to measure the difference between xi and x̂i.

Finally, We choose the output of the layer yi as
the final representation of each node.

4 Experiments

4.1 Experimental setup

Paper citation networks is a classical social infor-
mation network. To evaluate the quality of the
proposed model, we conduct three important tasks
on two benchmark citation network datasets: (1)
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Table 1: Macro-F1 score on Citeseer-M10 Network

%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours

10% 0.254 0.297 0.314 0.503 0.526 0.475 0.683 0.889
30% 0.321 0.334 0.331 0.536 0.615 0.488 0.744 0.913
50% 0.352 0.346 0.346 0.547 0.633 0.495 0.760 0.924
70% 0.363 0.344 0.339 0.534 0.630 0.495 0.773 0.940

Table 2: Macro-F1 score on DBLP Network

%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours

10% 0.328 0.379 0.448 0.574 0.495 0.660 0.724 0.751
30% 0.362 0.454 0.473 0.598 0.586 0.687 0.742 0.753
50% 0.371 0.459 0.475 0.604 0.614 0.697 0.747 0.762
70% 0.372 0.461 0.476 0.605 0.628 0.699 0.748 0.763

CiteSeerM101. It contains 10 distinct categories
with 10,310 papers and 77,218 citations. Titles
are treated as the text information because no
more text information is available; and (2) DBLP
dataset2. We treat abstracts as text information
and choose 4 research areas with the same setting
as that of (Pan et al., 2016), which are database
(SIGMOD, ICDE, VLDB, EDBT, PODS, ICDT,
DASFAA, SSDBM, CIKM), data mining (KDD,
ICDM, SDM, PKDD, PAKDD), artificial intelli-
gent (IJCAI, AAAI, NIPS, ICML, ECML, ACML,
IJCNN, UAI, ECAI, COLT, ACL, KR), computer
vision (CVPR, ICCV, ECCV, ACCV, MM, ICPR,
ICIP, ICME). Therefore we get a network contains
30,422 nodes and 41,206 edges.

We compare our approach with the following
methods:

• One-Hot uses adjacency matrix, which car-
ries the structure information as the high-
dimension representation, and directly feed
into the classifier.

• DeepWalk (Perozzi et al., 2014) is exploited
by statistical models, which employs trun-
cated random walks to learns nodes embed-
ding by treating walk as the equivalent of sen-
tences.

• Node2vec (Grover and Leskovec, 2016)
learns the network representation by design-
ing a biased random walk procedure which
efficiently explores diverse neighborhoods.

• Doc2vec (Le and Mikolov, 2014) is the Para-
graph Vector model that learns document rep-

1http://citeseerx.ist.psu.edu/
2http://arnetminer.org/citation (V4 version is used)

resentation by predicting the words appeared.

• DW+D2V is simply to concatenate the rep-
resentation result learned by DeepWalk and
Doc2vec.

• TADW (Yang et al., 2015) is text-based
DeepWalk, which incorporates text informa-
tion into network structure by matrix factor-
ization.

• TriDNR (Pan et al., 2016) uses node text, la-
bel, and structure to jointly learn node repre-
sentation.

4.2 Performance on Node Classification

We conduct the paper classification task on two
benchmark citation networks to evaluate the per-
formance of our method. To reduce the impact
of sophisticated classifiers on the performance, we
employ a linear SVM, which is a common tech-
nique used by the exiting work (Pan et al., 2016).
The results are shown in Table 1 and Table 2, re-
spectively. The reported parameters for our model
are set: dimension d=100 on CiteseerM10 and
d=300 on DBLP. The dimension for other algo-
rithms is the same as ours, and the other parame-
ters are set as their papers report, i.e., window size
b=10 in DeepWalk and Node2vec, in-out parame-
ter q=2 in Node2vec, text weight ∂=0.8 in TADW
and TriDNR. We use Macro-F1 which is the same
as that adopted by other algorithms to measure the
classification performance. The experiments are
independently conducted 10 times for each setting,
and the average values are reported. The propor-
tion of training data with labels is range from 10%
to 70%.
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(a) (b) (c) (d)

Figure 2: Performance of each strategy on different training proportion p

Our model is evaluated by comparing it with
seven approaches. One-Hot uses the original
structure data, and its performance is poor because
it is discrete and the context relation of nodes can
not be captured. DeepWalk and Node2vec are
structure-based methods that exhibit inferior per-
formance mainly because they only use the shal-
low structure information and the network is rather
sparse, while the information of the complex non-
linear structure cannot be employed. The perfor-
mance of Doc2vec is not as good as ours which
demonstrates the effectiveness of our proposed
model. TADW and TriDNR are inferior to our
approach, although these two methods also con-
sider the text and structure. Nevertheless, they
cannot capture the complex non-linear structure.
The reason for the superior of our method is
that our model can effectively capture the inter-
relationship between node content and link struc-
ture, and the intro-relationship among nodes and
links, which are essential to learn the represen-
tation of networks. Furthermore, our model can
capture the information of highly non-linear struc-
ture instead of the shallow structure (e.g., Deep-
Walk) by exploiting VAE. Moreover, our approach
does not require heavy text information which
is utilized by the other state-of-the-art strategies
(e.g.,TriDNR). Our model exhibits consistent su-
perior performance, and is up to 16% better than
the state-of-the-art methods (i.e., the Macro-F1
score of our model is 94% when the proportion
of training data with labels is 70% conducted on
the Citeseer-M10 Network dataset).

4.3 Parameter Setting
A significant hyperparameter in our model is the
dimension d. The performance of different meth-
ods with varying dimensions has been evaluated.
The result is illustrated in Fig. 2. We obtain very
good performance on the CiteSeer-M10 dataset,

i.e., the Macro-F1 score is 94% and the perfor-
mance tends to be stable as b becomes larger. It
validates the effectiveness of our algorithm and the
reason is due to the ability of our model that can
capture the complex network structure and the text
information. From Fig. 2, we can see that the per-
formance gets better when d increases from 100 to
600. We think the main reason is because more in-
formation can be preserved in higher dimensional
space of the datasets.

5 Conclusions

In this paper, we have introduced an effective
network representation model, which comprehen-
sively integrates the text information and the net-
work structure. We introduced Paragraph Model
as a preliminary module. And we have exploited
Variational Autoencoder as the main block of our
model, that could capture highly non-linear struc-
ture of the network. The comprehensive experi-
mental evaluation on two benchmark datasets has
demonstrated the effectiveness of the model.
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Abstract

Phonemic segmentation of speech is a crit-
ical step of speech recognition systems.
We propose a novel unsupervised algo-
rithm based on sequence prediction mod-
els such as Markov chains and recurrent
neural networks. Our approach consists
in analyzing the error profile of a model
trained to predict speech features frame-
by-frame. Specifically, we try to learn
the dynamics of speech in the MFCC
space and hypothesize boundaries from lo-
cal maxima in the prediction error. We
evaluate our system on the TIMIT dataset,
with improvements over similar methods.

1 Introduction

One of the main difficulty of speech processing
as opposed to text processing is the continuous,
time-dependent nature of the signal. As a conse-
quence, pre-segmentation of the speech signal into
words or sub-words units such as phonemes, syl-
lables or words is an essential first step of a variety
of speech recognition tasks.

Segmentation in phonemes is useful for a num-
ber of applications (annotation of speech for
the purpose of phonetic analysis, computation of
speech rate, keyword spotting, etc), and can be
done in two ways. Supervised methods are based
on an existing phoneme or word recognition sys-
tem, which is used to decode the incoming speech
into phonemes. Phonemes boundaries can then
be extracted as a by-product of the alignment of
the phoneme models with the speech. Unsuper-
vised methods (also called blind segmentation)
consist in finding phonemes boundaries using the
acoustic signals only. Supervised methods depend

∗This work was done when the author was an intern at
LSCP / ENS / EHESS / CNRS

on the training of acoustic and language models,
which requires access to large amounts of linguis-
tic resources (annotated speech, phonetic dictio-
nary, text). Unsupervised methods do not require
these resources and are therefore appropriate for
so-called under-resourced languages, such as en-
dangered languages, or languages without consis-
tent orthographies.

We propose a blind phoneme segmentation
method based on short term statistical properties
of the speech signal. We designate peaks in the
error curve of a model trained to predict speech
frame by frame as potential boundaries. Three dif-
ferent models are tested. The first is an approx-
imated Markov model of the transition probabili-
ties between categorical speech features. We then
replace it by a recurrent neural network operating
on the same categorical features. Finally, a recur-
rent neural network is directly trained to predict
the raw speech features. This last model is espe-
cially interesting in that it couples our statistical
approach with more common spectral transition
based methods (Dusan and Rabiner (2006) for in-
stance).

We first describe the various models used and
the pre- and post-processing procedures, before
presenting and discussing our results in the light
of previous work.

2 Related work

Most previous work on blind phoneme segmenta-
tion (Esposito and Aversano, 2005; Estevan et al.,
2007; Almpanidis and Kotropoulos, 2008; Rasa-
nen et al., 2011; Khanagha et al., 2014; Hoang
and Wang, 2015) has focused on the analysis of
the rate of change in the spectral domain. The
idea is to design robust acoustic features that are
supposed to remain stable within a phoneme, and
change when transitioning from one phoneme to
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the next. The algorithm then define a measure
of change, which is then used to detect phoneme
boundaries.

Apart from this line of research, three main
approaches have been explored. The first idea
is to use short term statistical dependencies. In
Räsänen (2014), the idea was to first discretize
the signal using a clustering algorithm and then
compute discrete sequence statistics, over which a
threshold can be defined. This is the idea that we
follow in the current paper. The second approach
is to use dynamic programming methods inspired
by text segmentation (Wilber, 1988), in order to
derive optimal segmentation (Qiao et al., 2008). In
this line of research, however, the number of seg-
ments is assumed to be known in advance, so this
cannot count as blind segmentation. The third ap-
proach consists in jointly segmenting and learning
the acoustic models for phonemes (Kamper et al.,
2015; Glass, 2003; Siu et al., 2013). These mod-
els are much more computationally involved than
the other methods. Interestingly they all use a sim-
pler, blind segmentation as an initialization phase.
Therefore, improving on pure blind segmentation
could be useful for joint models as well.

The principal source of inspiration for our work
comes from previous work by Elman (1990) and
Christiansen et al. (1998) published in the 90s. In
the former, the author uses recurrent neural net-
works to train character-based language models on
text and notices that ”The error provides a good
clue as to what the recurring sequences in the in-
put are, and these correlate highly with words.”
(Elman, 1990). More precisely, the error tends
to be higher at the beginning of new words than
in the middle. In the latter, the author uses El-
man recurrent neural networks to predict bound-
aries between words given the character sequence
and phonological cues.

Our work uses the same idea, using prediction
error as a cue for segmentation, but with two im-
portant changes: we apply it to speech instead of
text, and we use it to segment in terms of phoneme
units instead of word units.

3 System

3.1 Pre-processing

We used two kinds of speech features : 13 di-
mensional MFCCs (Davis and Mermelstein, 1980)
(with 12 mel-cepstrum coefficients and 1 energy
coefficient) and categorical one-hot vectors de-

rived from MFCCs inspired by Räsänen (2014).

Figure 1: Visual representation of the various
features on 100 frames from the TIMIT corpus.
From top to bottom are the waveform, the 13-
dimensional MFCCs and the 8-dimensional one
hot encoded categorical features.

The latter are computed according to Räsänen
(2014) : K-means clustering1 is performed on a
random subset of the MFCCs (10,000 frames were
selected at random), with a target number of clus-
ters of 8, then each MFCC is identified to the clos-
est centroid. Each frame is then represented by a
cluster number c ∈ {1, . . . , 8}, or alternatively by
the corresponding one-hot vector of dimension 8.
These hyper-parameters were chosen according to
Räsänen (2014).

Figure 1 allows for a visual comparison of the
three signals (waveform, MFCC, categorical).

The entire dataset is split between a training and
a testing subset. A randomly selected subset of the
training part is used as validation data to prevent
overfitting.

3.2 Training phase

A frame-by-frame prediction model is then
learned on the training set. The three different
models used are described below :

Pseudo-markov model When trying to pre-
dict the frame xt given the previous frames
xt−10 := xt−1, . . . , x0, a simplifying assumption is
to model the transition probabilities with a Markov

1In particular, we use the K-means++ (Arthur and Vas-
silvitskii, 2007) algorithm, and pick the best outcome of 10
random initializations
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chain of higher order K, i.e. p(xt|xt−10 ) = p(xt |
xt−1t−K). Provided each frame is part of a finite al-
phabet, a finite (albeit exponential in K) number
of transition probabilities must be learned.

However, as the order rises, the ratio between
the size of the data and the number of transition
probability being learned makes the exact calcula-
tion more difficult and less relevant.

In order to circumvent this issue, we approxi-
mate the K-order Markov chain with the mean of
1-order markov chain of the lag-transition proba-
bilities p(xt|xt−i) for 1 6 i 6 K, so that

p(xt|xt−10 ) =
1

K

K∑

i=1

p(xt|xt−i) (1)

with p(xt|xt−i) = f(xt,xt−i)
f(xt−i)

.
In practice, we chose K = 6, thus ensuring that

the markov model’s attention is of the same order
of magnitude than the length of a phoneme.

Compared to Räsänen (2014), this model only
uses information from previous frames and as such
is completely online.

Recurrent neural network on categorical fea-
tures Alternatively to Markov chains, the tran-
sition probability p(xt|xt−10 ) can be modeled by
a recurrent neural network (RNN). RNN can the-
oretically model indefinite order temporal de-
pendencies, hence their advantage over Markov
chains for long sequence modeling.

Given a set of examples {(xt, (xt−10 )) |
t ∈ {0, . . . , tmax}}, the networks parameters are
learned so that the error E(xt,RNN(xt−10 )) is
minimized using back propagation through time
(Werbos, 1990) and stochastic gradient descent or
a variant thereof (we have found RMSProp (Tiele-
man and Hinton, 2012) to give the best results).

In our case, the network itself consists of two
LSTM layers (Hochreiter and Schmidhuber, 1997)
stacked on one another followed by a linear layer
and a softmax. The input and output units have
both dimension 8, whereas all other layers have
the same hidden dimension 40. Dropout (Srivas-
tava et al., 2014) with probability 0.2 was used af-
ter each LSTM layer to prevent overfitting.

A pitfall of this method is the tendency of the
network to predict the last frame it is fed. This
is due to the fact that the sequences of categori-
cal features extracted from speech contain a lot of
constant sub-sequences length > 2.

As a consequence, around 80% of the data fed
to the network consists of sub-sequences where
xt = xt−1 . Despite the fact that phone bound-
aries are somewhat correlated with changes of cat-
egories (around 65% of the time), this leads the
network to a local minimum where it only tries to
predict the same characters.

To mitigate this effect, examples where xt =
xt−1 were removed with probability 0.8, so that
the number of transitions was slightly skewed to-
wards category transitions. The model still passed
over all frames during training but the error was
back-propagated for only 46% of them. This
change lead to substantial improvement.

Recurrent neural network on raw MFCCs
The recurrent neural network model can be
adapted to raw speech features simply by changing
the loss function from categorical cross-entropy to
mean squared error, which is the direct translation
from a categorical distribution to a Gaussian den-
sity (2‖x− y‖22 + d is the Kullback-Leibler diver-
gence of two d-dimensional normal distributions
centered in x and y with the same scalar covari-
ance matrix).

We used the same architecture than in the cat-
egorical case, simply removing the softmax layer
and decreasing the hidden dimension size to 20.
In this case, no selection of the samples is needed
since the sequences vary continuously.

3.3 Test phase
Each model is run on the test set and the prediction
error is calculated at each time step according to
the formula :

Emarkov(t) = − log

(
K∑

i=1

p(xt|xt−i)
)

ERNN-cat(t) = −
d∑

i=1

1xt=i log(RNN(xt−10 ))

ERNN-MFCC(t) =
1

d

∥∥xt − RNN(xt−10 )
∥∥2
2

(2)

In each case this corresponds, up to a scaling
factor constant across the dataset, to the Kullback-
Leibler divergence between the predicted and ac-
tual probability distribution for xt in the feature
space.

Since all three systems predict probabilities
conditioned by the preceding frames, they cannot
be expected to give meaningful results for the first
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Algorithm P R F R-val
Periodic 57.5 91.0 70.5 46.9

Rasanen (2014) 68.4 70.6 69.5 73.7
Markov 70.7 77.3 73.9 76.4

RNN (Cat.) 68.7 77.1 72.7 74.6
RNN (Cont.) 70.3 72.4 71.3 75.3

Table 1: Final results (in%) evaluated with
cropped tolerance windows

frames of each utterance. To be consistent, the first
7 frames (70 ms) of the error signal for each utter-
ance were set to 0.

A peak detection procedure is then applied to
the resulting error. As we are looking for sudden
bursts in the prediction error, a local maximum is
labeled as a potential boundary if and only if the
difference between its value and the one of the pre-
vious minimum is superior to a certain threshold δ.

4 Experiments

4.1 Dataset
We evaluated our methods on the TIMIT dataset
Fischer et al. (1986). The TIMIT dataset consists
of 6300 utterances (∼ 5.4 hours) from 630 speak-
ers spanning 8 dialects of the English language.
The corpus was divided into a training and test
set according to the standard split. The training
set contains 4620 utterances (172,460 boundaries)
and the test set 1680 (65,825 boundaries).

4.2 Evaluation
The performance evaluation of our system is based
on precision (P ), recall (R) and F -score, defined
as the harmonic mean of precision and recall. A
drawback of this metric is that high recall, low
precision results, such as the ones produces by hy-
pothesizing a boundary every 5 ms (P : 58%, R :
91%) yield high F -score (70%).

Other metrics have been designed to tackle this
issue. One such example is the R-value (Räsänen
et al., 2009) :

R-val = 1−

√
(1− R)2 + OS2 + |R+1−OS√

2
|

2
(3)

Where OS = R
P − 1 is the over-segmentation

measure. The R value represents how close the
segmentation is from the ideal 0 OS, 1 R point and
the P=1 line in the R, OS space. Further details
can be found in Räsänen et al. (2009).

Algorithm P R F R-val
Periodic 62.2 98.3 76.2 49.8

Rasanen (2014) 74.0 70.0 73.0 76.0
Markov 74.8 81.9 78.2 80.1

RNN (Cat.) 72.5 81.4 76.7 78.0
RNN (Cont.) 77.6 72.7 75.0 78.6

Table 2: Final results (in%) evaluated with over-
lapping tolerance windows. The scores reported
for Rasanen (2014) are the paper results.

Determining whether gold boundary is detected
or not is a crucial part of the evaluation proce-
dure. On our test set for instance, which contains
65,825 gold boundaries partitioned into 1,680
files, adding or removing one correctly detected
boundary per utterance leads to a change of ±
2.5% in precision. This means that minor changes
in the evaluation process (such as removing the
trailing silence parts of each file, removing the
opening and closing boundary) yield non-trivial
variations in the end result.

A common condition for a gold boundary to be
considered as ’correctly detected’ is to have a pro-
posed boundary within a 20 ms distance on either
side. Without any other specification, this means
that a proposed boundary may be matched to sev-
eral gold boundaries, provided these are within 40
ms from each other, leading to an increase of up to
4% F-score in some of our results (74%—78%).
Unfortunately this point is seldom detailed in the
literature.

We decided to use the procedure described in
Räsänen et al. (2009) to match gold boundaries
and hypothesized boundaries : overlapping toler-
ance windows are cropped in the middle of the two
boundaries.

4.3 Results

The current state of the art in blind phoneme seg-
mentation on the TIMIT corpus is provided by
Hoang and Wang (2015). It evaluates to 78.16%
F-score and 81.11 R-value on the training part of
the dataset, using an evaluation method similar to
our own.

In Tables 1 and 2 we compare our best re-
sults to the previous statistical approach evoked in
Räsänen (2014) and the naive periodic boundaries
segmentation (one boundary each 5 ms). Since
Räsänen (2014) used an evaluation method allow-
ing for tolerance windows to overlap, we provide
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our results with both evaluation methods (full win-
dows and cropped windows) for the sake of con-
sistency.

Another main difference with Räsänen (2014)
is that its results are given on the core test set of
TIMIT, whereas our results are given on the full
test set.

Figure 2: Precision/recall curves for our various
models when varying the peak detection threshold
δ

Figure 2 provides an overview of the preci-
sion/recall scores when varying the peak detec-
tion threshold (and, in case of periodic boundaries,
the period). This gives some insight about the ac-
tual behavior of the various algorithms, especially
in the high precision, low recall region where the
RNN on actual MFCCs seems to outperform the
methods based on discrete features.

We provide Figure 3 as a qualitative assessment
of the error profiles of all three algorithms on one
specific utterance. Notably, the error profile of
the markov model contains distinct isolated peaks
of similar height. As expected, the error curve
is much more noisy in the case of the RNN on
MFCCs, due to the greater variability in the fea-
ture space.

5 Discussion

In terms of optimal F-score and R values, the sim-
ple Markov model outperformed the previously
published paper using short term sequential statis-
tics (Räsänen, 2014), as well as the recurrent neu-
ral networks. However, these optimal values may
mask the differential behavior of these algorithms
in different sections of the precision/recall curve.

In particular, it is interesting to notice that the
neural network based model trained on the raw
MFCCs gave very good results in the low recall,
high precision domain. Indeed, the precision can
reach 90% with a recall of 40%. Such a regime
could be useful, for instance, if blind phoneme
segmentation is used to help with word segmen-
tation.

The reason of the higher precision of neural
networks may be that it combines the sensitivity
of this model to sequential statistical regularities
of the signal, but also to the spectral variations,
i.e. the error is also correlated to the spectral
changes, meaning that some peaks are associated
with a high error because the euclidean distance
‖xt+1 − xt‖2 itself is big. This is why the height
difference is much more significant in this case.

Figure 3: Comparison of error signals (gold
boundaries are indicated in red)

Although we only reported the best results, we
also tested our model on two other neural network
architectures : a single vanilla RNN and a single
LSTM cell. Both architecture did not yield signifi-
cantly different results (∼ 1—2% F-score, mainly
dropping precision). Similarly, different hidden
dimension were tested. In the extreme cases (very
low - 8 - or high - 128 - dimension), the output
signal proved too noisy to be of any significance,
yielding results comparable to naive periodic seg-
mentation.

It is worth mentioning that our approach doesn’t
make any language specific assumption, and as
such similar results are to be expected on other
languages. We leave the confirmation of this as-
sumption to future work.
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6 Conclusions

We have presented a lightweight blind phoneme
segmentation method predicting boundaries at
peaks of the prediction loss of transition probabil-
ities models. The different models we tested pro-
duced satisfying results while remaining computa-
tionally tractable, requiring only one pass over the
data at test time.

Our recurrent neural network trained on speech
features in particular hints at a way of combining
both the statistical and spectral information into a
single model.

On a machine learning point of view, we high-
lighted the use that can be made of side channel
information (in this case the test error) in order to
extract structure from raw data in an unsupervised
setting.

Future work may involve exploring different
RNN models, assessing the stability of these meth-
ods on simpler features such as raw spectrograms
or waveforms, or exploring the representation of
each frame in the hidden layers of the networks.
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Abstract

When it comes to computational language
generation systems, humour is a relatively
unexplored domain, especially more so for
Hindi (or rather, for most languages other
than English). Most researchers agree that
a joke consists of two main parts - the
setup and the punchline, with humour be-
ing encoded in the incongruity between
the two. In this paper, we look at Dur se
Dekha jokes, a restricted domain of hu-
morous three liner poetry in Hindi. We
analyze their structure to understand how
humour is encoded in them and formalize
it. We then develop a system which is suc-
cessfully able to generate a basic form of
these jokes.

1 Introduction

The Oxford dictionary has defined humour as the
quality of being amusing or comic, especially as
expressed in literature or speech. It is an essential
element of human interactions. The understanding
and sense of humour varies widely across time,
space and people. The same properties which
make it interesting and compelling also make its
structure rich and complex, making it an interest-
ing topic of study.

Verbal humour is the most commonly used form
of humour in the everyday use of natural lan-
guage. Joke, a sub-class of verbal humour, is com-
monly considered the prototypical form of ver-
bal humour, produced orally in conversations or
published in collections (Dynel, 2009). Most re-
searchers ( Sherzer (1985), Attardo and Chabanne
(1992), Attardo (1994, 2001), Suls (1972)) agree
with Raskin (1985) that jokes comprise a setup and
a punchline. The setup builds a narrative and in-
duces some form of expectation, while the punch-

line is the final portion of the text, which violates
that expectation, thereby generating humour due
to the production of incongruity and its consequent
resolution.

As intelligent systems advance further and find
their way into increasingly more domains the need
to process human natural languages increases; a
challenging part of this is processing humour.
Hence, in this paper, we attempt to build a system,
which generates humorous texts in a restricted do-
main of Dur se Dekha type jokes, a form of hu-
morous three liner poetry1 in Hindi. This kind of
poetry was popular in the Indian culture at one
point but is almost lost now, with only a few re-
peated examples available online.

2 Related Work

Till date, there has been limited contribution to-
wards construction of computational humour gen-
eration systems. One of the first attempts in gen-
erating humour was the program JAPE (Binsted
and Ritchie (1997), Ritchie (2003)). JAPE used
an algorithm to generate funny punning riddles, or
more specifically phonologically ambiguous rid-
dles, having noun phrase punchlines.

HAHAcronym generator (Stock and Strappar-
ava, 2003) was another attempt at computational
humour generation, whose goal was to automati-
cally generate new versions of existing acronyms,
which were ensured to be humorous using incon-
gruity theories.

Aside from this, Taylor and Mazlack (2004),
worked on humour comprehension on a restricted
domain of ”knock-knock” jokes. Although the
heuristic based approach was able to effectively
identify the word-play instances which was the
first task, it faced difficulty in the knock-knock
joke identification part, again stressing the chal-

1A three line poem is called a tercet.
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lenge in humour analysis.
More Recently, Valitutti et al. (2016), attempts

to generate humorous texts by substitution of a sin-
gle word in a short text, within some constraints.
The results showed that taboo words made a text
recognizable as humorous.

Petrović and Matthews (2013) attempted to
build a fully unsupervised humour generation sys-
tem which generates a specific form of jokes us-
ing big data. This is a first attempt at unsupervised
joke generation which gave promising results.

While there have been some attempts to formal-
ize humour in English and a handful of other lan-
guages, to the best of our knowledge, no such prior
research work has been attempted in Hindi.

3 Dur se Dekha

Dur se Dekha is a focused form of poetic three
liner jokes in the Hindi language. These jokes
have a typical structure, with the humour lying in
the incongruity of the punchline against the expec-
tation of the listener. A typical Dur se Dekha joke
consists of three parts. The structure of a typical
Dur se Dekha joke can be surmised as follows:

Part1: Dur se dekha to NP1/VP1 tha,
Part2: Dur se dekha to NP1/VP1 tha,
Part3: Paas jaakar dekha to NP2/VP2

tha.

Translation:

Part1: From afar I saw NP1/VP1,
Part2: From afar I saw NP1/VP1,
Part3: On going closer it turned out to
be NP2/VP2

A Dur se Dekha joke employs stylistic features
like alliteration, repetition and rhyme, which have
previously been associated with humour appreci-
ation (Bucaria, 2004; Mihalcea and Strapparava,
2006).

The first part is the setup of the joke, the sec-
ond is a repetition of the first. This repetition puts
emphasis on the first. The beginning of the third
part raises the listeners expectation, and it is what
comes at the end that creates humour in this joke.
That is the element of surprise, the punch line.

Alliteration exists in the first and the third word
of the template. Also, the setup and the punchline
normally rhyme and contradict in meaning and
sentiment, which are two more indicators of hu-
mour present in these jokes. This is also precisely

why these jokes lose their humour when translated
into another language.

On further analysis, we classified these jokes
into two main types, which are explained below
with examples.

Type 1.a:

Part1: Dur se dekha to NP1 tha,
Part2: Dur se dekha to NP1 tha,
Part3: Paas jaakar dekha to NP2 tha.

An example of the basic form of this type would
be:

Joke1: Dur se dekha to Dharmendra
tha, dur se dekha to Dharmendra tha,
paas jaakar dekha to bandar tha.2

Joke1(translated): From afar I saw Dhar-
mendra, from afar I saw Dharmendra,
on going closer it turned out to be a
monkey.

A more complex example of the same type is:

Joke2: Dur se dekha to Gabbar Singh ka
adda tha, dur se dekha to Gabbar Singh
ka adda tha, paas jaakar dekha to aapka
chadda tha.3

Joke2(translated): From afar I saw Gab-
bar Singh’s haunt, from afar I saw Gab-
bar Singh’s haunt, on going closer it
turned out to be your underpants.

Type 1.b:

Part1: Dur se dekha to VP1 tha,
Part2: Dur se dekha to VP1 tha,
Part3: Paas jaakar dekha to VP2 tha.

Examples of jokes belonging to this category
are:

Joke3: Dur se dekha to ande ubal rahe
the, dur se dekha to ande ubal rahe the,
paas jaakar dekha to ganje uchal rahe
the.4

Joke3(translated): From afar I saw eggs
boiling, from afar I saw eggs boiling, on
going closer it turned out to be bald men
jumping.

2http://www.jokofy.com/2595/door-se-dekha-to-funny-
shayari/

3http://www.shayri.com/forums/showthread.php?t=27592
4http://www.shayri.com/forums/showthread.php?t=27592
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Joke4: Dur se dekha to hasina baal bana
rahi thi, dur se dekha to hasina baal
bana rahi thi, paas jaakar dekha to gaay
puch hila rahi thi.5

Joke4(translated): From afar I saw a
beautiful girl grooming her hair, from
afar I saw a beautiful girl grooming her
hair, on going closer it turned out to be
cow swinging its tail.

Type 2: The structure being the same as Type 1,
but differing in the how humour is encoded in the
joke.

Part1: Dur se dekkha to NP/VP1 tha,
Part2: Dur se dekha to NP/VP1 tha,
Part3: Paas jaakar dekha to NP/VP2 tha.

For example:

Joke5: Dur se dekha to kuch nahi dikha,
dur se dekha to kuch nahi dikha, paas
jaakar dekha to kuch tha hi nahi.6

Joke5(translated): From afar I could see
nothing, from afar I could see nothing,
on going closer it actually turned out to
be nothing.

Joke6(translated): Dur se dekha to baar-
ish ho rahi thi, dur se dekha to baarish
ho rahi thi, paas gaya to bheeg gaya.7

Joke6: From afar I saw that it was rain-
ing, from afar I saw that it was raining,
on going closer I got drenched.

The difference between Type1 and Type2 jokes
lies in the way humour is encoded in them. Type1
jokes are humorous because of how the punch line
contrasts with the subject of the setup in terms of
the sentiment. The incongruity between the sub-
ject (what something seems to be from far away)
versus the punchline (what it actually turns out to
be), induces surprise and amusement in the lis-
tener. The use of celebrity names further makes
a joke funnier. On the other hand, for Type2
jokes, humour lies in the unconventionality of the
punchline. The listener expects a conventional
punchline, something conflicting the subject, what

5http://desipoetry.com/door-se-dekha-series/
6http://desipoetry.com/door-se-dekha-series/
7http://www.shayri.com/forums/showthread.php?t=27592

he gets instead is an affirmation of the subject
(Joke5), or maybe a consequence of the subject in
the real world (Joke6). This is not unlike the way
humour is encoded in some shaggy dog jokes, ”a
nonsensical joke that employs in the punchline a
psychological non sequitur ... to trick the listener
who expects conventional wit or humour” (Brun-
vand, 1963).

For the purposes of this study, we will be look-
ing at only Type1 jokes.

4 Experimental Design

We are attempting to build a system that would
generate the Type1 jokes mentioned in the pre-
vious section. As of now this system generates
only the most basic form of Type1a jokes (such
as Joke1), but will be expanded upon to cover as
many types as possible.

The Joke generation process has four steps:

Step1: Template selection
Step2: Setup Formation
Step3: Punchline Formation
Step4: Compilation

These steps are explained in the subsections be-
low.

4.1 Template Selection

We created a collection of three templates for the
two types of jokes we are working on (Type1a
and Type1b), along with a few minor variations in
terms of auxiliary verbs, postpositions etc. These
varied templates were added to naturalize the final
jokes, and as a measure against joke fatigue.

4.2 Setup Formation

We manually created a lexicon of words from dif-
ferent semantic categories - human and non hu-
man. For humans, we compiled a list of names
of popular celebrities, both male and female, from
different domains - actors, politicians, players as
well as popular fictional characters. For the second
category in the lexicon we picked some generic
adjectives, and words (mostly nouns) from the
Hindi language that would have a negative senti-
ment when associated with a human, for example,
names of animals, or vegetables.

For the form of Type1a jokes we have been
working on, one word is picked randomly from
this lexicon. This is the setup, the subject for our
joke.
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4.3 Punchline Formation
We select a single word from the lexicon as our
punchline. This selection is done following three
constraints explained below:

1. Category constraint: The semantic category
of the punchline should be of a different cat-
egory than the subject.

2. Gender Constraint: As all non-human things
are assigned a gender out of male/female, the
gender of the punchline has to be the same as
the gender of the subject. This is important in
Hindi as it plays an important part in subject-
verb agreement.

3. Form constraint: A typical characteristic of
this type of jokes is that the subject of the
setup and the punchline are lexically similar,
giving a poetic effect to the joke. So, we first
look for a rhyming word for the punchline. If
a rhyming word isn’t found, we use Leven-
shtein distance to find a phonetically similar
word which is then used as the punchline.

4.4 Compilation
The template, the setup and the punchline is taken
and put together to generate the resultant joke.

Given below are a couple of examples of the
jokes generated by our system using the above
mentioned algorithm:

Joke7: Dur se dekha to mowgli tha,
dur se dekha to mowgli that, paas jaakr
dekha to chimpanzi tha.

Joke7(translated): From afar I saw
mowgli, from afar I saw mowgli, on go-
ing near I saw it was a chimpanzi.

Joke8: Dur se dekha to mussadi tha,
dur se dekha to mussadi that, paas jaakr
dekha to fissadi nikla.

Joke8(translated): From afar I saw Mr.
Mussadi, from afar I saw Mr.Musadi, on
going near he turned out to be a loser.

5 Evaluation and Results

We evaluated our system in 2 parts. We first drew
a comparison between human created jokes avail-
able and the ones generated by our system. Sec-
ond, we varied our constraints to see how that lead

Experimental Funniness
Conditions (mean ± std.dev.)
Form + Gender + Category 2.40 ± 0.53
Gender + Category 2.11 ± 0.54
Form + Gender 1.97 ± 0.49
Form + Category 1.68 ± 0.24

Table 1: Mean Funniness values, and standard de-
viations of computer generated jokes as different
constraints are applied.

to changes in humour perception of the resultant
jokes.

Since, in our sample set, we had only 5 in-
stances of the subtype of Dur se Dekha jokes that
we are working on, we took all of those 5 and an
equivalent number of jokes generated by our sys-
tem and put them in a survey in a random order.
We then asked 15 participants to rate how natural
each joke felt to them on a scale of 1 to 5 (with 5
being completely natural and 1 being completely
unnatural).

The analyses of the responses showed us that
the average score of the jokes generated by our
system was comparable to the average of our ex-
emplar human made jokes. With jokes from our
system having an average score of 3.16/5, our
system only marginally underperforms the human
jokes with an average score of 3.33/5. Another in-
teresting observation is that of all the jokes present
in the survey, the one with the highest score was
one of the computer generated jokes.

In the second part of the evaluation, we want
to look at how the three proposed constraints af-
fect the resultant text. For this, we created a set of
80 jokes - 20 from the system with all three con-
straints, and 20 each obtained removing one vari-
ation at a time. We then conducted a survey this
entire set. Each person who then took the survey
got a different randomly generated subset of jokes
to rate, with each joke being evaluated by 5 peo-
ple. In this survey, the evaluators were asked to
judge how funny they found each joke to be on a
scale of 1 to 5 (with 1 being not funny at all, to
5 being hilarious). The results of this evaluation
have been summarized in Table 1.

From Table 1, we see that people found our
jokes only mildly funny. We believe that the sim-
plicity, the lack of a deeper semantic meaning is
the reason for this. Varying the constraints, we
see that the jokes work best when they adhere to
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all three constraints. We infer from the table that
Gender constraint contributes the most to humor
in our jokes, while Form constraint contributes the
least.

We were unable to perform an inter-rater agree-
ment analysis because each joke was rated by a
different set of people. Instead, we chose to in-
clude the standard deviations for each set in our
analysis.

6 Future Extensions

Our joke generator is giving encouraging results
for the basic form of the jokes but it still has a
long way to go to improve domain coverage, and
only then will it be possible to evaluate how well
the system works.

The lexicon needs to be expanded to add adjec-
tives, adverbs and verbs so that noun phrases and
verb phrases can be formed and used as the subject
and the punchline. We also plan on adding asso-
ciated features of nouns, in terms of their physical
representation in the world, which would help add
semantic significance to the results. This will re-
quire much more sophisticated algorithms. This
task is especially challenging due to a lack of
availability of language resources and tools for
Hindi. We will need to develop phrase genera-
tors for Hindi for the task. Also, as the punch-
line should have the sentiment opposite to the sub-
ject line, more thought needs to put into what that
means for complete phrases.

The lexicon can be updated regularly. In fact,
we can make our system such that it automatically
picks up trending celebrity names, adjectives and
verbs from social media websites and use them as
subjects for the joke. This will be instrumental in
avoiding joke fatigue and would help our system
keep up with the fast changing culture these days.

Also, a much more extensive evaluation should
be done for the system when it is capable of gen-
erating more complex jokes. Naturalness of the
jokes, as well as their funniness needs to be eval-
uated on a larger scale. Using crowdsourcing for
such an evaluation would be a good choice to learn
more about the bigger picture.

7 Summary and Conclusion

Computational linguistics is a widely explored
field these days, with translation, summarization
and comprehension being a few of the many areas
of interest. Because of its complexity, and huge

amount of variations, verbal humour has been ex-
plored only mildly in computational language pro-
cessing, with only a few attempts at generating hu-
mour. This job is also made difficult due to the
lack of any robust theoretical foundations to base
a system on. Further, there has essentially been no
work of significance in the domain for Hindi.

Our Dur se Dekha joke generator is a first step
towards the exploration of humour in Hindi lan-
guage generation. In this paper, we took a focused
form of humorous tercets in Hindi - Dur se Dekha,
and performed an analysis of its structure and hu-
mour encoding. We then created a lexicon, and
came up with an algorithm to form the various el-
ements of the joke following specific constraints.
We saw that the jokes generated by our system
gave decent results in terms of naturalness and hu-
mour to serve as a baseline for future work.

Finally, we discussed possible extensions for
our system to make it more complete and compre-
hensive.
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Abstract

Manually grading the Response to Text
Assessment (RTA) is labor intensive.
Therefore, an automatic method is being
developed for scoring analytical writing
when the RTA is administered in large
numbers of classrooms. Our long-term
goal is to also use this scoring method
to provide formative feedback to students
and teachers about students’ writing qual-
ity. As a first step towards this goal, in-
terpretable features for automatically scor-
ing the evidence rubric of the RTA have
been developed. In this paper, we present a
simple but promising method for improv-
ing evidence scoring by employing the
word embedding model. We evaluate our
method on corpora of responses written by
upper elementary students.

1 Introduction

In Correnti et al. (2013), it was noted that the
2010 Common Core State Standards emphasize
the ability of young students from grades 4-8
to interpret and evaluate texts, construct logi-
cal arguments based on substantive claims, and
marshal relevant evidence in support of these
claims. Correnti et al. (2013) relatedly developed
the Response to Text Assessment (RTA) for as-
sessing students’ analytic response-to-text writing
skills. The RTA was designed to evaluate writing
skills in Analysis, Evidence, Organization, Style,
and MUGS (Mechanics, Usage, Grammar, and
Spelling) dimensions. To both score the RTA and
provide formative feedback to students and teach-
ers at scale, an automated RTA scoring tool is now
being developed (Rahimi et al., 2017).

This paper focuses on the Evidence dimension
of the RTA, which evaluates students’ ability to

find and use evidence from an article to support
their position. Rahimi et al. (2014) previously de-
veloped a set of interpretable features for scoring
the Evidence rubric of RTA. Although these fea-
tures significantly improve over competitive base-
lines, the feature extraction approach is largely
based on lexical matching and can be enhanced.

The contributions of this paper are as follows.
First, we employ a new way of using the word em-
bedding model to enhance the system of Rahimi
et al. (2014). Second, we use word embeddings
to deal with noisy data given the disparate writing
skills of students at the upper elementary level.

In the following sections, we first present re-
search on related topics, describe our corpora,
and review the interpretable features developed by
Rahimi et al. (2014). Next, we explain how we use
the word embedding model for feature extraction
to improve performance by addressing the limita-
tions of prior work. Finally, we discuss the results
of our experiments and present future plans.

2 Related Work

Most research studies in automated essay scor-
ing have focused on holistic rubrics (Shermis and
Burstein, 2003; Attali and Burstein, 2006). In
contrast, our work focuses on evaluating a sin-
gle dimension to obtain a rubric score for stu-
dents’ use of evidence from a source text to sup-
port their stated position. To evaluate the content
of students’ essays, Louis and Higgins (2010) pre-
sented a method to detect if an essay is off-topic.
Xie et al. (2012) presented a method to evaluate
content features by measuring the similarity be-
tween essays. Burstein et al. (2001) and Ong et al.
(2014) both presented methods to use argumen-
tation mining techniques to evaluate the students’
use of evidence to support claims in persuasive es-
says. However, those studies are different from
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this work in that they did not measure how the es-
say uses material from the source article. Further-
more, young students find it difficult to use sophis-
ticated argumentation structure in their essays.

Rahimi et al. (2014) presented a set of inter-
pretable rubric features that measure the related-
ness between students’ essays and a source article
by extracting evidence from the students’ essays.
However, evidence from students’ essays could
not always be extracted by their word matching
method. There are some potential solutions us-
ing the word embedding model. Rei and Cum-
mins (2016) presented a method to evaluate topical
relevance by estimating sentence similarity using
weighted-embedding. Kenter and de Rijke (2015)
evaluated short text similarity with word embed-
ding. Kiela et al. (2015) developed specialized
word embedding by employing external resources.
However, none of these methods address highly
noisy essays written by young students.

3 Data

Our response-to-text essay corpora were all col-
lected from classrooms using the following pro-
cedure. The teacher first read aloud a text while
students followed along with their copy. After
the teacher explained some predefined vocabu-
lary and discussed standardized questions at des-
ignated points, there is a prompt at the end of the
text which asks students to write an essay in re-
sponse to the prompt. Figure 1 shows the prompt
of RTAMV P

Two forms of the RTA have been developed,
based on different articles that students read be-
fore writing essays in response to a prompt. The
first form is RTAMV P and is based on an arti-
cle from Time for Kids about the Millennium Vil-
lages Project, an effort by the United Nations to
end poverty in a rural village in Sauri, Kenya. The
other form is RTASpace, based on a developed ar-
ticle about the importance of space exploration.
Below is a small excerpt from the RTAMV P ar-
ticle. Evidence from the text that expert human
graders want to see in students’ essays are in bold.

“Today, Yala Sub-District Hospital has
medicine, free of charge, for all of the
most common diseases. Water is con-
nected to the hospital, which also has a
generator for electricity. Bed nets are
used in every sleeping site in Sauri.”

Space MV PL MV PH

Score 1 538 535 317
(26%) (30%) (27%)

Score 2 789 709 488
(38%) (39%) (42%)

Score 3 512 374 242
(25%) (21%) (21%)

Score 4 237 186 119
(11%) (10%) (10%)

Total 2076 1804 1166
Double-Rated 2076 847 1156

Kappa 0.338 0.490 0.479
QWKappa 0.651 0.775 0.734

Table 1: The distribution of Evidence scores, and
grading agreement of two raters.

Two corpora of RTAMV P from lower and
higher age groups were introduced in Correnti
et al. (2013). One group included grades 4-6 (de-
noted by MV PL), and the other group included
grades 6-8 (denoted by MV PH ). The students in
each age group represent different levels of writing
proficiency. We also combined these two corpora
to form a larger corpus, denoted by MV PALL.
The corpus of the RTASpace is collected only
from students of grades 6-8 (denoted by Space).

Based on the rubric criterion shown in Table 2,
the essays in each corpus were annotated by two
raters on a scale of 1 to 4, from low to high.
Raters are experts and trained undergraduates. Ta-
ble 1 shows the distribution of Evidence scores
from the first rater and the agreement (Kappa, and
Quadratic Weighted Kappa) between two raters of
the double-rated portion. All experiment perfor-
mances will be measured by Quadratic Weighted
Kappa between the score from prediction and the
first rater. The reason to only use the score of the
first rater is that the first rater graded more essays.
Figure 1 shows an essay with a score of 3.

4 Rubric Features

Based on the rubric criterion for the evidence di-
mension, Rahimi et al. (2014) developed a set of
interpretable features. By using this set of fea-
tures, a predicting model can be trained for auto-
mated essay scoring in the evidence dimension.

Number of Pieces of Evidence (NPE): A good
essay should mention evidence from the article as
much as possible. To extract the NPE feature, they
manually craft a topic word list based on the arti-
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1 2 3 4
Number of Pieces of ev-
idence

Features one or no pieces of evi-
dence (NPE)

Features at least 2 pieces of evi-
dence (NPE)

Features at least 3 pieces of evi-
dence (NPE)

Features at least 3 pieces of evi-
dence (NPE)

Relevance of evidence Selects inappropriate or irrele-
vant details from the text to sup-
port key idea (SPC); references
to text feature serious factual er-
rors or omissions

Selects some appropriate and
relevant evidence to support key
idea, or evidence is provided for
some ideas, but not actually the
key idea (SPC); evidence may
contain a factual error or omis-
sion

Selects pieces of evidence from
the text that are appropriate and
relevant to key idea (SPC)

Selects evidence from the text
that clearly and effectively sup-
ports key idea

Specificity of evidence Provides general or cursory evi-
dence from the text (SPC)

Provides general or cursory evi-
dence from the text (SPC)

Provides specific evidence from
the text (SPC)

Provides pieces of evidence that
are detailed and specific (SPC)

Elaboration of Evidence Evidence may be listed in a sen-
tence (CON)

Evidence provided may be listed
in a sentence, not expanded upon
(CON)

Attempts to elaborate upon evi-
dence (CON)

Evidence must be used to sup-
port key idea / inference(s)

Plagiarism Summarize entire text or copies
heavily from text (in these cases,
the response automatically re-
ceives a 1)

Table 2: Rubric for the Evidence dimension of RTA. The abbreviations in the parentheses identify the
corresponding feature group discussed in the Rubric Features section of this paper that is aligned with
that specific criteria (Rahimi et al., 2017).

cle. Then, they use a simple window-based algo-
rithm with a fixed size window to extract this fea-
ture. If a window contains at least two words from
the topic list, they consider this window to contain
evidence related to a topic. To avoid redundancy,
each topic is only counted once. Words from the
window and crafted list will only be considered a
match if they are exactly the same. This feature
is an integer to represent the number of topics that
are mentioned by the essay.

Concentration (CON): Rather than list all the
topics in the essay, a good essay should explain
each topic with details. The same topic word list
and simple window-based algorithm are used for
extracting the CON feature. An essay is concen-
trated if the essay has fewer than 3 sentences that
mention at least one of the topic words. Therefore,
this feature is a binary feature. The value is 1 if the
essay is concentrated, otherwise it is 0.

Specificity (SPC): A good essay should use rel-
evant examples as much as possible. For matching
SPC feature, experts manually craft an example
list based on the article. Each example belongs to
one topic, and is an aspect of a specific detail about
the topic. For each example, the same window-
based algorithm is used for matching. If the win-
dow contains at least two words from an example,
they consider the window to mention this exam-
ple. Therefore, the SPC feature is an integer vec-
tor. Each value in the vector represents how many
examples in this topic were mentioned by the es-
say. To avoid redundancy, each example is only
to be counted at most one time. The length of the
vector is the same as the number of categories of
examples in the crafted list.

Word Count (WOC): The SPC feature can
capture how many evidences were mentioned in
the essay, but it cannot represent if these pieces of
evidence support key ideas effectively. From pre-
vious work, we know longer essays tend to have
higher scores. Thus, they use word count as a po-
tentially helpful fallback feature. This feature is
an integer.

5 Word Embedding Feature Extraction

Based on the results of Rahimi et al. (2014), the in-
terpretable rubric-based features outperform com-
petitive baselines. However, there are limitations
in their feature extraction method. It cannot ex-
tract all examples mentioned by the essay due to
the use of simple exact matching.

First, students use their own vocabularies other
than words in the crafted list. For instance, some
students use the word “power” instead of “electric-
ity” from the crafted list.

Second, according to our corpora, students at
the upper elementary level make spelling mis-
takes, and sometimes they make mistakes in the
same way. For example, around 1 out of 10 stu-
dents misspell “poverty” as “proverty” instead.
Therefore, evidence with student spelling mistakes
cannot be extracted. However, the evidence di-
mension of RTA does not penalize students for
misspelling words. Rahimi et al. (2014) showed
that manual spelling corrections indeed improves
performance, but not significantly.

Finally, tenses used by students can sometimes
be different from that of the article. Although a
stemming algorithm can solve this problem, some-
times there are words that slip through the process.
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Prompt: The author provided one spe-
cific example of how the quality of life
can be improved by the Millennium Vil-
lages Project in Sauri, Kenya. Based on
the article, did the author provide a con-
vincing argument that winning the fight
against poverty is achievable in our life-
time? Explain why or why not with 3-4
examples from the text to support your
answer.

Essay: In my opinion I think that they
will achieve it in lifetime. During the
years threw 2004 and 2008 they made
progress. People didnt have the money
to buy the stuff in 2004. The hospital
was packed with patients and they didnt
have alot of treatment in 2004. In 2008
it changed the hospital had medicine,
free of charge, and for all the common
dieases. Water was connected to the
hospital and has a generator for electric-
ity. Everybody has net in their site. The
hunger crisis has been addressed with
fertilizer and seeds, as well as the tools
needed to maintain the food. The school
has no fees and they serve lunch. To me
thats sounds like it is going achieve it in
the lifetime.

Figure 1: The prompt of RTAMV P and an exam-
ple essay with score of 3.

For example, “went” is the past tense of “go”, but
stemming would miss this conjugation. Therefore,
“go” and “went” would not be considered a match.

To address the limitations above, we introduced
the Word2vec (the skip-gram (SG) and the con-
tinuous bag-of-words (CBOW)) word embedding
model presented by Mikolov et al. (2013a) into
the feature extraction process. By mapping words
from the vocabulary to vectors of real numbers,
the similarity between two words can be calcu-
lated. Words with high similarity can be consid-
ered a match. Because words in the same context
tend to have similar meaning, they would therefore
have higher similarity.

We use the word embedding model as a sup-
plement to the original feature extraction process,
and use the same searching window algorithm pre-
sented by Rahimi et al. (2014). If a word in a stu-

dent’s essay is not exactly the same as the word
in the crafted list, the cosine similarity between
these two words is calculated by the word embed-
ding model. We consider them matching, if the
similarity is higher than a threshold.

In Figure 1, the phrases in italics are exam-
ples extracted by the existing feature extraction
method. For instance, “water was connected to the
hospital” can be found because “water” and “hos-
pital” are exactly the same as words in the crafted
list. However, “for all the common dieases” can-
not be found due to misspelling of “disease”. Ad-
ditional examples that can be extracted by the
word embedding model are in bold.

6 Experimental Setup

We configure experiments to test several hypothe-
ses: H1) the model with the word embedding
trained on our own corpus will outperform or at
least perform equally well as the baseline (denoted
by Rubric) presented by Rahimi et al. (2014). H2)
the model with the word embedding trained on our
corpus will outperform or at least perform equally
well as the model with off-the-shelf word embed-
ding models. H3) the model with word embedding
trained on our own corpus will generalize better
across students of different ages. Note that while
all models with word embeddings use the same
features as the Rubric baseline, the feature ex-
traction process was changed to allow non-exact
matching via the word embeddings.

We stratify each corpus into 3 parts: 40% of
the data are used for training the word embedding
models; 20% of the data are used to select the best
word embedding model and best threshold (this is
the development set of our model); and another
40% of data are used for final testing.

For word embedding model training, we also
add essays not graded by the first rater (Space
has 229, MV PL has 222, MV PH has 296, and
MV PALL has 518) to 40% of the data from the
corpus in order to enlarge the training corpus to get
better word embedding models. We train multi-
ple word embedding models with different param-
eters, and select the best word embedding model
by using the development set.

Two off-the-shelf word embeddings are used for
comparison. Mikolov et al. (2013b) presented vec-
tors that have 300 dimensions and were trained on
a newspaper corpus of about 100 billion words.
The other is presented by Baroni et al. (2014) and
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includes 400 dimensions, with the context window
size of 5, 10 negative samples and subsampling.

We use 10 runs of 10-fold cross validation in the
final testing, with Random Forest (max-depth = 5)
implemented in Weka (Witten et al., 2016) as the
classifier. This is the setting used by Rahimi et al.
(2014). Since our corpora are imbalanced with re-
spect to the four evidence scores being predicted
(Table 1), we use SMOTE oversampling method
(Chawla et al., 2002). This involves creating “syn-
thetic” examples for minority classes. We only
oversample the training data. All experiment per-
formances are measured by Quadratic Weighted
Kappa (QWKappa).

7 Results and Discussion

We first examine H1. The results shown in Table 3
partially support this hypothesis. The skip-gram
embedding yields a higher performance or per-
forms equally well as the rubric baseline on most
corpora, except for MV PH . The skip-gram em-
bedding significantly improves performance for
the lower grade corpus. Meanwhile, the skip-gram
embedding is always significantly better than the
continuous bag-of-words embedding.

Second, we examine H2. Again, the results
shown in Table 3 partially support this hypoth-
esis. The skip-gram embedding trained on our
corpus outperform Baroni’s embedding on Space
and MV PL. While Baroni’s embedding is sig-
nificantly better than the skip-gram embedding on
MV PH and MV PALL.

Third, we examine H3, by training models from
one corpus and testing it on 10 disjointed sets of
the other test corpus. We do it 10 times and av-
erage the results in order to perform significance
testing. The results shown in Table 4 support
this hypothesis. The skip-gram word embedding
model outperform all other models.

As we can see, the skip-gram embedding out-
performs the continuous bag-of-words embedding
in all experiments. One possible reason for this
is that the skip-gram is better than the continu-
ous bag-of-words for infrequent words (Mikolov
et al., 2013b). In the continuous bag-of-words,
vectors from the context will be averaged before
predicting the current word, while the skip-gram
does not. Therefore, it remains a better represen-
tation for rare words. Most students tend to use
words that appear directly from the article, and
only a small portion of students introduce their

own vocabularies into their essays. Therefore, the
word embedding is good with infrequent words
and tends to work well for our purposes.

In examining the performances of the two off-
the-shelf word embeddings, Mikolov’s embed-
ding cannot help with our task, because it has
less preprocessing of its training corpus. There-
fore, the embedding is case sensitive and contains
symbols and numbers. For example, it matches
“2015” with “000”. Furthermore, its training cor-
pus comes from newspapers, which may contain
more high-level English that students may not use,
and professional writing has few to no spelling
mistakes. Although Baroni’s embedding also has
no spelling mistakes, it was trained on a corpus
containing more genres of writing and has more
preprocessing. Thus, it is a better fit to our work
compared to Mikolov’s embedding.

In comparing the performance of the skip-gram
embedding and Baroni’s embedding, there are
many differences. First, even though the skip-
gram embedding partially solves the tense prob-
lem, Baroni’s embedding solves it better because
it has a larger training corpus. Second, the larger
training corpus contains no or significantly fewer
spelling mistakes, and therefore it cannot solve
the spelling problem at all. On the other hand,
the skip-gram embedding solves the spelling prob-
lem better, because it was trained on our own
corpus. For instance, it can match “proverty”
with “poverty”, while Baroni’s embedding can-
not. Third, the skip-gram embedding cannot ad-
dress a vocabulary problem as well as the Ba-
roni’s embedding because of the small training
corpus. Baroni’s embedding matches “power”
with “electricity”, while the skip-gram embedding
does not. Nevertheless, the skip-gram embedding
still partially addresses this problem, for example,
it matches “mosquitoes” with “malaria” due to re-
latedness. Last, Baroni’s embedding was trained
on a corpus that is thousands of times larger than
our corpus. However, it does not address our prob-
lems significantly better than the skip-gram em-
bedding due to generalization. In contrast, our
task-dependent word embedding is only trained on
a small corpus while outperforming or at least per-
forming equally well as Baroni’s embedding.

Overall, the skip-gram embedding tends to find
examples by implicit relations. For instance, “win-
ning against poverty possible achievable lifetime”
is an example from the article and in the meantime
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Off-the-Shelf On Our Corpus
Corpus Rubric(1) Baroni(2) Mikolov(3) SG(4) CBOW(5)
Space 0.606(2) 0.594 0.606(2) 0.611(2,5) 0.600(2)
MV PL 0.628 0.666(1,3,5) 0.623 0.682(1,2,3,5) 0.641(1,3)
MV PH 0.599(3,4,5) 0.593(3,4,5) 0.582(5) 0.583(5) 0.556
MV PALL 0.624(5) 0.645(1,3,4,5) 0.634(1,5) 0.634(1,5) 0.614

Table 3: The performance (QWKappa) of the off-the-shelf embeddings and embeddings trained on
our corpus compared to the rubric baseline on all corpora. The numbers in parenthesis show the model
numbers over which the current model performs significantly better. The best results in each row are in
bold.

Off-the-Shelf On Our Corpus
Train Test Rubric(1) Baroni(2) Mikolov(3) SG(4) CBOW(5)
MV PL MV PH 0.582(3) 0.609 (1,3,5) 0.555 0.615(1,2,3,5) 0.596(1,3)
MV PH MV PL 0.604 0.629(1,3,5) 0.620(1,5) 0.644(1,2,3,5) 0.605

Table 4: The performance (QWKappa) of the off-the-shelf embeddings and embeddings trained on our
corpus compared to the rubric baseline. The numbers in parenthesis show the model numbers over which
the current model performs significantly better. The best results in each row are in bold.

the prompt asks students “Did the author provide a
convincing argument that winning the fight against
poverty is achievable in our lifetime?”. Conse-
quently, students may mention this example by
only answering “Yes, the author convinced me.”.
However, the skip-gram embedding can extract
this implicit example.

8 Conclusion and Future Work

We have presented several simple but promising
uses of the word embedding method that improve
evidence scoring in corpora of responses to texts
written by upper elementary students. In our re-
sults, a task-dependent word embedding model
trained on our small corpus was the most helpful
in improving the baseline model. However, the
word embedding model still measures additional
information that is not necessary in our work. Im-
proving the word embedding model or the feature
extraction process is thus our most likely future
endeavor.

One potential improvement is re-defining the
loss function of the word embedding model, since
the word embedding measures not only the simi-
larity between two words, but also the relatedness
between them. However, our work is not helped
by matching related words too much. For exam-
ple, we want to match “poverty” with “proverty”,
while we do not want to match “water” with “elec-
tricity”, even though students mention them to-
gether frequently. Therefore, we could limit this

measurement by modifying the loss function of the
word embedding. Kiela et al. (2015) presented a
specialized word embedding by employing an ex-
ternal thesaurus list. However, it does not fit to our
task, because the list contains high-level English
words that will not be used by young students.

Another area for future investigation is improv-
ing the word embedding models trained on our
corpus. Although they improved performance,
they were trained on a corpus from one form of the
RTA and tested on the same RTA. Thus, another
possible improvement is generalizing the model-
from one RTA to another RTA.
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Abstract 

The goal of my doctoral thesis is to 

automatically generate interrogative 

sentences from descriptive sentences of 

Turkish biology text. We employ syntactic 

and semantic approaches to parse 

descriptive sentences. Syntactic and 

semantic approaches utilize syntactic 

(constituent or dependency) parsing and 

semantic role labeling systems 

respectively. After parsing step, question 

statements whose answers are embedded 

in the descriptive sentences are going to 

be formulated by using some predefined 

rules and templates. Syntactic parsing is 

done using an open source dependency 

parser called MaltParser (Nivre et al. 

2007). Whereas to accomplish semantic 

parsing, we will construct a biological 

proposition bank (BioPropBank) and a 

corpus annotated with semantic roles. 

Then we will employ supervised methods 

to automatic label the semantic roles of a 

sentence. 

1 Introduction 

“Cognition is the mental action or process of 

acquiring knowledge and understanding through 

thought, experience, and the senses.” (Stevenson, 

2010)  . Thought is triggered by asking questions 

and attempt to find answer of questions cause 

knowledge acquisition. Researches indicate that 

questioning is a powerful teaching technique. 

Lecturers benefit from questions for students’ 

knowledge evaluation, student’s stimulation to 

thinking on their own and encourage students to 

self-learning. Also, students can review and 

memorize information previously learned by 

questioning themselves. 

Generating questions manually need much time 

and effort for lecturers. Moreover, student face 

considerable problems exercising and memorizing 

lessons. To address these challenges, Automatic 

question generation (AQG) systems can provide 

sample questions to alleviate lecturer’s effort and 

help students in self-learning. 

Our motivation in generating questions 

automatically is to facilitate lecturer effort and help 

students to practice on course materials more 

efficiently. Our goal in my thesis is building a 

system for question generation from Turkish 

biological text. We take biology text as input of our 

system and generate questions which will rank 

based on questions quality.  

AQG is one of the challenging problems in 

natural language processing especially when 

semantic analysis is needed to generate 

comprehensive questions like how and why. To the 

best of our knowledge, AQG approaches in Turkish 

have been proposed by Cabuk et al. (2003) and 

Orhan et al. (2006). Both of these studies just have 

used syntactic approach without any semantic 

analysis for generating questions. However, 

generating questions from biological text, which 

contain complex process, cannot rely on syntactic 

approach merely. Relation between entities in a 

biological process make it difficult to analyze in 

syntactic level. Understanding these process needs 

some level of semantic analysis. In my proposal, 

we plan to generate comprehensive questions like 

how and why in addition to when, where, who and 

whom. Therefore, we need syntactic and semantic 

analysis of descriptive sentences.   

Syntactic analysis of a sentence determines the 

structure of phrases of a text and converts it into a 

more structured representation, the parse tree. 

Characterizing “who” did “what” to “whom,” 

“where,” “when,” “how” and “why” is semantic 

analysis of a sentence. Semantic role labeling 

(SRL) is a task of automatically identifying 
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semantic relations between predicate and its related 

arguments in the sentence.  Assigning pre-defined 

set of semantic roles such as Agent, Patient and 

Manner to arguments is defined as predicate-

argument structure (PAS) identification problem.  

Lexical resources like PropBank (Palmer et al. 

2005) and FrameNet (Baker et al. 1998) are needed 

to label semantic role of arguments. The Turkish 

lexical semantic resource (TLSR) were built by 

Isguder Şahin and Adalı (2014). TLSR is in general 

domain and does not cover biological field. 

Moreover, size of TLSR is small compared to 

PropBank in other languages. At present the 

number of annotated verb frame and sense are 759 

and 1262 respectively. Domain sensitivity of SRL 

systems have been emphasized by many 

researchers (Albright et al. 2013; Carreras & 

Màrquez 2005; Johansson & Nugues 2008; 

Pradhan et al. 2008). Pradham et al. (2008) showed 

that the performance of SRL systems dropped 

dramatically by almost 10% when domain of 

testing data is different from training data. 

Albraight et al (2013) indicated the accuracy 

enhancement of SRL systems with the existence of 

in-domain annotations of data. Therefore, to 

automatically generating questions from biological 

text using semantic parsing, we first need to build 

an SRL system in the biological domain. To this 

end we will construct a lexical resource for the 

biology domain along with a corpus annotated with 

semantic roles in semi-automatic manner. 

Furthermore, there is not automatic SRL system in 

Turkish yet. So, we plan to design a supervised 

SRL system too.  

In AQG step, we parse descriptive sentence 

using syntactic and semantic parser. Automatic 

SRL system which will construct in the first phase 

of my thesis, will employ to parse descriptive 

sentence semantically. Syntactic parsing of 

descriptive sentence will do by an open source 

dependency parser called MaltParser (Nivre et al. 

2007).  Semantic role labels and syntactic tags will 

use to identify content to generate relevant question 

(i.e. if semantic role label is “Arg0” then the 

question type will be “who”). In the question 

formation step, some predefined rules and template 

will utilize. The quality of the generated questions 

will measure based on its syntactic and semantic 

correctness and its relevancy to the given sentence. 

2 Background 

In order to generating interrogative sentences from 

descriptive sentences, syntactic and semantic 

approaches are taken. Constituency or dependency 

parser are used to parse a descriptive sentence in 

syntactic approach. Afterward, with respect to the 

label of phrase, appropriate type of question is 

selected. There are several AQG system that have 

utilized syntactic approach. Mitkov et al. (2006) 

proposed multiple choice question generation 

system to assess students’ grammar knowledge by 

utilizing syntactic approach. Heilman and Smith 

(2009) described a syntactic and rule based 

approach to automatically generate factual 

questions to evaluate students’ reading 

comprehension. Liu et al. (2012) developed 

template based AQG system by using syntactic 

approach, called G-Asks, to improve students’ 

writing skill. Cabuk et.al. (2003) employed a 

syntactic parser to get stem, derivational and 

inflectional affixes of words of sentence. 

Predefined rules were used to identify phrases of 

sentence. In the last step questions were generated 

by transforming rules based on identified phrases 

of previous step. Orhan et al. (2006) generate 

template based math questions for students of 

elementary school.  

In order to generate questions using semantic 

approach, semantic role of arguments is labeled 

firstly. Then proper question type is selected 

according to the semantic labels. Mannem et al. 

(2010) utilized SRL and Named Entity Recognition 

(NER) system to generate rule based questions. 

Lindberg et al. (2013) generated template based 

questions for educational purpose by using a 

semantic approach. By the use of a semantic 

approach, Mazidi and Nielsen (2014) generated 

questions in specific domains such as chemistry, 

biology and earth science. After analyzing text by 

the SRL and constituency parsing system, relevant 

questions are generated based on predefined 

templates.  

Lecturer assess students’ reading comprehension 

by utilizing questions. Generating pedagogical 

questions are time consuming and a lot of lecturer 

effort is needed. The main goal of my thesis is to 

automatically generate question using both of 

syntactic and semantic approach to alleviate these 

efforts. To the best of our knowledge, generating 

questions by employing semantic approach will do 

for the first time in Turkish. My thesis is similar to 

Mazidi and Nielsen’s work in terms of utilizing 
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semantic approach but is different in question 

formation step.  

Due to the need for an SRL system in semantic 

question generation systems, we plan to design a 

supervised SRL system. Supervised, unsupervised 

and semi-supervised machine learning methods are 

applied in building SRL systems. In supervised 

method, after extracting features from training 

data, a 1-N (N is number of roles), a classifier (such 

as support vector machine (SVM), Maximum 

entropy (MaxEnt) and Naïve Bayes (NB)) is used 

to label semantic roles. Garg and Henderson (2012) 

used Bayes method to SRL where dependency 

parses are used to extract features. Albright et al. 

(2013) constructed a corpus annotated with 

semantic roles of clinical narratives that is called 

MiPAQ. Monachesi et al. (2007) extracted features 

from dependency parser to use in supervised K-

nearest neighbor algorithms to SRL. 

In semi-supervised methods, a small amount of 

data is annotated with their semantic roles that is 

called seed data. The classifier is trained using the 

seed data. Unlabeled data is classified using this 

system and the most confident predictions are 

added to expand the initial training data. This 

expansion is carried out iteratively a few times. 

Semi-supervised self-training and co-training 

methods were used in many SRL research  (Do Thi 

et al. 2016; Kaljahi & Samad 2010; Lee et al. 2007) 

recently and they showed their performance in in-

domain data. In those study standard supervised 

algorithms was used as classifier and the features 

were extracted by constituency parser. 

The features extracted from constituency parses 

defined by Gildea and Jurafsky (2002) are used as 

basic features in most SRL system. Predicate, 

phrase type, headword, constituency parse path, 

phrase position and voice of predicate are some 

basic features. They mentioned that using syntactic 

parses is necessary for extracting features. 

A role-annotated corpus together with lexical 

resources in PropBank and FrameNet, are used as 

training data in many supervised SRL systems in 

English. Semantic roles of all verbs and their 

several senses in the Penn Treebank corpus was 

annotated in the PropBank corpus. Basic roles such 

as Agent and Patient are listed by Arg0, Arg1, …, 

Arg5 and adjunct roles like Time and Location are 

labeled as ArgM (ArgM-TMP, ArgM-LOC, …). 

Table 1 show the basic and adjunct semantic roles 

defined in PropBank with their related question 

type. Since sentences in PropBank is taken from 

Wall Street Journal [WSJ], then the performance of 

supervised classifier outside the domain of the WSJ 

is decreased. Several methods are utilized to 

construct a semantically annotated corpus: direct 

annotation, using parallel corpus and using semi-

supervised methods. Bootstrapping approach is 

applied by Swier and Stevenson (2004)  to annotate 

verbs in general domain. Pado and Lapata (2009) 

exploited translation of English FrameNet to 

construct relevant corpus in another language. 

Monachesi et al. (2007) used semi-supervised 

method and translation of English PropBank to 

construct corpus in Dutch. Afterwards annotated 

sentences was corrected by annotators to use as 

training corpus in supervised methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Since accuracy of SRL system drop dramatically 

in outside the domain of the annotated corpus 

domain in English, building comprehensive lexical 

resources in biology domain will improve SRL 

system in Turkish for biological text. Due to the lots 

of effort to construct such lexical resource, we will 

build it in semi-automatic manner by employing 

self-training semi supervised method where 

dependency parses will use to extract features. In 

my proposal, we will use standard supervised 

method (SVM, MaxEnt and NB) to build SRL 

system to evaluate their performance in Turkish. 

3 Methodology 

Before diving in to automatic generating questions 

in biology domain, we will construct a semantically 

annotated corpus and SRL system. The following 

sections will describe our proposed methods in 

detail to do these issues. 

3.1 Corpus Construction 

We first consider the annotation of semantic roles 

in biology domain. To address this issue, first we 

 Argument Question type  

Basic  Arg0 Who? 

Arg1 Whom? 

Arg2 What? 

Adjunct  Arg-TMP When? 

Arg-LOC Where? 

Arg-MNR How? 

Arg-PRP/CAU Why? 

 

Table 1: PropBank’s some basic and adjunct 

semantic roles. 

84



collect biology texts from different sources like 

article, textbook and etc. Articles and textbooks 

will take from “Journal of Biyolojik Çeşitlilik ve 

Koruma”1 and “Biyoloji ders kitabı 9, 10, 11, 12”2, 

respectively. Afterwards we tag the part of speech 

(POS) of sentences to identify the predicate and 

then create lexical recourses with their predicate-

argument structure (PAS). Kisla’s tool (2009) is 

employed to POS tagging and morphologic 

analyzing of sentence. The predicates are selected 

by their frequency and their importance in domain. 

English PropBank structure and guidelines are used 

as reference structure to annotate PAS in Turkish.  

As a pilot study, we chose 500 sentences from 

biology high school textbook and tagged their POS. 

After identifying predicate, we ranked them based 

on their frequency. Some of selected predicates and 

their PAS are shown in tables 2 and 3 respectively.  

 

 

 

 

 

 

 

Since the annotation process is expensive and 

time consuming, we address this problem with 

using self-training method to create corpus in semi-

automatic manner. The aim of semi-supervised 

method is to learn from small amount of annotated 

data and use large amount of unannotated data to 

develop the training data. SRL is a done in three 

steps: predicate identification, argument 

identification and argument classification.  In first 

step we use POS tagging to identify predicate and 

its sense will be decided with some filtering rules. 

In Turkish “-imek, etmek, eylemek, olmak ve 

kılmak” (to do, make, render, to be) are auxiliaries 

that give predicate role to some noun words and are 

called auxiliary verbs. When encountering these 

verbs, we consider this verb with its preceding 

word as a predicate. For example, “sentezlenmiş 

olmak” (is synthesized) is the predicate of 

“Substrat düzeyinde fosforilasyonla 2 ATP de 

sentezlenmiş olur.”. (2 ATP is synthesized by 

phosphorylation at the substrate level.) 

To accomplish argument identification 

following rules are applied to select candidate 

arguments: 

                                                      
1 http://www.biodicon.com/  
2 http://www.eba.gov.tr/ 

 Phrases are considered as argument if there 

is a dependency relation between them and 

the predicate.  

 Existence of collocation is examined to 

consider as a candidate argument.  

Note that these assumptions will not cover all 

candidate argument, but will be improved during 

this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

Argument classification is done by self-training. 

Yarowsky and Florian (2002) utilized self-training 

for word sense disambiguation problem in 1995. 

Yarowsky’s experimental results showed that the 

performance of self-training method is almost as 

high as supervised methods. Our intuition is that by 

utilizing self-training method, the effort to label 

semantic roles will reduce substantially. Self-

training method is implemented in the following 

steps. First of all, seed data that is annotated 

manually by expert is used to train the classifier. 

After initial training step, all unlabeled data are 

classified and more appropriate data are selected to 

add to seed data to improve classifier performance 

by using more training data. Standard machine 

learning classifiers, SVM, MaxEnt and NB are 

used in the self-training method. In our proposal, 

we do following steps to select more accurate 

labeled data to expand training data: All unlabeled 

data are classified using three different classifiers. 

When two of them are agree about argument label 

and assigned probability of label is above 

predetermined threshold value, then this label is 

considered as true label and added to initial training 

data. If previous condition is not satisfied, then true 

label is the one which its assigned probability is 

maximum among the others and above predefined 

 

Verb   Frequency  

Sentezlemek (Synthesize) 23 

İnceltmek (Thinning) 22 

Adlandırmak (Naming) 20 

 

Table 2: Some of the selected verbs 

Roleset id: Sentez.01 , (Synthesize) (kimya) 

Element veya başka maddeleri bir arayı getirerek 

yapay olarak bileşik cisimler oluşturma, bireşim 

“(create)” 

Roles: 

    Arg0-PAG: oluşturan (creator) 

        Arg1-PRD: oluşan şey (thing created) 

        Arg2-VSP: kaynak (source) 

 

Table 3: Annotation of semantic role of 

predicate “sentez” (Synthesize) 
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threshold. Semi-automatic labeled data is corrected 

by annotators afterwards.  

Determining effective and convenient features 

play an essential role in building SRL systems. 

These features drive from syntactic or semantic 

parsing systems. In our proposal we will use 

dependency parser to extract features. In our study 

we define features shown in Table 4 along with 

base features defined by Gildea and Jurafsky 

(2002). The effect of more features such as NE and 

biology terms will examine to improve 

performance of SRL system. 

3.2 Automatic Question Generation 

AQG is performed in three steps: content selection 

(which part of sentence must be asked), determine 

question type based on selected content and 

construct question. In my thesis, first the 

declarative sentence is labeled by our proposed 

SRL system. Based on labeled roles, content and 

question type are selected. In QG step, 

predetermined templates and rules are applied. We 

plan to generate templates manually as well as 

automatically. “Niye <X> <yüklem>?” (why <X> 

<predicate>?) and “Ne zaman <X> <yüklem>?” 

(when <X> <predicate>) are examples of 

templates. If there are no proper template for 

generating a question, then a rule based method is 

applied. In rule based method, Turkish question 

structure is considered to form question. In the first 

step, the selected content will be removed from the 

sentence. Then question type is chosen depending 

on the identified semantic role. For example, “kim” 

(who) is used if the semantic role label is Arg0. In 

the third step, selected content is replaced by 

question word. Finally, the grammar of generated 

question will be checked.  In QG phase, to avoid 

generating vague question like “canlı dağılımı için 

ne önemlidir?” (what is important for live 

distribution?) from sentence “Bu canlı dağılımı için 

önemlidir.” (This is important for live distribution.) 

some filtering rules will apply. As an example, the 

sentences which begin with “Bu, Şu, O” (this, that, 

it) will not considered as descriptive sentence to 

generate question. Moreover, to add complexity to 

question we will use paraphrase of phrases. 

4 Evaluations 

To evaluate the SRL system, precision, recall, F1 

and accuracy will be calculated. The following 

components are evaluated for the quality of the 

whole system: 

 Argument identification performance 

 Argument classification performance 

when arguments are known 

 Performance of system when training data 

is in news domain and test data is in 

biology domain and vice versa.  

 Performance of self-training method in 

news and biology domain 

Rus at al. (2010) evaluated generated questions 

with the parameters, relevance, question type, 

syntactic correctness and fluency, ambiguity and 

variety. All parameters are among 1 and 4 which 1 

is the best and 4 is the worst score. In my thesis we 

will evaluate generated questions by these 

parameters and the parameters that will define. 

‘questions importance in education’ can be one of 

these parameters. We will ask three experts to 

evaluate generated questions manually. 

5 Conclusion  

Questions are used to assess the level of students’ 

understanding of the given lecture by the lecturer 

from pedagogical view. Therefore, automatically 

generating question alleviate lecturer’s effort to 

generate interrogative sentences. Moreover, 

tutoring system and question answering are some 

applications which benefit from questions too. 

In my thesis, we propose syntactic and sematic 

approach to generate questions from descriptive 

sentences. To do this, a three-phase approach will 

take. Since generating question in semantic 

approach needs semantic analysis of sentences, we 

will construct a lexical semantic resource along 

with a semantically annotated corpus in biology 

domain, firstly. In the second phase, we built an 

SRL system to parse a sentence semantically. 

Finally, syntactically and semantically parsed 

descriptive sentences will be used to generate 

interrogative sentences.  It is the first time that 

semantic approach is utilized for AQG in Turkish. 

Semantically annotated corpus in biology domain 

can use in several applications such as information 

extraction, question answering and summarization. 

Investigating the performance of biology corpus 

encourage researcher to transfer our proposed 

methodology to construct such semantic corpus in 

other domains like chemistry, geography and etc. 
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Abstract

This paper describes the SoccEval Anno-
tation Project, an annotation schema de-
signed to support machine-learning classi-
fication efforts to evaluate the performance
of soccer players based on match reports
taken from online news sources. In ad-
dition to factual information about player
attributes and actions, the schema anno-
tates subjective opinions about them. Af-
ter explaining the annotation schema and
annotation process, we describe a machine
learning experiment. Classifiers trained on
features derived from annotated data per-
formed better than a baseline trained on
unigram features. Initial results suggest
that improvements can be made to the an-
notation scheme and guidelines as well as
the amount of data annotated. We believe
our schema could be potentially expanded
to extract more information about soccer
players and teams.

1 Introduction

The underlying goal of the SoccEval Annotation
Project was to evaluate the ability and perfor-
mance of a soccer player from both objective de-
scriptions of their actions as well as subjective de-
scriptions of the players themselves, using soccer
news articles as a source. We used these attributes
to rank players based on their overall quality.

Our annotation scheme was designed to support
both these efforts by creating a corpus annotated
with these descriptions in order to facilitate extrac-
tion of relevant features to rate players, as well as
the most relevant attributes of individual players.

A previous soccer-related annotation scheme
exists: the SmartWeb Ontology-based Annotation
System (SOBA) which was designed to extract

information on soccer-related entities, including
players and events associated with them (Buitelaar
et al., 2006).

However, SOBA only includes factual informa-
tion about events. We created a player-specific an-
notation scheme that takes into account not only
facts and events about a player, but also subjec-
tive evaluations, attaching a polarity value to these
evaluations that can then be used not simply to ex-
tract information about a player, but to make judg-
ments on the quality of the players.

2 Annotation Specification

To do the annotation task, our annotators used
MAE (Multi-document Annotation Environment)
(Rim, 2016), an open source, lightweight annota-
tion tool which allows users to define their own
annotation tasks and output annotations in stand-
off XML.

For annotation, MAE allows the creation of
tags which define general categories. Tags then
have attributes which serve as sub-categories from
which a value can be selected. MAE supports the
creation of two types of tags: extent tags and link
tags. Extent tags mark a span of text, while link
tags link two or more extent tags.

All extent tags have Spans and Text attributes.
Spans refers to the range of indexes in the docu-
ment for the text that an extent tag covers. Text
contains the actual text.

This annotation project focuses on various
descriptions and evaluations of soccer players.
Descriptions from news articles can typically be
divided into two types, facts and opinions1. Based

1This split between Fact and Opinion tags is inspired in
part by the example of the MPQA Corpus (Wilson et al.,
2016), which has separate Objective Speech Event Frames
and Subjective Frames. The MPQA Corpus also inspired the
use of Player IDs, as well as the decision not to impose strict
rules for text span lengths.
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on these categories, four extent tags and one link
tag were created to capture the performance of a
player.

The following 2 sample sentences will be
used in explaining the tags in detail:

Sample sentence 1: Ward-Prowse almost levelled
with a dangerous free-kick to the far corner that
drew a fine save from Mignolet.

Sample sentence 2: Blessed with formidable
speed and strength to go with his rare skill, the
25-year-old was always worth watching.

2.1 Player Tag
The Player tag is used to mark all mentions of a
player directly by his name.

There are two attributes in the Player tag in
addition to the default Spans and Text attributes.
PlayerID is an ID that is assigned to each unique
player. Name is an optional attribute created solely
for the purpose of helping annotators distinguish
players by entering any comments or notes they
want for this Player tag.

2.2 Coref Tag
The Coref tag is an extent tag that is used to mark
all references to a player by something other than
his name. The Coref tag contains 3 attributes –
Spans, Text and PlayerID. PlayerID is assigned the
exact same ID as the player being referred to.

2.3 Fact Tag
The Fact tag is used to mark all text spans that
describe events within a match that are connected
to a player.

There are three attributes associated with this
tag in addition to Spans and Text: Type, Time,
and FactID. Type includes goal, assist, pass, shot,
movement, positioning, substitute out, substitute
in, injury, tackle, save and foul. The Time attribute
is for represents the time of the event with relation
to the match. Its possible values are: distance past,
last season, current season, last match, present or
future. FactID is generally unique. However, in
certain cases where the same event is mentioned
multiple times, the same FactID is assigned.

2.4 Opinion Tag
The Opinion tag is used to mark subjective atti-
tudes toward a player.

There are five attributes associated with this tag
besides Spans and Text: Type, Polarity, Time,
Hypothetical, and Reported. Type groups differ-
ent opinions into the following categories: soccer
skill, accomplishment, general attribute, impact on
team, growth or decline and other opinion. Polar-
ity is the sentiment toward a player in this opin-
ion tag, which can either positive or negative. The
Time attribute is the same as that in Fact tag. The
Hypothetical attribute is used only when the Opin-
ion is either a prediction or counterfactive. The
Reported attribute is a Boolean to distinguish if the
Opinion is being reported by someone within the
article, such as a secondary source who is not the
writer of the article himself.

2.5 TargetLink Tag

TargetLink is a link tag that links a fact or opinion
to a player or coreference tag.

2.6 Sample Annotation

Below is a simplified annotated version of the two
sample sentences:

Annotated sample sentence 1:
[Ward-Prowse]Player1 almost levelled with a
dangerous [free-kick]Fact:shot to the far corner
that drew a fine [save]Fact:save

from [Mignolet]Player2.

TargetLink:
T1: [free-kick]− [Ward-Prowse]
T2: [save]− [Mignolet]

Annotated sample sentence 2:
Blessed with
[formidable speed]opinion:particularskill positive

and
[strength]opinion:generalattribute positive

to go with
[his]coref1
[rare skill]opinion:particularskill positive,
[the 25-year-old]coref2
was always
[worth watching]opinion:otheropinion positive.

TargetLink:
T1: [formidable speed]− [his]
T2: [strength]− [his]
T3: [rare skill]− [his]
T4: [worth watching]− [the 25-year-old]
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3 Corpus Selection and Annotation

Documents were taken from two sources,
Goal.com2 and The Guardian3. Initially, a total of
465 documents were collected, 361 of which were
taken from The Guardian, while the rest were
taken from Goal.com.

The articles focused on three clubs from the En-
glish Premier League: Chelsea, Tottenham Hot-
spur, and Liverpool. The majority of the arti-
cles were match reports, though there were also
a few end-of-season player and team reviews as
well. The final corpus included 34 documents
taken from both sources, almost all of which were
match reports covering games in which Chelsea
had played (there was also one end-of-season
player review).

While not part of the corpus per se, player rat-
ings for the corresponding matches were retrieved
from Goal.com. Each rating document measured
the performance of each player during that match
on a scale from 0.0 to 5.0, in increments of 0.5.

All the articles given out were connected to one
team, Chelsea. This was done with the intention
of making it easier for annotators to keep track of
player names.

4 Annotation Guidelines

There are a few aspects of our annotation guide-
lines which are worth noting.
First, we gave annotators free choice in determin-
ing the length of the text span worth annotating.
Since descriptions of players, especially subjective
ones, come in many forms, we thought it would
be best to leave that unspecified. We believed that
nonetheless, annotators would generally agree on
a rough span of text to be annotated, even if their
spans were not exactly the same. We did note in
the guidelines that Fact spans were likely to be
noun phrases, while Opinion spans would most of-
ten either be noun phrases or verb phrases.
We recognized that our team of annotators was
generally unfamiliar with soccer, though we as-
sumed a basic knowledge. When dealing with
unfamiliar terms, we instructed our annotators
to research the unfamiliar terminology using
Wikipedia, Google, or other online sources.
In practice, we realized that some of our Opinion
attributes were more general than others, and some

2http://www.goal.com/en-us
3http://www.theguardian.com/

of the categories were likely to overlap: for exam-
ple, an accomplishment could also serve as an ex-
ample of a player’s growth. In these cases, we in-
structed our annotators to follow a priority system
from more specific attributes to more general ones.
So in the example here, we would instruct our an-
notators to prioritize the less vague ”accomplish-
ment” attribute instead of the ”growth/decline”
one.

5 Inter-Annotator Agreement

To evaluate inter-annotator agreement on our an-
notated corpus, we used Krippendorff’s alpha
(Krippendorff, 2004)

Tag IAA score
Player 0.9728
Coref 0.5828
Fact 0.4735
Opinion 0.4041

Table 1: IAA scores for tags
(Krippendorff’s alpha)

Attribute IAA score
Player::playerID 0.9197
Fact:: time 0.8971
Opinion::reported 0.7639
Opinion::polarity 0.6747
Fact:: type 0.6366
Opinion::time 0.6031
Fact::FactID 0.4991
Opinion::type 0.4997
Coref::playerID 0.4989
Opinion::hypothetical 0.4122
Player::name NaN

Table 2: IAA scores for tags and their attributes
(Krippendorff’s alpha)

Regarding attributes for Fact tags, we had rel-
atively good agreement on Fact type, which was
important, as well as strong agreement on time,
which was relatively easy for annotators to de-
tect. Agreement in attributes for Opinion tags was
lower compared to that in attributes of Fact tags,
reflecting the wider degree of subjectivity, but per-
haps also the higher degree of ambiguity in our
annotation guidelines. However, we did obtain
good agreement for polarity values, as well as re-
ported speech attributes.The agreement in polarity
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values was particularly important, since our ma-
chine learning experiments made use of polarities
in creating features from the opinion tags.

Finally, the score for the Hypothetical attribute
is misleading, simply because one of our annota-
tors seems to have marked every Opinion tag with
this attribute. Otherwise, we observed during ad-
judication that annotators were relatively consis-
tent in marking Hypothetical attributes.

6 Adjudication Process

We included Fact tags in our gold standard if at
least one annotator tagged it. Occasionally, if a
span of text should obviously have been marked as
a Fact but had not been tagged by any annotators,
we nonetheless tagged it as a Fact in our gold stan-
dard. In many cases this involved relatively obvi-
ous readings of events such as goals, saves, and
other facts which we believe the annotators should
easily have caught according to our guidelines. We
attempted to do this very sparingly, though. On the
other hand, we only included Opinion tags if at
least two annotators tagged a span. With regard to
attributes, we generally opted for “majority rules”.
If there was complete disagreement about the at-
tribute, we selected the one that to us seemed most
appropriate.

We usually selected the span that the majority of
annotators agreed on, which usually was the mini-
mal relevant span.

7 Experiments

An experiment was performed using the previ-
ously mentioned player ratings. Players that were
explicitly mentioned in a document were classified
by the rating obtained from Goal.com.

7.1 Baseline

Three types of baseline models were trained uti-
lizing Scikit-learn (Pedregosa et al., 2011) embed-
ded in NLTK (Bird et al., 2009) wrappers: a sup-
port vector machine (SVM) model, a maximum
entropy (MaxEnt) model, and a decision tree (DT)
model. All baseline models were trained with
boolean unigram features, though stopwords were
removed before feature extraction. No dimension
reduction was performed other than what inher-
ently occurred in each type of model.

For each match report, a sub-document was cre-
ated for each player mentioned in the match re-
port. Each player’s sub-document included every

sentence explicitly mentioning that player’s name.
In a naive model of coreference, sentences con-
taining anaphora were added to the sub-document
of the most recently mentioned player. Each sub-
document was paired with the rating for that player
for that match.

Micro-precision was high for all models, though
this was largely due to the fact that they tended to
predict a score of 3.0, which was by far the most
common player rating. The MaxEnt and Deci-
sion Tree models performed roughly equally well,
though neither could be considered a successful
model.

It is worth noting that no model was able to pre-
dict ratings at the high and low extremes due to a
sparsity of data for the ratings.

Classifier Precision Recall F1
SVM (Micro) 0.327 0.327 0.327
SVM (Macro) 0.0764 0.169 0.0968

MaxEnt (Micro) 0.297 0.297 0.297
MaxEnt (Macro) 0.121 0.163 0.127

DT (Micro) 0.281 0.281 0.281
DT (Macro) 0.15 0.166 0.148

Table 3: Scores for different baseline classifiers

Rating Precision Recall F1
2.0 0.0294 0.0294 0.0294
2.5 0.121 0.154 0.128
3.0 0.345 0.464 0.375
3.5 0.324 0.327 0.307
4.0 0.159 0.115 0.126

Table 4: Scores for Decision Tree baseline by rat-
ing 5

7.2 Classifiers

Different types of classifiers were applied to the
annotated corpus, including maximum entropy
(MaxEnt), linear regression (LR), support vector
machine (SVM) and random forest (RF). Preci-
sion, recall and F1 score were calculated for each
classifier, with 17-fold cross-validation, which
tested 2 files each time. Since regression predicts
a continuous scaling measure instead of a discrete
5 point scale, the prediction of a regression was
converted to the nearest rating point. For example,

5Scores for ratings not shown were all 0.0.
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if linear regression output 3.33, it was converted
into 3.5.

7.3 Feature Extraction

Multiple attempts were made to achieve a better
score. In the initial attempt, the following features
were used:

• Normalized percentage of different types of
facts in a single article

• Normalized percentage of different types of
opinions in a single article

• Total mentions of each player in a single arti-
cle

The following issues have also been taken into
consideration and the model is slighted adjusted
accordingly.

Correlation: There were certain degrees of cor-
relation between some features, though due to the
limited amount of data these correlations were un-
stable. However, removing one of two signif-
icantly correlated features made no notable im-
provement in the accuracy of the classifiers.

Dimension reduction: In order to remove re-
dundancies in the features, singular vector decom-
position was applied to the feature matrix before
doing linear regression. However, linear regres-
sion with SVD actually performed slightly worse
than linear regression without SVD.

LR, SVM and MaxtEnt performed equally well
in terms of their micro-averages, although Max-
Ent achieved the best score, 0.367, by a very small
margin. While this was only slightly better than
baseline, the macro F1-score for the LR model was
0.204, which was a more notable improvement.

Classifier Precision Recall F1
LR (Micro) 0.364 0.364 0.364
LR (Macro) 0.219 0.252 0.204

LR-SVD (Micro) 0.328 0.328 0.328
LR-SVD (Macro) 0.216 0.216 0.187

SVM (Micro) 0.363 0.363 0.363
SVM (Macro) 0.206 0.233 0.194

MaxEnt (Micro) 0.367 0.367 0.367
MaxEnt (Macro) 0.147 0.219 0.160

RF (Micro) 0.283 0.283 0.283
RF (Macro) 0.176 0.188 0.171

Table 5: Scores for different classifiers

8 Challenges

8.1 Challenges in Annotation
One issue with the annotation process was the use
of British English and soccer jargon in match re-
ports. Annotators who are not familiar with British
English vocabulary and soccer terms reported dif-
ficulties in understanding some of the match re-
ports.

Another issue was the ambiguity between cer-
tain categories in the annotation scheme. For
example, in Fact tags, type “assist” and type
“goal” are a subsets of “pass” and “shot” respec-
tively. In Opinion tags, “accomplishment” over-
laps “growth/decline”, since accomplishments are
often indicative of a player’s improvement.

The lack of precision in the annotation guide-
lines regarding the span of the text to be tagged
resulted in wide disagreements over spans.

Finally, some of the categories were not of-
ten used by the annotators. This mainly resulted
from the fact that we initially designed our DTD
based on the categories found in match reports and
player reviews from the Guardian, which include
more opinions and subjective judgments. How-
ever, the Goal.com match reports focused more
heavily on reporting facts, with few subjective
judgments on the part of the writer. However, if
we were to expand the corpus to include a more di-
verse range of sources, we might see cases where
Opinion tags would be useful.

8.2 Challenges in Machine Learning
One issue was the limited amount of annotated
files. This directly led to unstable results where
in some cases, certain features are strongly corre-
lated or the F1 score exceeds 0.6, while in other
cases, the features have no correlation at all or the
F1 score is lower than the baseline.

The second issue was whether the features be-
ing extracted are fundamentally a good predictor
for a players rating. Since the rating is based on
the actual performance of a player, and the match
reports will not cover every detail happened in a
match, this incomplete description may or may not
be sufficient to predict the rating accurately. In ad-
dition, the ratings were collected from one of the
sources from which the corpus was built, which
may contain its own bias.

Furthermore, as the ratings themselves are de-
termined by sports writers, they are themselves
inherently subjective and problematic as a gold
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standard label, since two different writers might
disagree on a rating for a specific player. The
Goal.com ratings that we used as a reference la-
bel are themselves created by the Goal.com staff
and factor in sub-ratings in subjective traits such
as ’vision’, ’work rate’, and ’killer instinct’. Un-
less we use hard data only as a criterion for deter-
mining ratings (ie. counts of specific actions like
appearances, goals, saves, etc.), the ratings them-
selves which we are evaluating will be unreliable
as a gold standard label. One possible solution to
obtain more agreement on labels might be to re-
strict the number of labels to two or three instead,
instead of going by increments of 0.5. That might
help obtain a more reliable gold standard for la-
bels, since there would likely be more agreement
on star players vs. terrible players, as opposed to
the difference between a 3.0 and a 3.5. We might
lose a certain level of granularity, but our labels
would likely be more grounded in reality.

Another issue is the methodologies of the clas-
sifiers. Discriminant classifiers or decision trees
treat ratings as a nominal measure. Therefore, the
interval information of ratings will be lost. Al-
though regression keeps such information, it has
a stricter requirement for the relationships among
features and the target in order to get a better re-
sult.

9 Conclusion

This annotation project focuses on a player’s per-
formance as described by soccer news articles. By
capturing the actions of a particular player as well
as subjective evaluations about them, a rating pre-
diction can be made. Models based on the cur-
rent scheme performed appreciably better than the
baseline. However, they still did not perform par-
ticularly well, due to the factors mentioned above.

Increasing the corpus size and variety on play-
ers performances and ratings are two changes that
can be made in the future which would potentially
give a more stable result. We might potentially
change the rating system to restrict the number of
labels, as mentioned above.

We can also improve the current annotation
scheme by narrowing the number of fact or opin-
ion types and eliminating redundant attributes.
We can select annotators who are knowledgeable
enough about soccer to easily understand match
reports. Alternatively, in order to lower the cog-
nitive load caused by unfamiliarity with the sport

and its jargon, we can create an appendix within
the guidelines introducing annotators to the basic
rules and vocabulary of soccer.

In terms of further applications, this project can
be expanded to include a model for rating teams. If
we apply syntactic parsing, we could also extract
salient characteristics of players to determine what
makes a good player. Finally, in addition to rat-
ings, external statistics of a player, such as trans-
fer value, salary, growth/decline, etc., could also
be incorporated into the model to provide a more
comprehensive summary of a player.
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Abstract

Automated speech recognition (ASR)
plays a significant role in training and
simulation systems for air traffic con-
trollers. However, because English is the
default language used in air traffic control
(ATC), ASR systems often encounter dif-
ficulty with speakers’ non-native accents,
for which there is a paucity of data. This
paper examines the effects of accent adap-
tation on the recognition of non-native En-
glish speech in the ATC domain. Accent
adaptation has been demonstrated to be
an effective way to model under-resourced
speech, and can be applied to a vari-
ety of models. We use Subspace Gaus-
sian Mixture Models (SGMMs) with the
Kaldi Speech Recognition Toolkit to adapt
acoustic models from American English
to German-accented English, and compare
it against other adaptation methods. Our
results provide additional evidence that
SGMMs can be an efficient and effective
way to approach this problem, particularly
with smaller amounts of accented training
data.

1 Introduction

As the field of speech recognition has developed,
ASR systems have grown increasingly useful for
the ATC domain. The majority of air traffic
communication is verbal (Hofbauer et al., 2008),
meaning ASR has the potential to be an invalu-
able tool not just in assisting air traffic controllers
in their daily operations, but also for training
purposes and workload analysis (Cordero et al.,
2012).

Due to a constrained grammar and vocabulary,
ATC ASR systems have relatively low word er-

ror rates (WER) when compared to other domains,
such as broadcast news (Geacăr, 2010). These sys-
tems can also be limited at run-time by location
(e.g. place names, runway designations), further
constraining these parameters and increasing ac-
curacy.

Despite the effectiveness of existing systems,
air traffic control has little tolerance for mis-
takes in day-to-day operations (Hofbauer et al.,
2008). Furthermore, these systems generally per-
form worse in real-world conditions, where they
have to contend with confounding factors such as
noise and speaker accents (Geacăr, 2010).

In this paper, we attempt to ameliorate the is-
sue of speaker accents by examining the useful-
ness of accent adaptation in the ATC domain. We
compare the relatively new innovation of SGMMs
(Povey et al., 2011a) against older adaptation tech-
niques, such as maximum a posteriori (MAP) es-
timation, as well as pooling, a type of multi-
condition training.

We perform experiments using out-of-domain
American English data from the HUB4 Broad-
cast News Corpus (Fiscus et al., 1998), as well as
German-accented English data taken from the AT-
COSIM corpus (Hofbauer et al., 2008) and pro-
vided by UFA, Inc., a company specializing in
ATC training and simulation.

The paper is organized as follows: in Section 2,
we describe previous accent adaptation techniques
as well as the structure of SGMMs and how they
can be adapted on new data. In Section 3, we out-
line our experiments and show how accent adap-
tation with SGMMs outperforms other methods
when using smaller amounts of data. Section 4
concludes the paper and presents paths for future
study.
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2 Background

2.1 Accent Adaptation
The ideal ASR system for non-native accented
speech is one trained on many hours of speech in
the target accent. However, for a variety of rea-
sons, there is often a paucity of such data. Several
different techniques have been employed to model
accented speech in spite of this lack of data.

One method is to manually adjust the pronun-
ciation lexicon to match the accented phone set
(Humphries et al., 1996). Unfortunately, this
is both time- and labor-intensive as it requires
mappings to be generated from one phoneset to
another, either probabilistically or using expert
knowledge.

Another technique is interpolate models, with
one trained on native accented speech and the
other trained on non-native accented speech (Witt
and Young, 1999). While this has been shown to
reduce word error rate (Wang et al., 2003), it does
not fully adapt the native model to the new accent.

An effective and versatile method, and the one
we implement here, is to directly adapt a native
acoustic model on the non-native speech. There
exist a few different ways to accomplish this,
such as MAP estimation for HMM-GMMs, Max-
imum Likelihood Linear Regression (MLLR) for
Gaussian parameters (Witt and Young, 1999), and
re-estimating the state-specific parameters of an
SGMM. These techniques have the advantage of
requiring little other than a trained native accent
model and a non-trivial amount of non-native ac-
cented data.

2.2 SGMM Adaptation
Unlike a typical GMM, the parameters of an
SGMM are determined by a combination of
globally-shared parameters and state-specific pa-
rameters. The model can be expressed as follows:

p(x|j) = Σ
Mj

m=1cjmΣI
i=1wjmiN (x;µjmi,Σi)

µjmi = Mivjm

wjmi =
exp wT

i vjm

ΣI
l=1exp wT

l vjm

where x is the feature vector, j is the speech
state, cjm is the state-specific weight, vjm is the
state-specific vector, and µjmi, Mi, and wi are
all globally-shared parameters. SGMMs are gen-
erally initialized using a Universal Background

Model (UBM), which is trained separately from
the SGMM.

SGMMs can be further extended beyond the
model described above to include speaker-specific
vectors and projections. Other speaker adaptation
techniques, such as feature-space Maximum Like-
lihood Linear Regression (fMLLR, also known as
CMLLR), can be applied on top of these exten-
sions to further increase the accuracy of the model.

Though it is possible to perform MAP adapta-
tion using SGMMs, their unique structure allows
a different and more effective technique to be ap-
plied (Povey et al., 2011a). Initially, all of the
model’s state-specific and globally-shared param-
eters are trained on out-of-domain data. The state-
specific parameter vjm can then be re-estimated
on the non-native speech using maximum like-
lihood. This adaptation method has been suc-
cessfully applied to multi-lingual SGMMs (Povey
et al., 2011a) as well as different native accents
of the same language (Motlicek et al., 2013), and
is the technique we use here to adapt the native-
accented SGMMs on non-native speech.

Though there exist other ways of adapting SG-
MMs (Juan et al. (2015) created a multi-accent
SGMM by combining UBMs that had been sep-
arately trained on the native and non-native data),
we do not implement those methods here.

3 Experiments

All experiments were performed using the Kaldi
Speech Recognition Toolkit (Povey et al., 2011b).

3.1 Data

Speech Data
For acoustic model training, data was taken from
three separate sources:

• Approximately 75 hours of US English audio
was taken from the 1997 English Broadcast
News Corpus (HUB4), which consists of var-
ious radio and television news broadcasts.

• About 20 hours of German-accented data,
which is purely in-domain ATC speech, was
supplied by UFA.

• An additional 6 hours of German-accented
speech was taken from the ATCOSIM cor-
pus, which consists of audio recorded during
real-time ATC simulations.
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Native (Unadapted) Non-native Only Pooled (Unadapted) Native (Adapted) Pooled (Adapted)
System WER SER WER SER WER SER WER SER WER SER

HMM-GMM 25.73 74.39 5.74 34.43 6.76 39.24 6.55 37.43 5.38 32.77
+ fMLLR 12.61 58.40 4.64 30.64 5.40 34.53 5.12 33.17 4.51 29.30
SGMM 13.78 58.43 4.15 26.23 4.97 30.99 4.13 26.65 3.71 24.44

+ fMLLR 10.02 51.76 3.46 23.57 4.38 29.15 4.09 27.57 3.25 22.38

Table 1: Error rates of different models trained with 6.5 hours of adaptation data.

Native (Unadapted) Non-native Only Pooled (Unadapted) Native (Adapted) Pooled (Adapted)
System WER SER WER SER WER SER WER SER WER SER

HMM-GMM 25.73 74.39 3.90 25.16 4.99 31.11 5.95 35.18 4.29 27.54
+ fMLLR 12.61 58.40 3.36 23.00 4.16 27.84 4.79 31.36 3.66 24.91
SGMM 13.78 58.43 3.12 21.34 3.82 25.29 3.71 24.71 3.00 21.10

+ fMLLR 10.02 51.76 2.77 20.03 3.34 23.18 3.64 25.16 2.88 20.45

Table 2: Error rates of different models trained with 26 hours of adaptation data.

Test data consisted of just under 4 hours of
German-accented speech provided by UFA. All
audio was downsampled to 16 kHz.

Language Model Data
We interpolated a language model trained on the
UFA and ATCOSIM utterances with one trained
on sentences generated from an ATC grammar
supplied by UFA. Both LMs were 5-gram mod-
els with Witten-Bell smoothing. The interpolated
model was heavily weighted towards the natural
utterances (with λ = 0.95), since the main pur-
pose of the generated utterances was to add cov-
erage for words and n-grams that were not present
in the natural data.

Lexicon
The lexicon was largely derived from the CMU
Pronouncing Dictionary. Additional pronuncia-
tions were supplied by UFA, and several were
written by hand.

3.2 Experimental Setup

The baseline acoustic model was a regular HMM-
GMM and was trained with the usual 39 MFCC
features, including delta and acceleration features.
Experiments were conducted both with and with-
out pooling the adaptation data with the US En-
glish data, since pooling data prior to adaptation
has been shown to give better results for both
MAP and SGMM maximum likelihood adaptation
(Motlicek et al., 2013), as well as for other adap-
tation techniques (Witt and Young, 1999).

We conducted two experiments, each with a dif-
ferent amount of adaptation data. The first exper-
iment included only a 6.5-hour subset of the total
adaptation data, which was created by randomly

selecting speakers from both the ATCOSIM cor-
pus and the UFA data. The second included all
26 hours of adaptation data. HMM-GMM models
were adapted using MAP estimation and SGMMs
were adapted using the method outlined above.

For each amount of adaptation data, we trained
several different models, testing all combinations
of the following variables:

• Whether the model was trained solely on the
native-accented data, trained solely on the
adaptation data, trained on the combined data
but not adapted, trained of the native data and
then adapted, or trained on the combined data
and then adapted.

• Whether an HMM-GMM or SGMM was
used (as well as the corresponding adaptation
method).

• Whether the model was trained with speaker-
dependent fMLLR transforms.

3.3 Experimental Results
With 6.5 hours of German accented data, both the
MAP-adapted and SGMM-adapted pooled sys-
tems saw modest reductions in word error rate,
as can be seen in Table 1. MAP adaptation pro-
vided a 6.3% relative improvement over the corre-
sponding accented-only model1, though WER was
reduced by only 2.8% when fMLLR was imple-
mented. Pooled SGMMs were more versatile and
amenable to adaptation, with a relative reduction
in WER of 10.6%, and a relative improvement of

1Unless otherwise specified, reduction in error rate is rela-
tive to the model with the same parameters (SGMM, fMLLR,
etc.) but trained on the non-native accented data only, rather
than relative to a single baseline.
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6.1% when using fMLLR. Changes in sentence er-
ror rate (SER) between models correlated with the
changes in WER, reaching a minimum of 22.38%
with the adapted SGMM-fMLLR system, a rela-
tive reduction of just over 5%.

Including the full 26 hours of non-native speech
in the training and adaptation data generally re-
sulted in higher error rates in the adapted sys-
tems than the corresponding accented-only mod-
els, as seen in Table 2. This decrease in per-
formance approached 10% for the HMM-GMM
systems. Though the SGMM-fMLLR adapted
system experienced a relative reduction in per-
formance of about 4%, the performance of the
non-fMLLR SGMM increased by about the same
amount. Changes in SER again correlated with the
changes in WER, with the adapted speaker inde-
pendent SGMM possessing a slight edge (about
1%) over its accented-only counterpart.

It is not clear from this experiment why the
speaker independent SGMM system was the only
one to undergo an increase in performance when
adapted with the full dataset. A possible explana-
tion is that, with enough data, the speaker adap-
tive techniques were simply more robust than the
accent-adaptation method.

Unsurprisingly, the unadapted native-accented
systems had the worst performance out of all of
the models, with word error rates that were more
than double than that of next best corresponding
system.

The unadapted pooled models and the adapted
native models were usually the second- and third-
worst performing groups of models, though their
ranking depended on the amount of adaptation
data used. The pooled models generally gave bet-
ter results when more adaptation data was pro-
vided, while the adapted native models had an ad-
vantage with less adaptation data.

Interestingly, fMLLR had relatively little effect
when used with the adapted native SGMMs, re-
gardless of the amount of adaptation data used.
WER was reduced by only about 1 to 2% com-
pared to the models’ non-fMLLR counterparts.
This stands in contrast with the gains that virtu-
ally every other model saw with the introduction
of fMLLR. It is not clear why this was the case,
though it might relate to some overlap between the
SGMM adaptation method and fMLLR.

While it is possible that training the pooled
model with in-domain English speech could in-

crease performance, it seems unlikely that it would
be superior to either the accented-only model or
the adapted pooled model.

4 Conclusion

In this paper, we explored how non-native accent
adaptation can be applied using SGMMs to yield
notable improvements over the baseline model,
particularly when there exists only limited in-
domain data. We also demonstrated that this tech-
nique can achieve as high as a 10% relative im-
provement in WER in the ATC domain, where the
baseline model is already highly accurate. Even
with large amounts of adaptation data, speaker in-
dependent SGMMs saw a minor increase in per-
formance when adapted, compared to when they
were trained only with in-domain data.

Future avenues of research include whether
the SGMM adaptation technique used here could
be successfully combined with the UBM-focused
adaptation method used by Juan et al. (2015) to
achieve even further reductions in WER.

Furthermore, future work could explore
whether smaller error rates could be achieved by
training the original acoustic models on speech
from the ATC domain, rather than from broadcast
news, and whether the increases in perfomance
found here still hold between more distantly re-
lated and phonologically dissimilar languages. It
should be noted, however, that this may necesitate
the creation of new corpora, as the few non-native
ATC corpora that exist seem to only include
European accents.
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Abstract

Motivated by concerns for user pri-
vacy, we design a steganographic system
(“stegosystem”) that enables two users to
exchange encrypted messages without an
adversary detecting that such an exchange
is taking place. We propose a new linguis-
tic stegosystem based on a Long Short-
Term Memory (LSTM) neural network.
We demonstrate our approach on the Twit-
ter and Enron email datasets and show
that it yields high-quality steganographic
text while significantly improving capac-
ity (encrypted bits per word) relative to the
state-of-the-art.

1 Introduction

The business model behind modern communica-
tion systems (email services or messaging services
provided by social networks) is incompatible with
end-to-end message encryption. The providers of
these services can afford to offer them free of
charge because most of their users agree to receive
“targeted ads” (ads that are especially chosen to
appeal to each user, based on the needs the user
has implied through their messages). This model
works as long as users communicate mostly in the
clear, which enables service providers to make in-
formed guesses about user needs.

This situation does not prevent users from en-
crypting a few sensitive messages, but it does take
away some of the benefits of confidentiality. For
instance, imagine a scenario where two users want
to exchange forbidden ideas or organize forbidden
events under an authoritarian regime; in a world
where most communication happens in the clear,
encrypting a small fraction of messages automat-
ically makes these messages—and the users who
exchange them—suspicious.

With this motivation in mind, we want to de-
sign a system that enables two users to exchange
encrypted messages, such that a passive adversary
that reads the messages can determine neither the
original content of the messages nor the fact that
the messages are encrypted.

We build on linguistic steganography, i.e., the
science of encoding a secret piece of informa-
tion (“payload”) into a piece of text that looks
like natural language (“stegotext”). We propose
a novel stegosystem, based on a neural network,
and demonstrate that it combines high quality of
output (i.e., the stegotext indeed looks like natu-
ral language) with the highest capacity (number of
bits encrypted per word) published in literature.

In the rest of the paper, we describe existing lin-
guistic stegosystems along with ours (§2), provide
details on our system (§3), present preliminary ex-
perimental results on Twitter and email messages
(§4), and conclude with future directions (§5).

2 Linguistic Steganography

In this section, we summarize related work (§2.1),
then present out proposal (§2.2).

2.1 Related Work

Traditional linguistic stegosystems are based on
modification of an existing cover text, e.g., us-
ing synonym substitution (Topkara et al., 2006;
Chang and Clark, 2014) and/or paraphrase sub-
stitution (Chang and Clark, 2010). The idea is
to encode the secret information in the transfor-
mation of the cover text, ideally without affect-
ing its meaning or grammatical correctness. Of
these systems, the most closely related to ours is
CoverTweet (Wilson et al., 2014), a state-of-the-
art cover modification stegosystem that uses Twit-
ter as the medium of cover; we compare to it in
our preliminary evaluation (§4).

100

https://doi.org/10.18653/v1/P17-3017


Cover modification can introduce syntactic and
semantic unnaturalness (Grosvald and Orgun,
2011); to address this, Grovsald and Orgun pro-
posed an alternative stegosystem where a human
generates the stegotext manually, thus improving
linguistic naturalness at the cost of human ef-
fort (Grosvald and Orgun, 2011).

Matryoshka (Safaka et al., 2016) takes this fur-
ther: in step 1, it generates candidate stegotext au-
tomatically based on an n-gram model of the En-
glish language; in step 2, it presents the candidate
stegotext to the human user for polishing, i.e., ide-
ally small edits that improve linguistic naturalness.
However, the cost of human effort is still high, be-
cause the (automatically generated) candidate ste-
gotext is far from natural language, and, as a re-
sult, the human user has to spend significant time
and effort manually editing and augmenting it.

Volkhonskiy et al. have applied Generative Ad-
versarial Networks (Goodfellow et al., 2014) to
image steganography (Volkhonskiy et al., 2017),
but we are not aware of any text stegosystem based
on neural networks.

2.2 Our Proposal: Steganographic LSTM
Motivated by the fact that LSTMs (Hochreiter and
Schmidhuber, 1997) constitute the state of the art
in text generation (Jozefowicz et al., 2016), we
propose to automatically generate the stegotext
from an LSTM (as opposed to an n-gram model).
The output of the LSTM can then be used either
directly as the stegotext, or Matryoshka-style, i.e.,
as a candidate stegotext to be polished by a hu-
man user; in this paper, we explore only the for-
mer option, i.e., we do not do any manual polish-
ing. We describe the main components of our sys-
tem in the paragraphs below; for reference, Fig. 1
outlines the building blocks of a stegosystem (Sa-
lomon, 2003).

Figure 1: Stegosystem building blocks.

Secret data. The secret data is the information
we want to hide. First, we compress and/or en-
crypt the secret data (e.g., in the simplest set-
ting using the ASCII coding map) into a secret-

containing bit string S. Second, we divide S
into smaller bit blocks of length |B|, resulting in
a total of |S|/|B|1 bit blocks. For example, if
S = 100001 and |B| = 2, our bit-block sequence
is 10, 00, 01. Based on this bit-block sequence,
our steganographic LSTM generates words.

Key. The sender and receiver share a key that
maps bit blocks to token sets and is constructed
as follows: We start from the vocabulary, which
is the set of all possible tokens that may appear in
the stegotext; the tokens are typically words, but
may also be punctuation marks. We partition the
vocabulary into 2|B| bins, i.e., disjoint token sets,
randomly selected from the vocabulary without re-
placement; each token appears in exactly one bin,
and each bin contains |V |/2|B| tokens. We map
each bit block B to a bin, denoted by WB . This
mapping constitutes the shared key.

Bit Block Tokens
00 This, am, weather, ...
01 was, attaching, today, ...
10 I, better, an, Great, ...
11 great, than, NDA, ., ...

Table 1: Example shared key.

Embedding algorithm. The embedding algo-
rithm uses a modified word-level LSTM for lan-
guage modeling (Mikolov et al., 2010). To encode
the secret-containing bit string S, we consider one
bit block B at a time and have our LSTM select
one token from bin WB; hence, the candidate ste-
gotext has as many tokens as the number of bit
blocks in S. Even though we restrict the LSTM
to select a token from a particular bin, each bin
should offer sufficient variety of tokens, allowing
the LSTM to generate text that looks natural. For
example, given the bit string “1000011011” and
the key in Table 1, the LSTM can form the partial
sentence in Table 2. We describe our LSTM model
in more detail in the next section.

Bit String 10 00 01 10 11
Token I am attaching an NDA

Table 2: Example stegotext generation.

1If |B|6 | |S|, then we leave the remainder bit string out of
encryption.
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Decoder. The decoder recovers the original data
deterministically and in a straightforward manner:
it takes as input the generated stegotext, considers
one token at a time, finds the token’s bin in the
shared key, and recovers the original bit block.

Common-token variant. We also explore a
variant where we add a set of common tokens, C,
to all bins. These common tokens do not carry
any secret information; they serve only to enhance
stegotext naturalness. When the LSTM selects a
common token from a bin, we have it select an ex-
tra token from the same bin, until it selects a non-
common token. The decoder removes all common
tokens before decoding. We discuss the choice
of common tokens and its implication on our sys-
tem’s performance in Section 4.

3 Steganographic LSTM Model

In this section, we provide more details on our sys-
tem: how we modify the LSTM (§3.1) and how we
evaluate its output (§3.2).

3.1 LSTM Modification
Text generation in classic LSTM. Classic
LSTMs generate words as follows (Sutskever
et al., 2011): Given a word sequence
(x1, x2, . . . , xT ), the model has hidden states
(h1, . . . , hT ), and resulting output vectors
(o1, . . . , oT ). Each output vector ot has length
|V |, and each output-vector element o

(j)
t is

the unnormalized probability of word j in the
vocabulary. Normalized probabilities for each
candidate word are obtained by the following
softmax activation function:

softmax(ot)j := exp(o
(j)
t )
/∑

k

exp(o
(k)
t ).

The LSTM then selects the word with the highest
probability P [xt+1 |x≤t] as its next word.

Text generation in our LSTM. In our stegano-
graphic LSTM, word selection is restricted by the
shared key. That is, given bit block B, the LSTM
has to select its next word from bin WB . We set
P [x = wj ] = 0 for j /∈ WB , so that the multi-
nomial softmax function selects the word with the
highest probability within WB .

Common tokens. In the common-token variant,
we restrict P [x = wj ] = 0 only for j /∈ (WB∪C),
where C is the set of common tokens added to all
bins.

3.2 Evaluation Metrics

We use perplexity to quantify stegotext quality;
and capacity (i.e., encrypted bits per output word)
to quantify its efficiency in carrying secret infor-
mation. In Section 4, we also discuss our stegotext
quality as empirically perceived by us as human
readers.

Perplexity. Perplexity is a standard metric for
the quality of language models (Martin and Ju-
rafsky, 2000), and it is defined as the average
per-word log-probability on the valid data set:
exp(−1/N∑i ln p[wi]) (Jozefowicz et al., 2016).
Lower perplexity indicates a better model.

In our steganographic LSTM, we cannot use
this metric as is: since we enforce p[wi] = 0 for
wi /∈WB , the corresponding ln p[wi] becomes un-
defined under this vocabulary.

Instead, we measure the probability of wi by
taking the average of p[wi] over all possible secret
bit blocks B, under the assumption that bit blocks
are distributed uniformly. By the Law of Large
Numbers (Révész, 2014), if we perform many
stegotext-generating trials using different random
secret data as input, the probability of each word
will tend to the expected value,

∑
p[wi, B]/2|B|,

Hence, we set p[wi] :=
∑

p[wi, B]/2|B| instead
of p[wi] = 0 for wi /∈WB .

Capacity. Our system’s capacity is the num-
ber of encrypted bits per output word. Without
common tokens, capacity is always |B| bits/word
(since each bit block of size |B| is always mapped
to one output word). In the common-token variant,
capacity decreases because the output includes
common tokens that do not carry any secret infor-
mation; in particular, if the fraction of common
tokens is p, then capacity is (1− p) · |B|.

4 Experiments

In this section, we present our preliminary experi-
mental evaluation: our Twitter and email datasets
(§4.1), details about the LSTMs used to produce
our results (§4.2), and finally a discussion of our
results (§4.3).

4.1 Datasets

Tweets and emails are among the most popular
media of open communication and therefore pro-
vide very realistic environments for hiding infor-
mation. We thus trained our LSTMs on those
two domains, Twitter messages and Enron emails
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(Klimt and Yang, 2004), which vary greatly in
message length and vocabulary size.

For Twitter, we used the NLTK tokenizer to tok-
enize tweets (Bird, 2006) into words and punctua-
tion marks. We normalized the content by replac-
ing usernames and URLs with a username token
(<user>) and a URL token (<url>), respectively.
We used 600 thousand tweets with a total of 45
million words and a vocabulary of size 225 thou-
sand.

For Enron, we cleaned and extracted email mes-
sage bodies (Zhou et al., 2007) from the Enron
dataset, and we tokenized the messages into words
and punctuation marks. We took the first 100MB
of the resulting messages, with 16.8 million tokens
and a vocabulary size of 406 thousand.

4.2 Implementation Details

We implemented multi-layered LSTMs based on
PyTorch2 in both experiments. We did not use pre-
trained word embeddings (Mikolov et al., 2013;
Pennington et al., 2014), and instead trained word
embeddings of dimension 200 from scratch.

We optimized with Stochastic Gradient Descent
and used a batch size of 20. The initial learning
rate was 20 and the decay factor per epoch was 4.
The learning rate decay occurred only when the
validation loss did not improve. Model training
was done on an NVIDIA GeForce GTX TITAN X.

For Twitter, we used a 2-layer LSTM with 600
units, unrolled for 25 steps for back propagation.
We clipped the norm of the gradients (Pascanu
et al., 2013) at 0.25 and applied 20% dropout (Sri-
vastava et al., 2014). We stopped the training after
12 epochs (10 hours) based on validation loss con-
vergence.

For Enron, we used a 3-layer LSTM with 600
units and no regularization. We unrolled the net-
work for 20 steps for back propagation. We
stopped the training after 6 epochs (2 days).

4.3 Results and Discussion

4.3.1 Tweets

We evaluate resulting tweets generated by LSTMs
of 1 (non-steganographic), 2, 4, 8 bins. Fur-
thermore, we found empirically that adding 10
most frequent tokens from the Twitter corpus was
enough to significantly improve the grammati-
cal correctness and semantic reasonableness of

2https://github.com/pytorch

tweets. Table 3 shows the relationship between ca-
pacity (bits per word), and quantitative text qual-
ity (perplexity). It also compares models with and
without adding common tokens using perplexity
and bits per word.

Table 4 shows example output texts of LSTMs
with and without common tokens added. To re-
flect the variation in the quality of the tweets, we
represent tweets that are good and poor in quality3.

We replaced <user> generated by the LSTM
with mock usernames for a more realistic presen-
tation in Table 4. In practice, we can replace the
<user> tokens systematically, randomly selecting
followers or followees of that tweet sender, for ex-
ample.

Re-tweet messages starting with “RT” can also
be problematic, because it will be easy to check
whether the original message of the retweeted
message exists. A simple approach to deal with
this is to eliminate “RT” messages from training
(or at generation). Finally, since we made all
tweets lower case in the pre-processing step, we
can also post-process tweets to adhere to proper
English capitalization rules.

Original Common Tokens
# of Bins bpw ppl bpw ppl

1 0 134.73 0 134.73
2 1 190.84 0.65 171.35
4 2 381.2 1.17 277.55
8 3 833.11 1.53 476.66

Table 3: An increase of of capacity correlates
with an increase of perplexity, which implies that
there is a negative correlation between capacity
and text quality. After adding common tokens,
there is a significant reduction in perplexity (ppl),
at the expense of a lower capacity (bits per word).

4.3.2 Emails
We also tested email generation, and Table 5
shows sample email passages4 from each bin. We
post-processed the emails with untokenization of
punctuations.

The biggest difference between emails and
tweets is that emails have a much longer range for

3For each category, we manually evaluate 60 randomly
generated tweets based grammatical correctness, semantic
coherence, and resemblance to real tweets. We select tweets
from the 25th, 50th, and 75th percentile, and call them
“good”, “average”, and “poor” respectively. We limit to
tweets that are not offensive in language.

4We only present passages ”average” in quality to con-
serve space.
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# of Bins Tweets Tweets with Common Tokens

2

good: i was just looking for someone that i used have.
poor: cry and speak! rt @user421: relatable per-
sonal hygiene for body and making bad things as a
best friend in lifee

good: i’m happy with you. i’ll take a pic
poor: rt: cut your hair, the smallest things get to the
body.

4

good: @user390 looool yeah she likes me then ;). you
did?
poor: “where else were u making?... i feel fine? - e?
lol” * does a voice for me & take it to walmart?

good: i just wanna move. collapses.
poor: i hate being contemplating for something i
want to.

8

good: @user239 hahah. sorry that my bf is amazing
because i’m a bad influence ;).
poor: so happy this to have been working my ass and
they already took the perfect. but it’s just cause you’re
too busy the slows out! love... * dancing on her face,
holding two count out cold * ( a link with a roof on
punishment... - please :)

good: i hate the smell of my house.
poor: a few simple i can’t. i need to make my specs
jump surprisingly.

Table 4: We observe that the model with common tokens produces tweets simpler in style, and uses
more words from the set of common tokens. There is a large improvement in grammatical correctness
and context coherence after adding common tokens, especially in the “poor” examples. For example,
adding the line break token reduced the length of the tweet generated from the 8-bin LSTM.

context dependency, with context spanning sen-
tences and paragraphs. This is challenging to
model even for the non-steganographic LSTM.
Once the long-range context dependency of the
non-steganographic LSTM improves, the context
dependency of the steganographic LSTMs should
also improve.

# of Bins Sample Email
1 —–Original Message—– From: Nelson,

Michelle Sent: Thursday, January 03, 2002
3:35 PM To: Maggi, Mike Subject: Hey, You
are probably a list of people that are around
asleep about the point of them and our wife.
Rob

2 If you do like to comment on the above you
will not contact me at the above time by 8:00
a.m. on Monday, March 13 and July 16 and
Tuesday, May 13 and Tuesday, March 9 -
Thursday, June 17, - 9:00 to 11:30 AM.

4 At a moment when my group was working
for a few weeks, we were able to get more
flexibility through in order that we would not
be willing.

Table 5: The issue of context inconsistency is
present for all bins. However, the resulting text
remains syntactical even as the number of bins in-
creases.

4.4 Comparison with Other Stegosystems
For all comparisons, we use our 4-bin model with
no common tokens added.

Our model significantly improves the state-
of-the-art capacity. Cover modification based
stegosystems hide 1-2 bits per sentence (Chang
and Clark, 2012). The state-of-the-art Twitter
stegosystem hides 2.8 bits of per tweet (Wil-

son and Ker, 2016). Assuming 16.04 words per
tweet5, our 4-bin system hides 32 bits per tweet,
over 11 times higher than (Wilson and Ker, 2016).

We hypothesize that the subjective quality of
our generated tweets will be comparable to tweets
produced by CoverTweet (2014). We present
some examples6 in Table 6 to show there is po-
tential for a comparison. This contrasts the previ-
ous conception that cover generation methods are
fatally weak against human judges (Wilson et al.,
2014). CoverTweet was tested to be secure against
human judges. Formal experiments will be nec-
essary to establish that our system is also secure
against human judges.

CoverTweet (2014) Steganographic LSTM
yall must have 11:11 set
1 minute early before yall
tweet it, because soon as
11:11 hit yall don’t wastes
no time. lol

i wanna go to sleep in the
gym, ny in peoples houses
& i’m in the gym..! :((

you can tell when some-
body hating on you!

i would rather marry a reg-
ular sunday!!

most of the people who got
mouth can’t beat you.

my mom is going so hard
to get his jam.

Table 6: The tweets generated by the 4-bin LSTM
(32 bits per tweet) are reasonably comparable in
quality to tweets produced by CoverTweet (2.8
bits per tweet).

Our system also offers flexibility for the user to
freely trade-off capacity and text quality. Though
we chose the 4-bin model with no common tokens
for comparison, user can choose to use more bins

5Based a random sample of 2 million tweets.
6Tweets selected for comparison are “average” in quality.
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to achieve an even higher capacity, or use less bins
and add common tokens to increase text quality.
This is not the case with existing cover modifi-
cation systems, where capacity is bounded above
by the number of transformation options (Wilson
et al., 2014).

5 Conclusion and Future Work

In this paper, we opened a new application of
LSTMs, namely, steganographic text generation.
We presented our steganographic model based on
existing language modeling LSTMs, and demon-
strated that our model produces realistic tweets
and emails while hiding information.

In comparison to the state-of-the-art stegano-
graphic systems, our system has the advantage of
encoding much more information (around 2 bits
per word). This advantage makes the system more
usable and scalable in practice.

In future work, we will formally evaluate our
system’s security against human judges and other
steganography detection (steganalysis) methods
(Wilson et al., 2015; Kodovsky et al., 2012). When
evaluated against an automated classifier, the setup
becomes that of a Generative Adversarial Network
(Goodfellow et al., 2014), though with additional
conditions for the generator (the secret bits) which
are unknown to the discriminator, and not neces-
sarily employing joint training. Another line of
future research is to generate tweets which are per-
sonalized to a user type or interest group, instead
of reflecting all twitter users. Furthermore, we
plan to explore if capacity can be improved even
more by using probabilistic encoders/decoders, as
e.g. in Matryoshka (Safaka et al., 2016, Section
4).

Ultimately, we aim to open-source our stegosys-
tem so that users of open communication systems
(e.g. Twitter, emails) can use our stegosystem to
communicate private and sensitive information.
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Abstract

This study aims to predict clinical depres-
sion, a prevalent mental disorder, from
blog posts written in Japanese by using
machine learning approaches. The study
focuses on how data quality and various
types of linguistic features (characters, to-
kens, and lemmas) affect prediction out-
come. Depression prediction achieved
95.5% accuracy using selected lemmas as
features.

1 Introduction

The World Health Organization (WHO) recog-
nizes that depression is a leading cause of ill health
and disability (2017). In Japan, it is also the
most frequent reason for sick leave from work (Ki-
tanaka, 2012). However, many people with de-
pression may not be aware that their mood change
and fatigue are due to depression. In order to offer
help for those who need it, we first need to iden-
tify them. This study examines whether linguistic
features in written texts can help predict whether
the author is depressed by using a supervised ma-
chine learning approach. Specifically, we examine
the effectiveness of morphological (character n-
grams), syntactic (token n-grams), and (syntactic-
)semantic (lemmas of selected POS categories)
features. In addition, we remove the topic bias so
that the methods can be used to predict depression
in people who do not know they are depressed and
thus do not write about depression. The results
show that lemmas from verb and adverb categories
improve performance in classifying authors. Ad-
ditionally, the selected words include words not
typically thought of as related to depression. Thus,
the study suggests that feature engineering should
not be constrained by our notion of what would be
related to certain mental conditions or personali-

ties as changes in people’s language use may be
very subtle.

Section 2 discusses previous work on author
profiling and depression detection. In Section 3,
we describe data acquisition, topic modeling, and
classifications with different features. Section 4
summarizes the results, and Section 5 discusses
the results. Finally, Section 6 concludes the paper
with a summary and an outlook.

2 Related Work

Language and social media activities have been
utilized for author profiling including personality
prediction (Bachrach et al., 2012; Golbeck et al.,
2011). Although depression is not a personality,
the studies in personality prediction can be ex-
tended to predicting depression since one’s mental
state is often reflected in his or her language and
social activities.

Character n-grams are reported to do well in
gender prediction in English blog text (Sarawgi
et al., 2011) and personality prediction in Dutch
(Noecker et al., 2013). However, the PAN 2014
challenge (Rangel et al., 2014) reports that charac-
ter n-grams are not useful in author profiling (age
and gender) in English and Spanish social media,
Twitter, blogs, and hotel reviews. Japanese is dif-
ferent from Germanic or Romance languages in
terms of how much information can be encoded
in one character. Japanese basic characters, hira-
gana and katakana, represent one mora, which is
a sound unit similar to a syllable, and kanji (Chi-
nese characters) can encode more than one mora.
Moreover, there are many characters: 50 each for
hiragana and katakata, and approximately 2000
kanji for everyday writing. The current study thus
examines the effectiveness of character n-grams as
features in Japanese text classification.

Matsumoto et al. (2012) built a classifier to
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Class # of Author Word/Author # of Document Word/Doc

All
Depressed 51 3666 842 222
Non-Depressed 60 3692 1020 220

Topic
Depressed 49 2630 739 192
Non-Depressed 59 2890 904 191

Table 1: Number of authors and documents and average word count before and after topic modeling

predict whether a blog text is written by a de-
pressed author or a non-depressed author, using
approximately 1800 blog texts written by 30 de-
pressed authors and 30 non-depressed authors.
They experimented with bag-of-word (BOW) fea-
tures and also examined whether words that are
associated with emotions from the JAppraisal dic-
tionary (Sato, 2011) were useful in classification.
Their classifier using Naive Bayes and BOW per-
formed the best, resulting in average of 88.1% ac-
curacy with 10-fold cross validation. One would
question whether their prediction with BOW was
based on topic, however. By browsing blogs writ-
ten by depressed authors, we find many blogs are
about depression. Therefore, texts written by de-
pressed authors are biased towards the topic of de-
pression. Unless Matsumoto et al. (2012) con-
trolled topic-bias, their system may be heavily af-
fected by topic. The goal of this study is to pre-
dict depression from topic-general texts. Thus, the
current study controls topic by performing topic
modeling (Section 3.2) before classification and
examines its effect. As their model using emotion-
related words did worse (<70%) than BOW, the
current study examines various features that are
not obviously related to depression.

3 Method

3.1 Data
Blog texts are collected from a blog ranking site1

and by searching on blog provider websites (Ya-
hoo Japan, Livedoor, Hatena, FC2, Seesaa, Nifty,
Muragon, and Ameblo)2. The blog ranking site
ranks registered blogs by the number of votes
from readers who visit the blogs. The site is di-
vided into categories which include “depression”.
In this category, most authors state that they are
diagnosed with or have been suffering from de-
pression. Blogs are chosen to be included in the
study if the authors report that they themselves are
suffering from depression and have written their

1 http://mental.blogmura.com/utsu/
2Data by Matsumoto et al. (2012) was not available

blogs for at least three months. Some authors write
only a little in a month, but most write at least 10
entries within three months. Thus, for each au-
thor, three months’ worth of blog posts are col-
lected. This “depressed” group consists of 51 au-
thors. Three months’ worth of texts for 60 “non-
depressed” authors are also collected. They are
randomly chosen among those who have a sim-
ilar profile as the depressed authors. For exam-
ple, if a depressed author is a male in his 40’s, a
blog author who had the similar profile is chosen.
Moreover, non-depressed authors with the same
interest as the depressed authors are collected.
Their interests include pets, food, and sports.3 As
many blogs written by depressed authors are re-
trieved from a blog ranking site, they include fixed
phrases, such as “Please vote”, to encourage their
readers to vote for their blogs. These fixed phrases
that appear repeatedly are removed as they do not
appear in blogs written by the non-depressed au-
thors. Moreover, a document whose file size is
smaller than 100 bytes is removed as it contained
very few words. The average number of words
and characters per author and per document are in
Table 1.

3.2 Removing Blog entries on depression

Before performing classification, topic model-
ing is performed to divide documents into topic
classes. The purpose of topic modeling is to re-
move blog entries that are biased towards the topic
of depression so that classification will not clas-
sify documents based on topics (see Section 2).
MALLET (McCallum, 2002) is used for topic-
modeling. Dividing documents into 5 topics with a
hyperparameter optimization value of 50 is found
to work the best by manually testing different val-
ues. Two of the five topics included topic keys
that are related to depression, and thus the doc-
uments in those two topics are excluded in the
study. The numbers are summarized in Table 1.

3We are aware that we cannot guarantee that non-
depressed authors are not depressed.
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Class # of Author Word/Author # of Document Word/Doc

Train
Depressed 39 2404 590 193
Non-Depressed 47 2466 722 195

Test
Depressed 10 3512 149 186
Non-Depressed 12 4233 182 177

Table 2: Number of authors and documents and average word count in training and test sets

The number of authors is reduced to 49 depressed
and 59 non-depressed authors. The reason for the
reduction in non-depressed authors seemed to be
because documents that are related to companies
or work are classified together with the topic of
depression. For example, one topic class which
include the topic key “depression” also includes
keys, such as “company”, and “investment”.

3.3 Classification

We perform classification of texts into whether the
author is depressed or not. Our system learns from
texts written by a group of both depressed and
non-depressed authors, and classifies unseen texts
written by a different group of depressed and non-
depressed authors. We perform classification of
texts per author (henceforth, author-level classifi-
cation) and per document (document-level classi-
fication). In author-level classification, one docu-
ment contains all the blog entries written by one
author. In document-level classification, one doc-
ument contains one blog entry. For both experi-
ments, data are divided into a training and a testing
set. In document-level classification, documents
written by the authors in the training set do not ap-
pear in the test set, and thus none of the authors
have their documents in both training and testing
sets. The number of documents are summarized in
Table 2.

Classification is performed using Multinomial
NaiveBayes (NB), Linear Support Vector Ma-
chines (SVM), and Logistic Regression (LR) in
scikit-learn (Pedregosa et al., 2011). Multinomi-
nal NB is used with the default alpha value (al-
pha=1.0), and SVM and LR classifiers are both
used with the default regularization value (C=1).
Univariate and model-based feature selection is
performed for each experiment. In univariate fea-
ture selection, features that are above the 75 per-
centile are chosen. For model-based feature selec-
tion, SVM and LR, both with penalty of L1 and
C=1 are used to select features with non-zero co-
efficients.

3.4 Features

3.4.1 Character n-grams
The first feature set is character n-grams. Char-
acter n-grams worked well in other languages as
discussed in Section 2, and they provide a generic
cross-linguistic way of getting at morphological
units. To test the effects of the writing system,
two types of character n-grams, Japanese char-
acter n-grams and Romanized Japanese n-grams,
are used. Japanese has three types symbols (hi-
ragana, katakana, and kanji (Chinese characters)),
and thus one word could be written in several
ways. For example, the word kawaii “cute” could
be written all in hiragana or katakana, or combi-
nation of hiragana and katakana, or combination
of kanji and hiragana. Without Romanization, all
of them would be treated differently despite their
shared meaning. However, Romanization can also
collapse words that are pronounced the same but
written differently with different meanings. hashi
can mean “chopsticks”, “bridge”, and “edge” de-
pending on which Chinese characters are used and
in what context they are used. To experiment with
Romanized Japanese character n-grams, Japanese
characters are converted to Romaji (Roman alpha-
bets) using jConverter4. The value of n ranges be-
tween 1 and 10, and only features of one n value
are used as features in one experiment, and fea-
tures of different values of n are not combined to-
gether, to avoid the number of features from be-
coming too large. For instance, an experiment
with trigrams only uses trigram features.

3.4.2 Token n-grams
The next feature set is token n-grams with vary-
ing values of n (1-10). Tokens retain inflections
and conjugation, so token n-grams represent syn-
tactic properties of written text. The Japanese text
is tokenized with Cabocha (Kudo and Matsumoto,
2002), as Japanese does not use a space to indicate
word boundaries.

4http://jprocessing.readthedocs.io/en/
latest/#id2
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Author Document
Features NB SVM LR NB SVM LR
CharUni 68.2 54.5 54.5 65.3 63.8 67.2
CharUni+FS 63.6 (U) 68.2 (U) 68.2 (U) 65.6 (U) 65.9 (L) 67.2 (L)
CharN(n) 81.8 (3) 59.1 (5) 54.5 (3) 70.0 (3) 69.7 (10) 70.3 (7)
CharN+FS 86.4 (U) 59.1 (U) 72.7 (U) 75.5 (U) 73.4 (U) 75.2 (U)
RomUni 56.5 52.5 69.6 50.2 56.8 56.8
RomUni+FS 65.2 (L) 60.9 (S) 69.6 (L) 52.6 (L) 57.1 (L) 57.1 (S)
RomN(n) 82.6 (5) 60.9 (3) 78.3 (2) 71.6 (5) 68.3 (8) 70.4 (8)
RomN+FS 82.6 (U) 60.9 (L,U) 65.2 (L,S) 71.9 (U) 68.9 (U) 70.7 (U)

Table 3: Accuracies (%) for character n-grams. CharUni and CharN: Japanese character uni- and n-
grams. RomUni and RomN: Romanized character uni- and n-grams. FS:Feature Selection. The value
in parentheses indicates the best value of n for n-gram and a method for feature selection (L:Logistic
Regression, S:SVM, U:Univariate)

Author Document
NB SVM LR NB SVM LR

TokenUni 86.4 54.5 59.1 63.2 58.9 62.0
TokenUni+FS 86.4 (U) 72.7 (U) 72.7 (U) 64.8 (L) 62.6 (S) 65.1 (S)
TokenN (n) 77.3 (2) 54.5 (8) 59.1 (2) 66.0 (2) 63.2 (3) 66.7 (3)
TokenN+FS 81.8 (U) 72.7 (S) 81.8 (U) 65.7 (U) 68.8 (U) 67.3 (U)

Table 4: Accuracies (%) for Token and Token n-grams. The value in parentheses indicates the value of n
for n-grams or model of feature selection (L:Logistic Regression, S:SVM, U:Univariate)

3.4.3 Lemmas and selected lemmas

The next feature set is lemmas. As lemmatiza-
tion suppresses inflections, lemmas represent use
of words regardless of their form in a sentence.
Given this semantic nature and the results of token
n-grams (Section 4.2), we only examine lemma
unigrams. In addition, certain types of words may
convey more relevant information than others, and
thus in order to find whether certain categories of
words are more informative in classification, POS
categories are used to extract groups of words.
First, words are POS-tagged with Cabocha (Kudo
and Matsumoto, 2002), and words from each POS
category (e.g. Noun) are used as features. Then,
all possible combinations of 13 POS categories
(Noun, Verb, Auxiliary, Adverb, Adjective, Par-
ticle, Symbol, Filler, Rentaishi5, Conjunction, Af-
fix, Interjection, Other) are created and a feature
set containing words from each set of combined
POS categories is evaluated.

5Rentaishi is a category of words that are not adjectives
but modify nouns.

4 Results

4.1 Character n-grams

The accuracy scores for Japanese character n-
grams and Romanized character n-grams are sum-
marized in Table 3. Selected trigrams (97,992 fea-
tures) achieved an accuracy of 86.4% with NB
in author-level classification. Trigrams selected
by univariate feature selection (114,303 features)
worked best for the document-level classification,
resulting in 75.5% accuracy. Romaji n-grams
achieved similar accuracies, but they were below
Japanese character n-grams.

4.2 Token n-grams

Table 4 shows the results of classification with to-
ken n-grams as features. Token unigrams with
the NB classifier yielded 86.4% with (14,656 fea-
tures) or without feature selection (10,992 fea-
tures) in author-level classification, which was the
same accuracy as the model with selected charac-
ter trigrams. For the document-level classification,
SVM with selected token trigrams (124,528 fea-
tures) worked the best (68.8%) though it was not
as good as the accuracy obtained from character
trigrams.

110



Author Document
NB SVM LR NB SVM LR

Lemma 81.8 50.0 59.1 66.8 57.8 60.7
Lemma+FS 81.8 (U) 68.2 (L) 77.3 (U) 68.1 (U) 63.6 (U) 64.2 (L)

POS feature V,Adv
N,Adv,
Ren

N,Adv,Ren,
Sym,Fill

Adj,Aux,
V,Ren

Aux,V,
Ren

Aux,V,
Ren,Fill

POS 95.5 77.3 81.8 69.0 64.5 63.6
POS+FS 95.5 (U) 90.9 (L) 86.4 (S) 67.4 (U) 67.1 (L) 67.4 (L)

Table 5: Accuracies (%) for lemmas and lemmas of POS categories with the highest accuracy. The char-
acter in parentheses shows a model of feature selection (L:Logistic Regression, S:SVM, U:Univariate)

Depressed Non-Depressed
Verb iru “there is (someone)” agaru “go up”

naru “become” aru “there is (something)”
dekiru “can do” wakaru “understand”
suru “do” yaru “do”
kangaeru “think” motsu “have”
tsukareru “get tired” yomu “read”
shinu “die” yaru “do”

Adv nandaka “somehow” itsumo “always”
sukoshi “a little” maa “relatively”

Table 6: Some selected verbs and adverbs.

4.3 Lemmas and Selected Lemmas

The accuracy score for each classifier with the
lemma feature set is shown in Table 5. The NB
classifier resulted in the highest accuracy of 95.5%
with verbs and adverbs as features (2,627 fea-
tures). After feature selection within the set of
verbs and adverbs (2,007 features), the accuracy
stayed the same. With different set of features, the
SVM achieved 90.9% accuracy after further fea-
ture selection. For document-level classification,
the highest accuracy was 69.0% with selected lem-
mas of four POS categories (2,579 features). Even
though the accuracy improved from the baseline, it
did worse than the character n-grams. Some of the
selected lemmas from the best resulting author-
level classification are shown in Table 6. Words
that appear more frequently in one class are listed
under that class.

5 Discussion

5.1 Classification and features

In all the experiments, author-level classification
is better than document-level classification. This
may be because each document contains around
200 words in document-level classification, and
many features may not appear in one document,

leaving feature vectors sparse.
Lemmas of verb and adverb categories give the

best accuracy for the author-level classification.
This suggests that frequency of words, regardless
of their inflection or the surrounding context, is
most useful when provided with sufficient amount
of text. Although some of the selected lemmas are
related to symptoms of depression (fatigue, sui-
cidal thoughts), lemmas appearing frequently in
depressed authors’ documents are not necessar-
ily related to emotions or mood (e.g. somehow,
always). This suggests that there are subtle dif-
ferences in choice of words by depressed authors
which we may not immediately associate with de-
pression.

Morphological and syntactic information such
as inflection and word order, may be useful,
but they do not provide accuracies that are as
good as lemmas in the author-level classification.
However, the experiment with character trigrams
results into having the best accuracies for the
document-level classification. This is likely be-
cause within a limited amount of text, character
n-grams appear more often than lemmas. Roman-
izing characters do not improve the performance.
Representing Japanese language with Romaji sup-
presses homonyms and kanji that may otherwise
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Author Document
Before After Before After

CharUni 81.8 (NB) 68.2 (NB) 75.3 (LR) 67.2 (LR)
TokenUni 72.7 (NB) 86.4 (NB) 71.5 (LR) 63.2 (NB)
LemmaUni 72.7 (NB) 81.8 (NB) 71.5 (LR) 66.8 (NB)

Table 7: Accuracies before and after topic modeling

be informative (see Section 3.4.1).

5.2 Topic bias

We now take a closer look at the effect of topic
bias, i.e., we compare the results when the entries
on depression have been removed (see Section 3.2
for details) to the condition when these entries are
kept in the training and the test set. The latter con-
dition corresponds to the settings that have been
used by Matsumoto et al. (2012). The classifica-
tion on the document-level with the full data set
does worse than the classification with the cleaned
data (see Table 7). This is expected because topic
bias is factored out after topic-modeling. How-
ever, on the author-level, it is a more complex
picture: for word-based units (token and lemma),
accuracy actually goes up once topic bias is re-
moved. As a blog entry tends to focus on one
topic, and depressed authors’ documents contain
more words about depression, the document-level
classification seems to be affected by the topic. We
will investigate why the author-level classification
improves with the cleaned data in future work.

6 Conclusion and Future work

This study showed that selected lemmas can pre-
dict whether authors of written texts are depressed
or not with an accuracy of 95.5%. This is higher
than Matsumoto et al. (2012) though it is difficult
to compare because of different data sets. The bet-
ter performance of author-level classification sug-
gests that documents should contain enough text
to be classified correctly. The next step will in-
volve finding out how much text per document is
necessary to achieve such high accuracy.

As the current study only tested default param-
eters for SVM and LR in classification and fea-
ture selection, different parameter settings will be
tested in the future work.

As the study is small-scale, it is necessary to ex-
amine how the results extend to larger data. More-
over, expanding the scope of study to other men-
tal conditions may reveal the nature of language

use in relation to mental health. Further investiga-
tion of selected lemmas in connection with clini-
cal studies may provide us insights on why these
words work well as features.

Finally, the methods of the current study can
easily be adapted to other languages with different
character systems if a language can be tokenized
and POS-tagged. It would be worth exploring how
depression can be detected from texts in different
languages and performing a cross-linguistic com-
parison of characteristics found in depressed au-
thors’ writings.
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Abstract

One of the challenges semantic parsers
face involves upstream errors originating
from pre-processing modules such as ASR
and syntactic parsers, which undermine
the end result from the get go. We report
the work in progress on a novel incremen-
tal semantic parsing algorithm that sup-
ports simultaneous application of indepen-
dent heuristics and facilitates the construc-
tion of partial but potentially actionable
meaning representations to overcome this
problem. Our contribution to this point is
mainly theoretical. In future work we in-
tend to evaluate the algorithm as part of a
dialogue understanding system on state of
the art benchmarks.

1 Introduction

The versatility of human language comprehension
overshadows countless transient failures happen-
ing under the hood. At various points during a
conversation we are bound to tolerate error and
uncertainty: coming either from the speech itself
(e.g., disfluencies, omissions) or resulting from
our own mistakes and deficiencies as a hearer (e.g.,
misinterpretation of an ambiguous utterance due
to incomplete knowledge, etc.). The entire pro-
cess is an ever recurring cycle of gap filling, error
recovery and proactive re-evaluation. Better yet,
some of the arising issues we choose not to re-
solve completely — leaving room for underspeci-
fication and residual ambiguity, or abandoning al-
together. Similarly, we are highly selective with
respect to material to attend to, glancing over the
bits deemed of only minor relevance or redundant.

We believe incrementality and opportunism to
be key to achieving this type of behavior in a com-
putational NLU system. Incremental construction
of meaning representations allows for their contin-

uous refinement and revision with gradually accu-
mulating evidence. In addition, it gives the sys-
tem an opportunity to make meta-level decisions
of whether to pursue analysis of further material
and/or to a greater depth; or to satisfice with a par-
tial meaning representation built so far — thereby
reducing the amount of work and avoiding poten-
tially problematic material.

By opportunism we refer to the ability to simul-
taneously engage all available sources of decision
making heuristics (morphological, syntactic, se-
mantic, and pragmatic knowledge) as soon as their
individual preconditions are met. On one hand,
this provides a degree of independence among the
knowledge sources such that a failure of any one of
them does not necessarily undermine the success
of the process as a whole. On the other hand, op-
portunistic application of heuristics facilitates the
construction of partial or underspecified meaning
representations when their complete versions are
infeasible to obtain.

As a step towards incorporating these princi-
ples in an NLU system, we present a novel oppor-
tunistic incremental algorithm for semantic pars-
ing. The rest of the paper is organized as follows.
In the following section, we will introduce our
approach while providing necessary background.
Next, we will work through an example derivation,
highlighting some of the features of the algorithm.
Then, in the discussion section, we will position
this work in the context of related work in the field,
as well as within our own research agenda. Fi-
nally, we will conclude with the progress to date
and plans for the evaluation.

2 Approach

2.1 Framework

Our description will be grounded within the
theoretico-computational framework of Ontologi-
cal Semantics (OntoSem) — a cognitively inspired
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and linguistically motivated knowledge-rich ac-
count of NLU and related cognitive processes
(McShane and Nirenburg, 2016).

The goal of the algorithm we are presenting in
this paper is to build meaning representations of
text (TMRs) in an incremental and opportunistic
fashion. As a source of building blocks for the
TMRs we will use the OntoSem lexicon and on-
tology. The lexicon provides a bridge between
surface forms (e.g., word lemmas, multi-word ex-
pressions, or phrasals) and their corresponding se-
mantic types (called concepts), while the ontology
encodes the relationships among concepts, such as
case roles defined on them. In addition, OntoSem
provides accounts of modality, reference, tempo-
ral relations, and speech acts, which become part
of the search space for our algorithm. A mean-
ing representation in OntoSem is denoted as a col-
lection of numbered frames with key-value entries
called slots. An example of such a TMR corre-
sponding to the natural language utterance “Apply
pressure to the wound!” is shown below:

REQUEST-ACTION-1
agent HUMAN-1
theme APPLY-1
beneficiary HUMAN-2

APPLY-1
agent HUMAN-2
instrument PRESSURE-1
theme WOUND-INJURY-1

The root of this TMR is an instance of the
REQUEST-ACTION speech act evoked by the im-
perative mood of the utterance. The agent (re-
quester) of this speech act is the implied speaker of
the utterance. The beneficiary (or patient, in other
semantic formalisms) is the implied addressee of
this message. Next, the theme of the speech act
(the action being requested) is an instance of the
APPLY event defined in the ontology. The agent
of the action requested is specified to be the same
as the addressee. The instrument is specified to
be an instance of PRESSURE. Finally, the theme
(or target) of the requested action references some
known instance of a WOUND-INJURY, either in-
troduced earlier in text, or contained in the com-
mon ground of the interlocutors.

2.2 Algorithm

A TMR can be represented as a (possibly rooted)
graph G = (V,E), where the set of vertices V rep-
resents semantic instances and the set of edges E

denotes case role linkings among them. We can
thus formulate our problem generally as that of
producing a pair (V,E) for an input utterance u
as a sequence of tokens 〈u1, u2, ..., un〉, so as to
maximize some score: argmax(V,E) score(V,E).

The algorithm operates in two phases: the for-
ward pass generates candidate solutions and the
backward pass extracts the best scoring solution.
The forward pass of the algorithm proceeds itera-
tively: by performing a series of incremental op-
erations: next and link, which we define in order.
The basic data structure used is an abstract set S
of items p0 through pn.

next is defined as an incremental operation
consuming one or more tokens from the input ut-
terance 〈u1, u2, ..., un〉 and returning zero or more
items p to be added to the set S.

link operation is defined as accepting a set Si

and returning a new set Si+1 and a bipartite graph
defined by (Si, Si+1, Li+1,i), where Li+1,i is a set
of edges between the two sets-partitions.
The following snippet provides a high level de-
scription of the execution of the forward pass of
the algorithm.

function EXPAND(〈u1, u2, ..., un〉)
Si ← ∅
initialize lattice C with tuple 〈Si, ∅, ∅〉
while NO-ACTIONABLE-TMR(C) do

if MORE-INPUT-NEEDED(C) then
Si ← Si∪NEXT(〈u1, u2, ..., un〉)

else
C ← C ∪ {LINK(Si)}
Si ← Si+1

if FIXED-POINT(C) then
return ∅

end if
end if

end while
return C

end function

Expand in the name of the function refers to the
fact that the lattice data structure used to store
the candidate solutions is repeatedly expanded by
the two incremental operations we just introduced.
The next operation expands the width of the lat-
tice by adding new elements to the set Si, which
can be thought of as a “layer” of the lattice. The
link operation, expands the depth of the lattice by
creating a new “layer” and connecting it to the el-
ements of the previous layer. Intuitively, the pro-
cess can be visualized diagonally as alternating
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horizontal and vertical expansions. The entire lat-
tice can be thought of as a metaphorical “loom”,
on which meaning representations are “woven”.
The depth of the lattice is the depth of nesting
in the corresponding meaning representation tree
with a linear upper bound. In practice, however,
we expect it to approach O(log|U |) as most of the
nesting occurs in multiple-argument instances.

Figure 1: A schematic depiction of the incremen-
tal operations next (a), link (b), and the resulting
lattice containing a solution (c).

The following conditionals are employed to con-
trol the execution flow of the main algorithm:
1. NO-ACTIONABLE-TMR captures high-level
desiderata for execution continuation. In the cur-
rent implementation the algorithm simply requires
that the TMR is headed by an event and that its
as well as its constituents’ core roles (e.g., agent,
theme) are filled; and that it spans all components
of the input. Work is ongoing to operationalize
pragmatic considerations for actionability, includ-
ing whether a partial TMR is coherent with pre-
ceding discourse or is consistent with a known
script, that could warrant early halting.
2. MORE-INPUT-NEEDED is triggered when
there are no components to link despite the TMR
being non-actionable.
3. FIXED-POINT basically means that further it-
eration does not produce any novel interpretations.

The subsequent solution extraction phase
amounts to simply extracting TMR candidates
from the lattice via depth-first traversal and rank-
ing them by the cumulative scores of constituent
nodes and edges. It should be noted that this pro-
cedure operates on a considerably reduced sub-
set of the original search space as it effectively
chooses among a limited set of viable candidates
produced during the forward pass. Going a level
deeper in our description, we will now turn to the
implementation details of the incremental opera-
tions next and link.

The next operation translates the next word to-
ken (or a group of tokens) from the input utter-
ance into corresponding semantic type that are
then combined together into a TMR. It is currently
realized as a basic lexical look-up by lemma,
with greedy matching for multi-word expressions
and non-semantically loaded tokens are skipped.
For polysemous words, semantic representations
for all variants are considered. While the On-
toSem lexicon specifies a battery of syntactic and
morphological constraints imposed on each word
sense (e.g., syntactic dependencies they are ex-
pected to have — cf. McShane and Nirenburg
(2016) for an in-depth overview), their application
is deferred until the scoring stage as word sense
disambiguation is pursued jointly, as part of mean-
ing representation construction by the algorithm,
rather than as a pre-processing stage.

The link operation is the core TMR-building
routine of the algorithm.

function LINK(Si)
Si+1 ← Si; Li+i,i ← ∅
for all argument taking pj in Si+1 do

Rj ←CASE-ROLES(pj)
for all F in ALIGN(Si, Rj) do

F ⇔ {pk ∈ Si|SAT(pk, rj,k ∈ Rj)}
yield〈j, k, rj,k,SCORE(pj , pk, rj,k)〉

end for
end for
return (Si, Si+1, Li+1,i)

end function

On each application, it considers a superposition
of TMR fragments of depth 1 formed by the ele-
ments of the two adjacent partitions Si and Si+i.
The set Li

i+1 is used to store edges connecting
the elements of the two sets. For each argument-
taking instance pj in Si+1, the function attempts to
find alignments from roles Rj to instances F ⊂ Si

that would satisfy their semantic constraints.
For each such alignment, the function yields the

resulting edges as tuples containing the end point
indices along with the corresponding case role la-
bel and link score. In addition to the already men-
tioned ranking of candidate meaning representa-
tions during the solution extraction phase, link
scores can also be used to drive beam search dur-
ing the forward pass to prune the search space
on the fly. Scores are currently assigned based
on a) how closely the filler matches the role’s
type constraint (inverse ontological distance) and
b) whether the role matches the expected syntactic

116



dependency specified for it in the lexicon. A large
part of future work will involve incorporation of
pragmatic heuristics including those based on co-
reference, coherence (e.g., prefer the role agent if
a filler in question took on the that role in a series
of events in preceding discourse), and knowledge
of scripts, all of which we hypothesize especially
crucial in situations with unreliable syntax.

The computational complexity of this operation
is a little harder to estimate since it depends on
variable numbers of word senses and correspond-
ing case roles. Treating them as constant factors
gives us quadratic worst-case complexity in the
length of the utterance. A more accurate estimate
can be obtained but the key point is that the over-
lapping representation of hypotheses with itera-
tive deepening eliminates the branching factor of
exhaustive permutation and results in polynomial
rather than exponential order of complexity.

2.3 A Worked Example

We will now proceed with the derivation of the
meaning representation for the example sentence.

Although the OntoSem lexicon specifies more fine
grain senses of the words used, to keep the exam-
ple simple, we will only consider a subset. Our
description will follow the derivation in Table 1.
1. The algorithm initializes with the empty sets of
semantic instances S and case roles links L.
2. Both NO-ACTIONABLE-TMR and MORE-
INPUT-NEEDED conditions are triggered, invok-
ing the next operation. The first token “Apply”
has an instrumental sense e.g., “apply paint to the
wall”, but to introduce some degree of ambigu-
ity we will also consider a phrasal sense as in “he
needs to apply himself”, having a meaning of the
modality of type EFFORT.
3. At the next step, the conditions are triggered
again since neither of the current head event can-
didates have their roles specified. The next to-
ken “pressure” instantiates two possible interpre-
tations: literal, physical PRESSURE, and figura-
tive i.e. “to be pressured to do something” trans-
lating into a modality of type POTENTIAL.
4. The currently disjoint TMR components
(p1, p2, p3, p4) can now be connected via case

# Op uz ∆Si,∆Li
i+1 C

1 init ∅ ∅
2 next Apply p1:APPLY, p2:EFFORT p1 p2

3-4 next

link

pressure p3:PRESSURE, p4:POTENTIAL

l14, l
2
4, l

4
2:scope, l31: instrument, theme

p1 p2 p3 p4

p1 p2 p3 p4

5-6 next

link

wound p5:WOUND-INJURY

l51:theme

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

7-8 next

link

! p6:REQUEST-ACTION

l16, l
2
6, l

4
6:theme

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

9 link n/a L2
3 ← L1

2 \ {l∗1}
L1
2 ← L1

2 \ {l∗6}
p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

10 extract n/a p6:REQUEST-ACTION

p1:APPLY

p5:WOUND-INJURYp3:PRESSURE

instrument
theme

scope

p1 p2 p3 p4 p5

p1 p2 p4

p2 p4 p6

Table 1: Example TMR derivation. The columns respectively indicate: operation performed, current
token, instantiated concept or linked semantic role, and the visual representation of the solution lattice.
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roles, which triggers the link operation, result-
ing in four compound TMR fragments: (AP-
PLY instrument/theme PRESSURE), (EFFORT
scope POTENTIAL), (POTENTIAL scope AP-
PLY), (POTENTIAL scope EFFORT). The first
interpretation has a role ambiguity to be resolved
during the solution extraction phrase.
5. Neither of the TMR fragments are complete,
still having unspecified roles, thereby triggering
the next operation. The following token “wound”
translates into p8:WOUND-INJURY concept1.
6. During the next iteration of linking
p8:WOUND-INJURY is employed as a theme of
p1:APPLY resulting in the (APPLY (instrument
PRESSURE) (theme WOUND-INJURY)) TMR
fragment.
7. The last token “!” confirms the imperative
mood of the utterance, signaling the instantiation
of the REQUEST-ACTION speech act.
8. The three TMR heads are then linked to the
theme slot of of the REQUEST-ACTION instance.
9. Since none of the current fragments alone
spans all of the components of the input despite
their aggregate coverage, they need to be com-
bined together through the creation of a new layer
producing nested TMR fragments. Certain links
have been pruned as not leading to novel solutions.
10.The termination condition is fulfilled as there
now exists a complete TMR candidate accounting
for all of the lexemes observed in the input. It is
shown in the table both as a tree and as a high-
lighted fragment of the solution lattice.

3 Discussion & Related Work

Syntax plays a formidable role in the understand-
ing of meaning. In a number of theories of se-
mantics, important aspects such as case role align-
ment are determined primarily based on some
syntactico-semantic interface such as in Lexical
Functional Grammars (Ackerman, 1995), Com-
binatory Categorial Grammars (Steedman and
Baldridge, 2011), or others. Some approaches
have even gone as far as to cast the entire prob-
lem of semantic parsing as that of decorating a de-
pendency parse (May, 2016). However, such tight
coupling of semantics with syntax has its down-
sides. First, linguistic variation in the expression
of the same meaning needs to be accounted for ex-
plicitly (e.g., by creating dedicated lexical senses

1Although a verbal sense is also conceivable, we will as-
sume it has been ruled out by morphology.

or production rules to cover all possible realiza-
tions). Second and more importantly, the feasi-
bility of a semantic interpretation becomes con-
ditional on the well-formedness of the language
input and the correctness of the corresponding
syntactic parse. This requirement seems unnec-
essarily strong considering a) human outstanding
ability to make sense of ungrammatical and frag-
mented speech (Kong et al., 2014) and b) still con-
siderably high error rates of ASR transcription and
parsing (Roark et al., 2006).

The algorithm we present, by contrast, operates
directly over the meaning representation space,
while relying on heuristics of arbitrary provenance
(syntax, reference, coherence, etc.) in its scor-
ing mechanism for disambiguation and to steer the
search process towards the promising region of the
search space. This allows it to focus on exploring
conceptually plausible interpretations while being
less sensitive to upstream noise. The algorithm
is opportunistic as the overlapping lattice repre-
sentation allows it to simultaneously pursue multi-
ple hypotheses, while the explicit evaluation of the
candidates is deferred until a promising solution is
found.

Incremental semantic parsing has come back
to the forefront of NLU tasks (Peldszus and
Schlangen, 2012), (Zhou et al., 2016). Ac-
counting for incrementality helps to make dia-
logues more human-like by accommodating spo-
radic asynchronous feedback as well as correc-
tions, wedged-in questions, etc. (Skantze and
Schlangen, 2009). In addition, incrementality of
meaning representation construction coupled with
sensory grounding has been shown to help prune
the search space and reduce ambiguity during se-
mantic parsing (Kruijff et al., 2007). The pre-
sented algorithm is incremental as it proceeds via a
series of operations gradually extending and deep-
ening the lattice structure containing candidate so-
lutions. The algorithm constantly re-evaluates its
partial solutions and potentially produces an ac-
tionable TMR without exhaustive search over the
entire input.

The design of the algorithm was influenced by
the classical blackboard architecture (Carver and
Lesser, 1992). Blackboard architectures offer sig-
nificant benefits: they develop solutions incremen-
tally by aggregating evidence; employ different
sources of knowledge simultaneously; and enter-
tain multiple competing or cooperating lines of
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reasoning concurrently. Some implementation de-
tails of our algorithm were inspired by the well-
known Viterbi algorithm: e.g., forward and back-
ward passes, solution scoring (Viterbi, 1967); as
well as the relaxed planning graph heuristic from
autonomous planning: namely, the lattice repre-
sentation of partial solutions and the repeated si-
multaneous application of operators (Blum and
Furst, 1995).

4 Conclusion & Future Work

The opportunistic and incremental algorithm we
presented in this paper has the potential to improve
the flexibility and robustness of meaning repre-
sentation construction in the face of ASR noise,
parsing errors, and unexpected input. This ca-
pability is essential for NLU results to approach
true human capability (Peldszus and Schlangen,
2012). We implemented the algorithm and inte-
grated it with non-trivial subsets of the current
OntoSem’s domain-general lexicon (9354 out of
17198 senses) and ontology (1708 concept real-
izations out of 9052 concepts) (McShane et al.,
2016). Once fully integrated and tuned, we plan
to formally evaluate the performance of the algo-
rithm on a portion of the SemEval 2016 AMR
parsing shared task dataset (May, 2016) while
measuring the impact of parsing errors on the
end TMR quality. In addition, it would be in-
teresting to empirically quantify the utility of our
proposed pragmatic heuristics in the domain of a
task-oriented dialogue such as the Dialogue State
Tracking Challenge (Williams et al., 2013).
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Abstract

Social media accumulates vast amounts
of online conversations that enable data-
driven modeling of chat dialogues. It is,
however, still hard to utilize the neural
network-based SEQ2SEQ model for dia-
logue modeling in spite of its acknowl-
edged success in machine translation. The
main challenge comes from the high de-
grees of freedom of outputs (responses).
This paper presents neural conversational
models that have general mechanisms for
handling a variety of situations that affect
our responses. Response selection tests on
massive dialogue data we have collected
from Twitter confirmed the effectiveness
of the proposed models with situations de-
rived from utterances, users or time.

1 Introduction

The increasing amount of dialogue data in social
media has opened the door to data-driven model-
ing of non-task-oriented, or chat, dialogues (Rit-
ter et al., 2011). The data-driven models assume
a response generation as a sequence to sequence
mapping task, and recent ones are based on neural
SEQ2SEQ models (Vinyals and Le, 2015; Shang
et al., 2015; Li et al., 2016a,b; Xing et al., 2017).
However, the adequacy of responses generated by
these neural models is somewhat insufficient, in
contrast to the acknowledged success of the neural
SEQ2SEQ models in machine translation (Johnson
et al., 2016).

The contrasting outcomes in machine transla-
tion and chat dialogue modeling can be explained

Figure 1: Conversational situations and responses.

by the difference in the degrees of freedom on out-
put for a given input. An appropriate response
to a given utterance is not monolithic in chat di-
alogue. Nevertheless, since only one ground truth
response is provided in the actual dialogue data,
the supervised systems will hesitate when choos-
ing from the vast range of possible responses.

So, how do humans decide how to respond? We
converse with others while (implicitly) consider-
ing not only the utterance but also other various
conversational situations (§ 2) such as time, place,
and the current context of conversation and even
our relationship with the addressee. For example,
when a friend says “I feel so sleepy.” in the morn-
ing, a probable response could be “Were you up
all night?” (Figure 1). If the friend says the same
thing at midnight, you might say “It’s time to go
to bed.” Or if the friend is driving a car with you,
you might answer “If you fall asleep, we’ll die.”

Modeling situations behind conversations has
been an open problem in chat dialogue modeling,
and this difficulty has partly forced us to focus
on task-oriented dialogue systems (Williams and
Young, 2007), the response of which has a low de-
gree of freedom thanks to domain and goal speci-
ficity. Although a few studies have tried to exploit
conversational situations such as speakers’ emo-

120

https://doi.org/10.18653/v1/P17-3020


tions (Hasegawa et al., 2013) or personal charac-
teristics (Li et al., 2016b) and topics (Xing et al.,
2017), the methods are specially designed for and
evaluated using specific types of situations.

In this study, we explore neural conversational
models that have general mechanisms to incorpo-
rate various types of situations behind chat con-
versations (§ 3.2). These models take into account
situations on the speaker’s side and the addressee’s
side (or those who respond) when encoding ut-
terances and decoding its responses, respectively.
To capture the conversational situations, we design
two mechanisms that differ in how strong of an ef-
fect a given situation has on generating responses.

In experiments, we examined the proposed con-
versational models by incorporating three types
of concrete conversational situations (§ 2): utter-
ance, speaker/addressee (profiles), and time (sea-
son), respectively. Although the models are capa-
ble of generating responses, we evaluate the mod-
els with a response selection test to avoid known
issues in automatic evaluation metrics of gener-
ated responses (Liu et al., 2016a). Experimental
results obtained using massive dialogue data from
Twitter showed that modeling conversational situ-
ations improved the relevance of responses (§ 4).

2 Conversational situations

Various types of conversational situations could
affect our response (or initial utterance) to the ad-
dressee. Since neural conversational models need
massive data to train a reliable model, our study
investigates conversational situations that are nat-
urally given or can be identified in an unsupervised
manner to make the experimental settings feasible.

In this study, we represent conversational situ-
ations as discrete variables. That allows models
to handle unseen situations in testing by classify-
ing them into appropriate situation types via dis-
tributed representations or the like as described be-
low, and helps to analyze the outputs. We consider
the following conversational situations to each ut-
terance and response in our dialogue dataset (§ 4),
and cluster the situations to assign specific situa-
tion types to the utterances and responses in the
training data of our conversational models.

Utterance The input utterance (to be responded
to by the system) is a primary conversational sit-
uation and is already modeled by the encoder in
the neural SEQ2SEQ model. However, we may be
able to induce a different aspect of situations that

are represented in the utterance but are not cap-
tured by the SEQ2SEQ sequential encoder (Sato
et al., 2016). We first represent each utterance of
utterance-response pairs in our dialogue dataset by
a distributed representation obtained by averaging
word2vec1 vectors (pre-trained from our dialogue
datasets (§ 4.1)) for words in the utterances. The
utterances are then classified by k-means cluster-
ing to identify utterance types.2

User (profiles) User characteristics should af-
fect his/her responses as Li et al. (2016b) have al-
ready discussed. We classify profiles provided by
each user in our dialogue dataset (§ 4.1) to acquire
conversational situations specific to the speakers
and addressees. The same as with the input utter-
ance, we first construct a distributed representation
of each user’s profile by averaging the pre-trained
word2vec vectors for verbs, nouns and adjectives
in the user profiles. The users are then classified
by k-means clustering to identify user types.3

Time (season) Our utterances can be affected by
when we speak as illustrated in § 1, so we adopted
time as one conversational situation. On the ba-
sis of timestamp of the utterance and the response
in our dataset, we split the conversation data into
four season types: namely, spring (Mar. – May.),
summer (Jun. – Aug), autumn (Sep. – Nov.), and
winter (Dec. – Feb.). This splitting reflects the cli-
mate in Japan since our data are in Japanese whose
speakers mostly live in Japan.

In training our neural conversational models,
we use each of the above conversational situation
types for the speaker side and addressee (who re-
spond) side, respectively. Note that the utterance
situation is only considered for the speaker side
since its response is unseen in response genera-
tion. In testing, the conversational situation types
for input utterances (or speaker and addressee’s
profiles) are identified by finding the closest cen-
troid obtained by the k-means clustering of the ut-
terances (profiles) in the training data.

3 Method

Our neural conversational models are based on the
SEQ2SEQ model (Sutskever et al., 2014) and inte-
grate mechanisms to incorporate various conversa-

1https://code.google.com/p/word2vec/
2We set k to 10. Although the space limitations preclude

results when varying k, this does not affect our conclusions.
3We set k to 10, and add another cluster for users whose

profiles were not available (6.3% of the users in our datasets).
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Figure 2: Local-global SEQ2SEQ.

tional situations (§ 2) at speaker side and addressee
side. In the following, we briefly introduce the
SEQ2SEQ conversational model (Vinyals and Le,
2015) and then describe two mechanisms for in-
corporating conversational situations.

3.1 SEQ2SEQ conversational model
The SEQ2SEQ conversational model (Vinyals and
Le, 2015) consists of two recurrent neural net-
works (RNNs) called an encoder and a decoder.
The encoder takes each word of an utterance as
input and encodes the input sequence to a real-
valued vector representing the utterance. The de-
coder then takes the encoded vector as its initial
state and continues to generate the most probable
next word and to input the word to itself until it
finally outputs EOS.

3.2 Situation-aware conversational models
The challenge in designing situation-aware neu-
ral conversational models is how to inject given
conversational situations into RNN encoders or de-
coders. In this paper, we present two situation-
aware neural conversational models that differ in
how strong of an effect a given situation has.

3.2.1 Local-global SEQ2SEQ

Motivated by a recent success in multi-task learn-
ing for a deep neural network (Liu et al., 2016c,b;
Gupta et al., 2016; Luong et al., 2016), our local-
global SEQ2SEQ trains two types of RNN encoder
and decoder for modeling situation-specific dia-
logues and universal dialogues jointly (Figure 2).

Local-RNNs are meant to model dialogues in
individual conversational situations at both the
speaker and addressee sides. Each local-RNN is
trained (i.e., its parameters are updated) only on

Figure 3: SEQ2SEQ with situation embeddings.

dialogues under the corresponding situation. A
salient disadvantage of this modeling is that the
size of training data given to each local-RNN de-
creases as the number of situation types increases.

To address this problem, we combine another
global-RNN encoder and decoder trained on all the
dialogue data and take the weighted sum of the
hidden states hs of the two RNNs for both the en-
coder and decoder to obtain the output as:

h
(enc)
i =W

(enc)
G RNN

(enc)
G (h

(enc)
i−1 , xi)+

W
(enc)
L RNN

(enc)
Lk′

(h
(enc)
i−1 , xi), (1)

h
(dec)
j =W

(dec)
G RNN

(dec)
G (h

(dec)
j−1 , yj−1)+

W
(dec)
L RNN

(dec)
Lk′′

(h
(dec)
j−1 , yj−1), (2)

where RNN
(·)
G (·) and RNN

(·)
L (·) denote global-RNN

and local-RNN, respectively, and the W s are train-
able matrices for the weighted sum. The embed-
ding and softmax layers of the RNNs are shared.

3.2.2 SEQ2SEQ with situation embeddings
The local-global SEQ2SEQ (§ 3.2.1) assumes that
dialogues with different situations involve differ-
ent domains (or tasks) that are independent of each
other. However, this assumption could be too
strong in some cases and thus we devise another
weakly situation-aware conversational model.

We represent the given situations at speaker and
addressee sides, sk′ and sk′′ , as situation embed-
dings and then feed them to the encoder and de-
coder prior to processing sequences (Figure 3) as:

h
(enc)
0 =RNN(hinit, sk′), (3)

h
(enc)
i =RNN(h

(enc)
i−1 , xi−1), (4)

h
(dec)
0 =RNN(h

(enc)
I+1 , sk′′), (5)

h
(dec)
j =RNN(h

(dec)
j−1 , yj−1), (6)

where hinit is a vector filled with zeros and h
(enc)
I+1

is the last hidden state of the encoder.
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Average length in words (utterances) 15.7
Average length in words (responses) 10.1
Average length in words (user profiles) 37.4
Number of users 386,078

Table 1: Statistics of our dialogue datasets (train-
ing, validation, and test portions are merged here).

This encoding was inspired by a neural machine
translation system (Johnson et al., 2016) that en-
ables multilingual translation with a single model.
Whereas it inputs the target language embedding
only to the encoder to control the target language,
we input the speaker-side situation to the encoder
and the addressee-side one to the decoder.

4 Evaluation

In this section, we evaluate our situation-aware
neural conversational models on massive dialogue
data obtained from Twitter. We compare our mod-
els (§ 3.2) with SEQ2SEQ baseline (§ 3.1) using a
response selection test instead of evaluating gen-
erated responses, since Liu et al. (2016a) recently
pointed out several problems of existing metrics
such as BLEU (Papineni et al., 2002) for evaluat-
ing generated responses.

4.1 Settings

Data We built massive dialogue datasets from
our Twitter archive that have been compiled since
March, 2011. In this archive, timelines of about
1.5 million users4 have been continuously col-
lected with the official API. It is therefore suitable
for extracting users’ conversations in timelines.

On Twitter, a post (tweet) and a mention to it
can be considered as an utterance-response pair.
We randomly extracted 23,563,865 and 1,200,000
pairs from dialogues in 2014 as training and vali-
dation datasets, and extracted 6000 pairs in 2015
as a test dataset in accordance with the follow-
ing procedure. Because we want to exclude ut-
terances that need contexts in past dialogue ex-
changes to respond from our evaluation dataset,
we restrict ourselves to only tweets that are not
mentions to other tweets (in other words, utter-
ances without past dialogue exchanges are chosen
for evaluation). For each utterance-response pair
in the test dataset, we randomly chose four (in to-
tal, 24,000) responses in 2015 as false response

4Our collection started from 26 popular Japanese users in
March 2011, and the user set has iteratively expanded to those
who are mentioned or retweeted by already targeted users.

Vocabulary size 100,000
Dropout rate 0.25
Mini-batch size 800
Dimension of embedding vectors 100
Dimension of hidden states 100
Learning rate 1e-4
Number of samples in sampled softmax 512

Table 2: Hyperparameters for training.

candidates which together constitute five response
candidates for the response selection test. Each
utterance and response (candidate) is tokenized by
MeCab5 with NEologd6 dictionary to feed the se-
quence to the word-based encoder decoder.7 Ta-
ble 1 shows statistics on our dialogue datasets.

Models In our experiments, we compare our
situation-aware neural conversational models (we
refer to the model in § 3.2.1 as L/G SEQ2SEQ
and the model in § 3.2.2 as SEQ2SEQ emb) with
situation-unaware baseline (§ 3.1) for taking each
type of conversational situations (§ 2) into con-
sideration. We also evaluate the model in § 3.2.1
without global-RNNs (referred to as L SEQ2SEQ)
to observe the impact of global-RNNs.

We used a long-short term memory (LSTM)
(Zaremba et al., 2014) as the RNN encoder and
decoder, sampled softmax (Jean et al., 2015) to
accelerate the training, and TensorFlow8 to imple-
ment the models. Our LSTMs have three layers and
are optimized by Adam (Kingma and Ba, 2015).
The hyperparameters are fixed as in Table 2.

Evaluation procedure We use the above mod-
els to rank response candidates for a given utter-
ance in the test set. We compute the averaged
cross-entropy loss for words in each response can-
didate (namely, its perplexity) by giving the can-
didate following the input utterance to each con-
versational model, and used the resulting values
for ranking candidates to choose top-k plausible
ones. We adopt 1 in t P@k (Wu et al., 2016) as
the evaluation metric, which indicates the ratio of
utterances that are provided the single ground truth
in top k responses chosen from t candidates. Here
we use 1 in 2 P@1,9 1 in 5 P@1, and 1 in 5 P@2.

5http://taku910.github.io/mecab/
6https://github.com/neologd/

mecab-ipadic-neologd
7The number of words in the utterances and the response

candidates in the test set is limited to equal or less than 20,
since very long posts do not constitute usual conversation.

8https://www.tensorflow.org/
9We randomly selected one false response candidate from

the four pre-selected ones when t = 2.
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Model 1 in 2 P@1 1 in 5 P@1 1 in 5 P@2
Baseline 64.5% 33.9% 56.6%
Situation: utterance
L SEQ2SEQ 67.2% 37.2% 60.6%
L/G SEQ2SEQ 68.5% 38.2% 62.1%
SEQ2SEQ emb 65.6% 35.4% 58.2%
Situation: speaker/addressee (profiles)
L SEQ2SEQ 67.3% 38.0% 60.9%
L/G SEQ2SEQ 66.4% 36.4% 59.2%
SEQ2SEQ emb 67.8% 37.5% 61.1%
Situation: time (season)
L SEQ2SEQ 62.0% 30.8% 54.8%
L/G SEQ2SEQ 65.9% 35.8% 58.1%
SEQ2SEQ emb 67.3% 37.6% 60.7%

Table 3: Results of the response selection test.

4.2 Results

Table 3 lists the results of the response selection
test. The proposed conversational models success-
fully improved the relevance of selected responses
by incorporating conversational situations.

The proposed model that performed best is dif-
ferent depending on the situation type. We found
from the dataset that many of the conversations did
not seem to be affected by the seasons, that is, time
(season) situation is less influential than other sit-
uations. This explains the poor performance of L
SEQ2SEQ with time (season) situations due to the
data sparseness in training local-RNNs, although
the sparseness is mostly addressed by global RNNs
in L/G SEQ2SEQ.

As stated in § 3.2.2, L/G SEQ2SEQ is ex-
pected to capture situations more strongly than
SEQ2SEQ emb. To confirm this, we plotted scat-
tergrams of the utterance vectors (Figure 4) and
the user profile vectors (Figure 5) in the training
data by using t-SNE (Maaten and Hinton, 2008).
We provide cluster descriptions by manually look-
ing into the content of the utterances and user pro-
files in each cluster. The descriptions are followed
by ↗ if L/G SEQ2SEQ performed better than
SEQ2SEQ emb in terms of 1 in 5 P@1 for test
utterances with the corresponding situation type,
by↘ if the opposite and by→ if comparable (dif-
ferences are within ± 1.0%). Elements of clusters
were randomly sampled.

L/G SEQ2SEQ tends to perform better for ut-
terances with densely concentrated (or coherent)
speaker profile clusters (Figure 5). This is because
utterances given by the speakers in these coherent
clusters (and the associate responses) have similar
conversations, situations of which are captured by
local-RNNs in the local-global SEQ2SEQ.
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Good morning ր
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Coming home ր
Good night ր
Reporting ret rn ր

Figure 4: The scattergram of sampled utterance
vectors visualized using t-SNE.
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Figure 5: The scattergram of sampled user profile
vectors visualized using t-SNE.

This explains the reason why L/G SEQ2SEQ
outperformed the other situation-aware conversa-
tional models when utterance situations are con-
sidered (Figure 4). Conversations in the same
clusters are naturally consistent, and conversations
assigned to the same clusters form typical activ-
ities or specific tasks (e.g., greetings, following
other users, and questions (and answering)) in
Twitter conversation. L/G SEQ2SEQ, designed as
a kind of multi-task SEQ2SEQ, literally captures
these task-specific behaviors in the conversations.

Although some utterance clusters have general
conversations (e.g., diverse topics), the response
performances in those clusters have still improved.
This is because these general clusters are free from
harmful common responses that are quarantined
into situation-specific clusters (e.g., greetings etc.)
and the corresponding local-RNNs should avoid
generating those common responses. Note that
this problem has been pointed out and addressed
by Li et al. (2016a) in a totally different way.
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Situation: utterance (opinions, questions)
Input: ちょっと最近BOTのフォロー多いん

ですけど (I’ve recently been followed by
many bot accounts.)

Baseline お疲れ様やで (You’ve gotta be tired.)
L/G SEQ2SEQブロックしちゃいましょう (Let’s block

them.)
Situation: addressee profiles (girls)
Input: なにグラブル始めてるんだ原稿しろ

(Why am I starting Granblue Fantasy? I
have to write the paper...)

Baseline おい、大丈夫か？ (Hey, are you okay?)
SEQ2SEQ embフレンドなろ♥ (Let’s be friends♥)
Situation: time (season) (summer)
Input: 7月になって、流石にパーカーは暑く

なってきた (July is too warm to wear a
hoodie.)

Baseline そうなんです! (Yes!)
SEQ2SEQ embまだ着てたの!? (Do you still wear one?)

Table 4: Responses selected by the systems.

Examples Table 4 lists the response candidate
selected by the baseline and our models. As we
had expected, the situation-aware conversational
models are better at selecting ground-truth re-
sponses for situation-specific conversations.

5 Related Work

Conversational situations have been implicitly ad-
dressed by preparing datasets specific to the target
situations and by solving the problem as a task-
oriented conversation task (Williams and Young,
2007); examples include troubleshooting (Vinyals
and Le, 2015), navigation (Wen et al., 2015), in-
terviewing (Kobori et al., 2016), and restaurant
search (Wen et al., 2017). In what follows, we in-
troduce non-task-oriented conversational models
that explicitly consider conversational situations.

Hasegawa et al. (2013) presented a conversa-
tional model that generates a response so that it
elicits a certain emotion (e.g., joy) in the addressee
mind. Their model is based on statistical ma-
chine translation and linearly interpolates two con-
versational models that are trained from a small
emotion-labeled dialogue corpus and a large non-
labeled dialogue corpus, respectively. This model
is similar to our local-global SEQ2SEQ but differs
in that it has hyperparameters for the interpolation,
whereas our local-global SEQ2SEQ automatically
learns WG and WL from the training data.

Li et al. (2016b) proposed a neural conversa-
tional model that generates responses taking into
consideration speakers’ personalities such as gen-
der or living place. Because they fed a specific

speaker ID to their model and represent individual
(known) speakers with embeddings, Their model
cannot handle unknown speakers. In contrast, our
model can consider any speakers with profiles be-
cause we represent each cluster of profiles with an
embedding and find an appropriate profile type for
the given profile by nearest-neighbor search.

Sordoni et al. (2015) encoded a given utter-
ance and the past dialogue exchanges, and com-
bined the resulting representations for RNN to de-
code a response. Zhao et al. (2017) used a condi-
tional variational autoencoder and automatically-
induced dialogue acts to handle discourse-level di-
versity in the encoder. While these sophisticated
architectures are designed to take dialogue histo-
ries into consideration, our simple models can eas-
ily exploit various situations.

Recently, Xing et al. (2017) proposed to explic-
itly consider topics of utterances to generate topic-
coherent responses. Although they used latent
Dirichlet allocation while we use k-means clus-
tering, both methods confirmed the importance of
utterance situations. The way to obtain specific
situations is still an open research problem. As
demonstrated in this study, our primary contribu-
tion is the invention of neural mechanisms that can
consider various conversational situations.

Our local-global SEQ2SEQ model is closely re-
lated to a many-to-many multi-task SEQ2SEQ pro-
posed by Luong et al. (2016). The critical dif-
ference is in that their model assumes only lo-
cal tasks, while our model assumes many local
tasks (situation-specific dialogue modeling) and
one global task (general dialogue modeling).

6 Conclusion

We proposed two situation-aware neural conver-
sational models that have general mechanisms
for handling various conversational situations rep-
resented by discrete variables: (1) local-global
SEQ2SEQ that combines two SEQ2SEQ models
(§ 3.2.1) to handle situation-specific dialogues and
universal dialogues jointly, and (2) SEQ2SEQ with
situation embeddings (§ 3.2.2) that feeds the situa-
tions directly to a SEQ2SEQ model. The response
selection tests on massive Twitter datasets con-
firmed the effectiveness of using situations such
as utterances, user (profiles), or time.
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Abstract
Accurately representing the meaning of a
piece of text, otherwise known as sen-
tence modelling, is an important compo-
nent in many natural language inference
tasks. We survey the spectrum of these
methods, which lie along two dimensions:
input representation granularity and com-
position model complexity. Using this
framework, we reveal in our quantitative
and qualitative experiments the limitations
of the current state-of-the-art model in the
context of sentence similarity tasks.

1 Introduction
Accurately representing the meaning of a piece of
text remains an open problem. To illustrate why it
is difficult, consider the pair of sentences A and B
below in the context of a sentence similarity task.
A:The shares of the company dropped.
B:The organisation’s stocks slumped.

If we use a very naı̈ve model such as bag-
of-words to represent a sentence and use dis-
crete counting of common words between the two
sentences to determine their similarity, the score
would be very low although they are highly sim-
ilar. How then do we represent the meaning of
sentences?

Firstly, we must be able to represent them in
ways that computers can understand. Based on
the Principle of Compositionality (Frege, 1892),
we define the meaning of a sentence as a func-
tion of the meaning of its constituents (i.e., words,
phrases, morphemes). Generally, there are two
main approaches to representing constituents: lo-
calist and distributed representations. With the
localist representation1, we represent each con-
stituent with a unique representation usually taken

1The best example of this sparse representation is the
“one-hot” representation (see Appendix A for details)

from its position in a vocabulary V. However,
this kind of representation suffers from the curse
of dimensionality and does not consider the syn-
tactic relationship of a constituent with other
constituents. These two shortcomings are ad-
dressed by the distributed representation (Hinton,
1984) which encodes a constituent based on its
co-occurrence with other constituents appearing
within its context, into a dense n-dimensional vec-
tor where n⌧ |V |. Estimating the distributed rep-
resentation has been an active research topic in
itself. Baroni et al. (2014) conducted a system-
atic comparative evaluation of context-counting
and context-predicting models for generating dis-
tributed representations and concluded that the lat-
ter outperforms the former, but Levy et al. (2015)
later have shown that simple pointwise mutual
information (PMI) methods also perform simi-
larly if they are properly tuned. To date, the
most popular architectures to efficiently estimate
these distributed representations are word2vec
(Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014). Subsequent developments estimate
distributed representations at other levels of gran-
ularity (see Section 2.1).

While much research has been directed into
constructing representations for constituents, there
has been far less consensus regarding the represen-
tation of larger semantic structures such as phrases
and sentences (Blacoe and Lapata, 2012). A sim-
ple approach is based on looking up the vector rep-
resentation of the constituents (i.e., embeddings)
and taking their sum or average which yields a sin-
gle vector of the same dimension. This strategy
is effective in simple tasks but loses word order
information and syntactic relations in the process
(Mitchell and Lapata, 2008; Turney et al., 2010).
Most modern neural network models have a sen-
tence encoder that learns the representation of sen-
tences more efficiently while preserving word or-
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der and compositionality (see Section 2.1).
In this work, we present a generalised frame-

work for sentence modelling based on a survey of
state-of-the-art methods. Using the framework as
a guide, we conducted preliminary experiments by
implementing an end-to-end version of the state-
of-the-art model in which we reveal its limitations
after evaluation on sentence similarity tasks.

2 Related Work

The best way to evaluate sentence models is to
assess how they perform on actual natural lan-
guage inference (NLI) tasks. In this work, we
examine three related tasks which are central to
natural language understanding: paraphrase detec-
tion (Dolan et al., 2004; Xu et al., 2015), seman-
tic similarity measurement (Marelli et al., 2014;
Xu et al., 2015; Agirre et al., 2016a) and inter-
pretable semantic similarity measurement (Agirre
et al., 2016b). (We refer the reader to the respec-
tive papers for the task description and dataset de-
tails).

Among the four broad types of methods we
have identified in the literature (see Appendix
C.1), we focus in this paper on deep learning (DL)
methods because they support end-to-end learn-
ing, i.e., they use few hand-crafted features—or
none at all, making them easier to adapt to new
domains. More importantly, these methods have
obtained comparable performance relative to other
top-ranking methods.

2.1 Sentence Modelling Framework

As a contribution of this work, we survey the spec-
trum of DL methods, which lie on two dimensions:
input representation granularity and composition
model complexity, which are both central to sen-
tence modelling (see Appendix Figure C.2 for a
graphical illustration).

The first dimension (see horizontal axis of Ap-
pendix Figure C.2) is the granularity of input rep-
resentation. This dimension characterises a trade-
off between syntactic dependencies captured in the
representation and data sparsity. On the one hand,
character-based methods (Vosoughi et al., 2016;
dos Santos and Zadrozny, 2014; Wieting et al.,
2016) are not faced with the data sparsity prob-
lem; however, it is not straightforward to deter-
mine whether composing sentences based on in-
dividual character representations would represent
the originally intended semantics. On the other

hand, while sentence embeddings (Kiros et al.,
2015), which are learned by predicting the previ-
ous and next sentences given the current sentence,
could intuitively represent the actual semantics, it
suffers from data sparsity.

The second dimension (see vertical axis of Ap-
pendix Figure C.2) is the spectrum of composi-
tion models ranging from bag-of-items-driven2 ar-
chitectures to compositionality-driven ones to ac-
count for the morphological, lexical, syntactic,
and compositional aspects of a sentence. Some
of the popular methods are based on Bag-of-Item
models, which represent a sentence by perform-
ing algebraic operations (e.g., addition or aver-
aging) over the vector representations of individ-
ual constituents (Blacoe and Lapata, 2012). How-
ever, these models have received criticism as they
use linear bag-of-words context and thus do not
take into account syntax. Spatial neural net-
works, e.g., Convolutional Neural Networks or
ConvNets (LeCun et al., 1998), have been shown
to capture morphological variations in short sub-
sequences (dos Santos and Zadrozny, 2014; Chiu
and Nichols, 2016). However, this architecture
still does not capture the overall syntactic informa-
tion. Thus Sutskever et al. (2014) proposed the use
of sequence-based neural networks, e.g., Recur-
rent Neural Networks, Long Short Term Memory
models (Hochreiter and Schmidhuber, 1997), be-
cause they can capture long-range temporal depen-
dencies. Tai et al. (2015) introduced Tree-LSTM,
a generalisation of LSTMs to tree-structured net-
work topologies, e.g., Recursive Neural Networks
(Socher et al., 2011). However, this type of net-
work requires input from an external resource (i.e.,
dependency/constituency parser).

More complex models involved stacked archi-
tectures of the three basic forms above (He and
Lin, 2016; Yin et al., 2015; Cheng and Kartsaklis,
2015; Zhang et al., 2015; He et al., 2015) which
capture the syntactic and semantic structure of a
language. However, in addition to being com-
putationally intensive, most of these architectures
model sentences as vectors with a fixed size, they
risk losing information especially when input sen-
tence vectors are of varying lengths. Recently,
Bahdanau et al. (2014) introduced the concept
of attention, originally in the context of machine
translation, where the network learns to align parts

2We use items instead of words to generalise amongst var-
ious representations.
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of the source sentence that match the constituents
of the target sentence, without having to explicitly
form these parts as hard segments. This enables
phrase-alignments between sentences as described
by Yin and Schütze (2016) in the context of a tex-
tual entailment recognition task.

3 Preliminary Experiments

In this section, we describe the preliminary experi-
ments we conducted in order to gain deeper under-
standing on the limitations of the state-of-the-art
model.

Firstly, we define sentence similarity as
a supervised learning task where each train-
ing example consists of a pair of sentences
(xa

1, ..., x
a
Ta

), (xb
1, ..., x

b
Tb

) of fixed-sized vectors
(where xa

i , x
b
j 2 Rdinput denoting constituent vec-

tors from each sentence, respectively, which may
be of different lengths Ta 6= Tb) along with a sin-
gle real-valued label y for the pair. We evaluated
the performance of the state-of-the-art model on
this task.

3.1 Model Overview

Since we focus on end-to-end sentence modelling,
we implement a simplified (see Table 1) version of
MaLSTM (Mueller and Thyagarajan, 2016), i.e.,
the state-of-the-art model on this task (see Ap-
pendix Figure C.1). The model uses a siamese ar-
chitecture of Long-Short Term Memory (LSTM)
to read word vectors representing each input sen-
tence. Each LSTM cell has four components: in-
put gate it, forget gate ft, memory state ct, and
output gate ot; which decides the information to
retain or forget in a sequence of inputs. Equa-
tions 1-6 are the updates performed at each LSTM
cell for a sequence of input (x1, ..., xT ) at each
timestep t 2 {1, ..., T}, parameterised by weight
matrices Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo and bias
vectors bi, bf , bc, bo.

it = �(Wixt + Uiht�1 + bi) (1)
ft = �(Wfxt + Ufht�1 + bf ) (2)

c̃t = tanh(Wcxt + Ucht�1 + bc) (3)
ct = it � c̃t + ft � ct�1 (4)

ot = �(Woxt + Uoht�1 + bo) (5)
ht = ot � tanh(ct) (6)

This model computes the sentence similarity
based on the Manhattan distance between the fi-
nal hidden state representations for each sentence:
g(ha

Ta
, hb

Tb
) = exp(�||ha

Ta
� hb

Tb
||1) 2 [0, 1],

which was found to perform better empirically

Model Feature MaLSTM Ours

pre-training yes no
synonym augmentation yes no
prediction calibration yes no
optimisation method Adadelta Adam

Table 1: Model comparison between MaLSTM
and our implementation

than other simple similarity functions such as co-
sine similarity (Mueller and Thyagarajan, 2016).

3.2 Training Details
We use the 300-dimensional pre-trained
word2vec3(Mikolov et al., 2013b) word em-
beddings and compare the performance with that
of GloVe4 (Pennington et al., 2014) embeddings.
Out-of-embedding-vocabulary (OOEV) words
are replaced with an <unk> token. We retain
the word cases and keep the digits. For character
representation, we fine-tune the 50-dimensional
initial embeddings, modifying them during gra-
dient updates of the neural network model by
back-propagating gradients. The chosen size of
the embeddings was found to perform best after
initial experiments with different sizes.

Our model uses 50-dimensional hidden repre-
sentations ht and memory cells ct. Optimisation of
the parameters is done using the SGD-based Adam
method (Kingma and Ba, 2014) and we perform
gradient clipping to prevent exploding gradients.
We tune the hyper-parameters on the validation
set by random search since it is infeasible to do
a random search across the full hyper-parameter
space due to time constraints. After conducting
initial experiments, we found the optimal training
parameters to be the following: batch size = 30,
learning rate = 0.01, learning rate decay = 0.98,
dropout = 0.5, number of LSTM layers = 1, maxi-
mum epochs = 10, patience = 5 epochs. Patience is
the early stopping condition based on performance
on validation sets. We used the Tensorflow5 li-
brary to implement and train the model.

3.3 Dataset and Evaluation
We measure the model’s performance on three
benchmark datasets, i.e., SICK 2014 (Marelli
et al., 2014), STS 2016 (Agirre et al., 2016a) and

3code.google.com/p/word2vec
4https://nlp.stanford.edu/projects/glove/
5https://www.tensorflow.org/
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Dataset Baseline
LSTM Vector Sum

GloVe word2vec char GloVe word2vec char

SICK 2014 0.5675 0.7430 0.7355 0.3487 0.4903 0.5099 0.0178
PIT 2015 0.4001 0.1187 0.0581 0.0086 0.1263 0.0845 0.0000
STS 2016 0.4757 0.3768 0.2592 0.1067 0.5052 0.4865 -0.0100

Table 2: Pearson Correlation. Performance comparison across input representations and composition
models. Baseline method uses cosine similarity measure to predict similarity between sentences.

Dataset Vocab Size
% OOEV

word2vec GloVe

SICK 2014 2,423 1.4 1.1
PIT 2015 15,156 16.5 9.6
STS 2016 18,061 11.1 7.3

Table 3: Percentage of Out-of-Embedding-
Vocabulary (OOEV) words

PIT 2015 (Xu et al., 2015), using Pearson correla-
tion. We assert that a robust model should perform
consistently well in these three datasets.

Furthermore, using the framework described in
Section 2.1, we chose to compare the model per-
formance at two levels of input representation
(i.e., character-level vs word-level) and composi-
tion models (i.e., LSTM vs vector sum) in order
to eliminate the need for external tools such as
parsers.

4 Results and Discussion

Table 2 shows the performance across input repre-
sentations and composition models. As expected,
our simplified model performs relatively worse
(Pearson correlation = 0.7355) when compared to
what was reported in the original MaLSTM pa-
per (Pearson correlation = 0.8822) on the SICK
dataset (using word2vec). This performance dif-
ference (around 15%) could be attributed to the
additional features (see Table 1) that the state-of-
the-art model added to their system.

With respect to input representation, the word-
based one yields better performance in all datasets
over character-level representation for the obvi-
ous reason that it carries more semantic infor-
mation. Furthermore, the character-level repre-
sentation using LSTM performs better than us-
ing Vector Sum (VS) because it is able to retain
sequential information. Regarding word embed-
dings, GloVe resulted in higher performance com-

pared to word2vec in all datasets and models ex-
cept with VS on the SICK dataset where word2vec
is slightly better. Table 3 shows the percentage
of OOEV words in each dataset with respect to
its vocabulary size. Upon closer inspection, we
found out that word2vec does not have embed-
dings for stopwords (e.g., a, to, of, and). With re-
spect to token-based statistics, these OOEVs com-
prised 95% (SICK), 67% (PIT) and 44% (STS) re-
spectively in each dataset. Although further work
is needed to ascertain the effect of this type of OO-
EVs, we hypothesise that GloVe’s superior perfor-
mance could be attributed to it, if not to its word
vector quality as claimed by Pennington et al.
(2014).
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Figure 1: Pearson correlation in STS 2016 evalua-
tion sets (Key: L=LSTM, V=Vector Sum, C=char,
W=word2vec, G=GloVe)
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Dataset Sentence Pair Gold Label Vector Sum MaLSTM

SICK
A person is scrubbing a zucchini
The woman is cutting cooked octopus

0.046 0.523 0.694

STS Question-
Question

What kind of socket is this ?
What kind of bug is this ?

0.000 0.668 0.778

STS Answer-
Answer

You should do it
You should never do it

0.200 0.818 0.900

PIT
That s what were watching in Europe
If only England was in Europe

0.000 0.566 0.519

Table 4: Examples of difficult sentence pairs. Compositional models use GloVe embeddings.

With respect to the composition model, LSTM
performs better than VS but only in the SICK
dataset while VS dominates in both the PIT and
STS datasets. Specifically, Figure 1 shows the
overall and the per-category performance of the
model on the STS dataset. Overall, we can clearly
see that VS outperforms LSTM by a considerable
margin and also in each category except in Post-
editing and Headlines. On the one hand, this sug-
gests that simple compositional models can per-
form competitively on clean and noisy datasets
(e.g., less OOEVs). On the other hand, this shows
the ability of LSTM models to capture long term
dependencies especially on clean datasets (e.g.,
SICK dataset) because they contain sufficient se-
mantic information while their performance de-
creases dramatically on noisy data or on datasets
with high proportion of OOEVs (e.g., PIT and STS
datasets).

The worst performance was obtained on the
PIT dataset in both the baseline6 and composi-
tion models. Aside from PIT dataset’s compara-
tively higher percentage of OOEV words (see Ta-
ble 3), its diverse, short and noisy user-generated
text (Strauss et al., 2016)—typical of social media
text—make it a very challenging dataset.

To better understand the reason behind the per-
formance drop of the model, we extracted the 100
most difficult sentence pairs in each dataset by
ranking all of the pairs in the test set according to
the absolute difference between the gold standard
and predicted similarity scores.

We observed that around 60% of the difficult
sentence pairs share many similar words (except
for a word or two) or contain OOEV words that led
to a complete change in meaning. Meanwhile the

6We represent each sentence with term-frequency vectors.

rest are sentence pairs which are topically similar
but completely mean different.

In Table 4, we show examples from each dataset
and their corresponding scores (i.e., Pearson cor-
relation) from the gold standard and the compo-
sition models. The two sentences come from an
actual pair in the dataset.

Example 1 (from SICK dataset) shows a pair
of sentences which, although can be interpreted to
come from the same domain food preparation, are
semantically different in their verb, subject, and
direct object, for which, presumably, they were
labelled in the gold standard as highly dissimi-
lar. However, both of the word-based models pre-
dicted them to be highly similar (in varying de-
grees). This limitation can be attributed to the re-
latedness of their words (e.g., person vs woman,
cutting vs scrubbing). Under the distributional hy-
pothesis assumption (Harris, 1940; Firth, 1957),
two words will have high similarity if they oc-
cur in similar contexts even if they neither have
the same nor similar meanings. Since word em-
beddings are typically generated based on this as-
sumption, the relatedness aspect is captured more
than genuine similarity. Furthermore, the higher
similarity obtained by the LSTM model over Vec-
tor Sum can be attributed to its ability to capture
syntactic structure in sequences such as sentences.

Examples 2 and 3 (from STS dataset) show sen-
tence pairs which were labelled as completely dis-
similar but were predicted with high similarity in
both models. This shows the inability of the mod-
els to put more weight on semantically rich words
which change the overall meaning of a sentence
when compared with another.

Example 4 (from PIT dataset) shows a sentence
pair which was labelled as completely dissimi-
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lar, presumably because it lacks sufficient con-
text for meaningful interpretation. However, they
were predicted to some degree as similar possi-
bly because some words are common to both sen-
tences and some are likely related by virtue of co-
occurrence in the same context (e.g., England, Eu-
rope). See Appendix B for more examples.

5 Future Work

This work is intended to serve as an initial study
on end-to-end sentence modelling to identify the
limitations associated with it. The models and
representations compared, while typical of current
sentence modelling methods, are not an exhaustive
set and some variations exist. A natural extension
to this study is to explore other input granularity
representations and composition models presented
in the framework. For example, in this study we
did not go beyond word representations; however,
multi-word expressions are common occurrences
in the English language. This could be addressed
by modelling sentence constituents using recur-
sive tree structures (Tai et al., 2015) or by learning
phrase representations (Wieting et al., 2015).

The limitations of the current word embeddings
as revealed in this paper has been studied in the
context of word similarity tasks (Levy and Gold-
berg, 2014; Hill et al., 2016) but to our knowl-
edge had never been investigated explicitly in the
context of sentence similarity tasks. For exam-
ple, Kiela et al. (2015) have shown that specialis-
ing semantic spaces to downstream tasks and ap-
plications requiring similarity or relatedness can
improve performance. Furthermore, some studies
(Faruqui et al., 2014; Yu and Dredze, 2014; Ono
et al., 2015; Ettinger et al., 2016) have proposed to
learn word embeddings by going beyond the dis-
tributional hypothesis assumption either through a
retrofitting or joint-learning process with some us-
ing semantic resources such as ontologies and en-
tity relation databases. Thus, we will explore this
direction as this will be particularly important in
semantic processing since entities encode much of
the semantic information in a language.

Furthermore, the inability of the state-of-the-
art model to encode semantically rich words (e.g.,
socket, bug in Example 2) with higher weights rel-
ative to other words, supports the assertion of Bla-
coe and Lapata (2012) that distributive semantic
representation and composition must be mutually
learned. Wieting et al. (2015) have showed that

this kind of weighting for semantic importance can
be learned automatically when training on a para-
phrase database. Recent models (Hashimoto et al.,
2016) proposed end-to-end joint modelling at dif-
ferent linguistic levels of a sentence (i.e. morphol-
ogy, syntax, semantics) on a hierarchy of tasks
(i.e., POS tagging, dependency parsing, seman-
tic role labelling)—often done separately—with
the assumption that higher-level tasks benefit from
lower-level ones.
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Abstract

Early research into emoji in textual com-
munication has focused largely on high-
frequency usages and ambiguity of inter-
pretations. Investigation of a wide range of
emoji usage shows these glyphs serving at
least two very different purposes: as con-
tent and function words, or as multimodal
affective markers. Identifying where an
emoji is replacing textual content allows
NLP tools the possibility of parsing them
as any other word or phrase. Recognizing
the import of non-content emoji can be a
a significant part of understanding a mes-
sage as well.

We report on an annotation task on En-
glish Twitter data with the goal of classify-
ing emoji uses by these categories, and on
the effectiveness of a classifier trained on
these annotations. We find that it is pos-
sible to train a classifier to tell the differ-
ence between those emoji used as linguis-
tic content words and those used as par-
alinguistic or affective multimodal mark-
ers even with a small amount of training
data, but that accurate sub-classification
of these multimodal emoji into specific
classes like attitude, topic, or gesture will
require more data and more feature engi-
neering.

1 Background

Emoji characters were first offered on Japanese
mobile phones around the turn of the 21st cen-
tury. These pictographic elements reached global
language communities after being added to Uni-
code 6.0 in 2010, and then being offered within
software keyboards on smartphones. In the ensu-
ing half-decade, digitally-mediated language users

have evolved diverse and novel linguistic uses for
emoji.

The expressive richness of emoji communica-
tion would, on its own, be sufficient reason to
seek a nuanced understanding of its usage. But
our initial survey of emoji on Twitter reveals many
cases where emoji serve direct semantic functions
in a tweet or where they are used as a grammat-
ical function such as a preposition or punctua-
tion. Early work on Twitter emoticons (Schnoe-
belen, 2012) pre-dated the wide spread of Uni-
code emoji on mobile and desktop devices. Recent
work (Miller et al., 2016) has explored the cross-
platform ambiguity of emoji renderings; (Eis-
ner et al., 2016) created word embeddings that
performed competitively on emoji analogy tasks;
(Ljubešic and Fišer, 2016) mapped global emoji
distributions by frequency; (Barbieri et al., 2017)
used LSTMs to predict them in context.

We feel that a lexical semantics of emoji char-
acters is implied in these studies without being di-
rectly addressed. Words are not used randomly,
and neither are emoji. But even when they replace
a word, emoji are used for different purposes than
words. We believe that work on emoji would be
better informed if there were an explicit typology
of the linguistic functions that emoji can serve in
expressive text. The current project offered anno-
tators a framework and heuristics to classify uses
of emoji by linguistic and discursive function. We
then used a model based on this corpus to pre-
dict the grammatical function of emoji characters
in novel contexts.

2 Annotation task

Although recognizing the presence of emoji char-
acters is trivial, the linguistic distinctions we
sought to annotate were ambiguous and seemed
prone to disagreement. Therefore in our annota-
tion guidelines we structured the process to mini-
mize cognitive load and lead the annotators to in-
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tuitive decisions. This was aided somewhat by the
observation that emoji are often used in contexts
that make them graphical replacements for exist-
ing lexical units, and that such uses are therefore
straightforward to interpret. Taking advantage of
such uses, our flow presented annotators with a
few simple questions at each step, to determine
whether to assign a label or to move on to the next
category.

2.1 Categories and subtypes
The high-level labels we defined for emoji uses
were:

• Function (func): stand-ins for a function
word in an utterance. These had a type
attribute with values prep, aux, conj,
dt, punc, other. An example from our
data: “I like u”.
• Content (cont): stand-ins for lexical

words or phrases that are part of the main
informative content of the sentence. These
have natural parts of speech, which anno-
tators could subtype as: noun, verb,
adj, adv, other. “The to success is

”
• Multimodal (mm): characters that enrich a

grammatically-complete text with markers of
affect or stance, whether to express an atti-
tude (“Let my work disrespect me one more
time... ”), to echo the topic with an iconic
repetition (“Mean girls ”, or to express a
gesture that might have accompanied the ut-
terance in face-to-face speech (“Omg why
is my mom screaming so early ”). Sub-
types: attitude, topic, gesture,
other.

The POS tags we chose were deliberately
coarse-grained and did not include distinctions
such as noun sub-types. We wanted to capture im-
portant differences while knowing that we would
have fewer instances for the function and content
labels. For all three labels, annotators were asked
to provide a replacement: a word or phrase
that could replace the emoji. For func and cont,
replacements were a criterion for choosing the la-
bel; for mm there was room for interpretation.

2.2 Data Collection
Tweets were pulled from the public Twitter
streaming API using the tweepy Python pack-
age. The collected tweets were automatically

filtered to include: only tweets with characters
from the Emoji Unicode ranges (i.e. gener-
ally U+1FXXX, U+26XX–U+27BF); only tweets
labeled as being in English. We excluded
tweets with embedded images or links. Redun-
dant/duplicate tweets were filtered by comparing
tweet texts after removal of hashtags and @men-
tions; this left only a small number of cloned du-
plicates. After that, tweets were hand-selected to
get a wide variety of emojis and context in a small
sample size — therefore, our corpus does not re-
flect the true distribution of emoji uses or context
types.

2.3 Guidelines

Our guidelines gave annotators cursory back-
ground about emoji and their uses in social media,
assuming no particular familiarity with the range
of creative uses of emoji. In hindsight we no-
ticed our assumption that annotators would have
a fair degree of familiarity with modes of dis-
course on Twitter. The short-message social plat-
form has many distinctive cultural and commu-
nicative codes of its own, not to mention sub-
cultures, and continuously evolving trends com-
bined with a long memory. As two of the authors
are active and engaged users of Twitter, we un-
fortunately took it for granted that our annotators
would be able to decipher emoji in contexts that
required nuanced knowledge of InterNet language
and Twitter norms. This left annotators occasion-
ally bewildered: by random users begging celebri-
ties to follow them, by dialogue-formatted tweets,
and by other epigrammatic subgenres of the short-
text form.

The analytical steps we prescribed were:

• Identifying each emoji in the tweet

• Deciding whether multiple contiguous emoji
should be considered separately or as a group

• Choosing the best tag for the emoji (or se-
quence)

• Providing a translation or interpretation for
each tagged span.

Eliciting an interpretation serves two goals:
first, as a coercive prompt for the user to bias them
toward a linguistic interpretation. A replaceable
phrase that fits with the grammar of the sentence is
a different proposition than a marker that amounts
to a standalone utterance such as “I am laughing”

137



or “I am sad”. Secondly, one of the eventual ap-
plications of annotated corpus may be emoji-sense
disambiguation (ESD), and mapping to a lexical-
ized expression would be useful grounding for fu-
ture ESD tasks. The text field was very helpful
during the adjudication process, clarifying the an-
notators’ judgments and understanding of the task.

For each tweet, annotators first read without an-
notating anything, to get a sense of the general
message of the tweet and to think about the re-
lationship between the emoji and the text. On
subsequent readings, they are asked to determine
whether the emoji is serving as punctuation or a
function word; then if it is a content word; and if
it is neither of those, then to examine it as a multi-
modal emoji. A key test, in our opinion, was ask-
ing annotators to simulate reading the message of
the tweet aloud to another person. If a listener’s
comprehension of the core message seemed to re-
quire a word or phrase to be spoken in place of an
emoji, then that would be a compelling sign that it
should be tagged as function or content.

For each step we provided examples of tweets
and emoji uses that clearly belong in each cat-
egory. These examples were not included in
the data set. Uses that failed the first two tests
were assigned the multimodal category. We pro-
vided guidance and examples for deciding be-
tween ‘topic’, ‘attitude’ or ‘gesture’ as subtypes
of the multimodal category.

2.4 Inter-annotator agreement

Four annotators, all computational linguistics grad
students, were given 567 tweets with 878 total oc-
currences of emoji characters; in the gold standard
these amounted to 775 tagged emoji spans. For
the first 200 tweets annotated (‘Set 1’ and ‘Set 2’
in Table 1), each was marked by four annotators.
After establishing some facility with the task we
divided annotators into two groups and had only
two annotators per tweet for the remaining 367.

There are two separate aspects of annotation for
which IAA was relevant; the first, and less in-
teresting, was the marking of the extent of emoji
spans. Since emoji are unambiguously visible, we
anticipated strong agreement. The one confound-
ing aspect was that annotators were encouraged to
group multiple emoji in a single span if they were
a semantic/functional unit. The overall Krippen-
dorff’s α for extent markings was around 0.9.

The more significant place to look at IAA is

the labeling of the emoji’s functions. Because we
were categorizing tokens, and because these cat-
egories are not ordered and we presented more
than two labels, we used Fleiss’s κ. But Fleiss’s
κ requires that annotators have annotated the same
things, and in some cases annotators did not com-
plete the dataset or missed an individual emoji
character in a tweet. In order to calculate the statis-
tics on actual agreement, rather than impute dis-
agreement in the case of an ‘abstention’, we re-
moved from our IAA-calculation counts any spans
that were not marked by all annotators. There are
many of these in the first dataset, and progressively
fewer in each subsequent dataset as the annotators
become more experienced. A total of 150 spans
were excluded from Fleiss’ kappa calculations for
this reason.

2.5 Agreement/disagreement analysis

Content words. Part-of-speech identification is a
skill familiar to most of our annotators, so we were
not surprised to see excellent levels of agreement
among words tagged for part of speech. These
content words, however, were a very small propor-
tion of the data (51 out of 775 emoji spans) which
may be problematically small. For datasets 3B and
4B, annotators were in perfect agreement.

Multimodal. Agreement on multimodal sub-
labels was much lower, and did not improve as
annotation progressed. Multimodal emoji may be
inherently ambiguous, and we need a labeling sys-
tem that can account for this. A smiley face
might be interpreted as a gesture (a smile), an
attitude (joy), or a topic (for example, if the
tweet is about what a good day the author is hav-
ing) — and any of these would be a valid inter-
pretation of a single tweet. A clearer typology of
multimodal emojis, and, if possible, a more deter-
ministic procedure for labeling emoji with these
subtypes, may be one approach.

Worst overall cross-label agreement scores were
for week one, but all following datasets improved
on that baseline after the annotation guidelines
were refined.

3 Tag prediction experiment

We trained a sequence tagger to assign the correct
linguistic-function label to an emoji character. Our
annotators had assigned labels and subtypes, but
due to the low agreement on multimodal (mm) la-
bels, and the small number of cont and func la-
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Dataset # taters span rem total mm content
Set 1 4 78 0.2071 0.4251 0.1311
Set 2 4 49 0.8743 0.7158 0.8531
Set 3A 2 11 0.9096 0.4616 0.792
Set 3B 2 6 0.7436 0.3905 1.0
Set 4A 2 3 0.8789 0.4838 0.7435
Set 4B 2 1 0.3954 0.5078 1.0
Total/mean 4 150 0.6681 0.4974 0.7533

Table 1: Fleiss’s κ scores and other annotation/agreement variables

Label count
Multi-modal (mm) total 686

attitude 407
topic 184
gesture 93
other 2

Content (cont) total 51
noun 40
adj 6
verb 4
adv 1

Functional (func) total 38
punct 34
aux 2
dt 1
other 1

emoji spans total 775
words 6174
punctuation 668

Table 2: Label counts and subtypes in gold-
standard data

bels assigned, we narrowed the focus of our clas-
sification task to simply categorizing things cor-
rectly as either mm or cont/func. After one iter-
ation, we saw that the low number of func tokens
was preventing us from finding any func emoji,
so we combined the cont and func tokens into a
single label of cont. Therefore our sequence tag-
ger needed simply to decide whether a token was
serving as a substitute for a textual word, or was a
multimodal marker.

3.1 Feature engineering

For reasons described above, we had a small and
arbitrary sample of emoji usage available to study.
After annotating 775 spans in 567 tweets, we had
tagged 300 distinct emoji, 135 of which occurred
only once. Given that our task is sequence tag-
ging and our features are complex and indepen-
dent, Conditional Random Fields seemed a good
choice for our task. We used CRFSuite (Okazaki,
2007) and, after experimenting with the training
algorithms available, found that training with av-

eraged perceptron (Collins, 2002) yielded the best
predictive results. Results for several iterations of
features are given in Table 3, generally in order of
increasing improvement until “prev +emo class”.

• The emoji span itself, here called ‘character’
although it may span multiple characters.
• ‘emo?’ is a binary feature indicating whether

the token contains emoji characters (emo), or
is purely word characters (txt).
• ‘POS’, a part-of-speech tag assigned by
nltk.pos tag, which did apply part-of-
speech labels to some emoji characters, and
sometimes even correct ones.
• ‘position’ was a set of three positional fea-

tures: an integer 0–9 indicating a token’s po-
sition in tenths of the way through the tweet;
a three-class BEGIN/MID/END to indicate
tokens at the beginning or end of a tweet (dif-
ferent from the 0–9 feature in that multiple
tokens may get 0 or 9, but only one token will
get BEGIN or END); and the number of char-
acters in the token.
• The ‘contexty’ feature is another set of

three features, this time related to context:
A boolean preceded by determiner
aimed at catching noun emoji; and two fea-
tures to record the pairing of the preceding
and following part of speech with the present
token type (i.e. emo/txt);
• Unicode blocks, which inhere in the order-

ing of emoji characters. Thus far, emoji have
been added in semantically-related groups
that tend to be contiguous. So there is a
block of smiley faces and other ‘emoticons’;
a block of transport images; blocks of food,
sports, animals, clothing; a whole block of
hearts of different colors and elaborations;
office-related, clocks, weather, hands, plants,
and celebratory characters. These provide
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feature F1 word F1 mm P cont R cont F1 cont Macro-avg F1
character 0.9721 0.7481 0.3571 0.3333 0.3448 0.8441
prev +emo? 0.9914 0.8649 0.4286 0.4000 0.4000 0.8783
prev +POS 0.9914 0.8784 0.5000 0.4667 0.4828 0.8921
prev +position 0.9914 0.8844 0.4667 0.4667 0.4667 0.9028
prev +contexty 0.9914 0.8831 0.6250 0.3333 0.4348 0.8848
prev +emo class (best) 0.9914 0.8933 0.7273 0.5333 0.6154 0.9168
best − character 0.9906 0.8514 0.6429 0.6000 0.6207 0.9090
best − contexty 0.9922 0.8750 0.4706 0.5333 0.5000 0.8945
emo?+POS+emo class 0.9914 0.8421 0.6000 0.4000 0.4800 0.8855

Table 3: Performance of feature iterations. Only the F1 score is given for word and mm labels because
precision and recall were pretty consistent. cont labels are broken down by precision, recall and F1
because they varied in interesting ways.

a very inexpensive proxy to semantics, and
the ‘emo class’ feature yielded a marked im-
provement in both precision and recall on
content words, although the small number of
cases in the test data make it hard to be sure
of their true contribution.

We did a few other experiments to explore our
features. ‘best − character’ showed that ignoring
the character actually improved recall on content
words, at the expense of precision. ‘best − con-
texty’ removed the ‘contexty’ feature, since it had
actually slightly worsened several metrics, but re-
moving it from the final ‘(best)’ feature set also
worsened several metrics.

3.2 Full-feature performance
The results in Table 3 show what we could reliably
label with coarse-grained labels given the small
size of our data set: 511 training tweets, 56 test
tweets. But given that we annotated with finer-
grained labels as well, it is worth looking at the
performance on that task so far; results are shown
in Table 3. Our test set had only two of each of
the verbal content words — content verb and
func aux — and didn’t catch either of them, nor
label anything else with either label. In fact, the
only two func aux in our dataset were in the
test set, so they never actually got trained on. We
saw fairly reasonable recall on the mm topic and
mm attitude labels, but given that those are the
most frequent labels in the entire data set, it is
more relevant that our precision was low.

4 Future directions

89 examples of content and functional uses of
emoji is not enough to reliably model the behav-

ior of these categories. More annotation may yield
much richer models of the variety of purposes of
emoji, and will help get a better handle on the
range of emoji polysemy. Clustering of contexts
based on observed features may induce more em-
pirically valid subtypes than the ones defined by
our specification.

Anglophone Twitter users use emoji in their
tweets for a wide range of purposes, and a given
emoji character means different things in different
contexts. Every emoji linguist notes the fascinat-
ing range of pragmatic and multimodal effects that
emoji can have in electronic communication. If
these effects are to be given lexicographical treat-
ment and categorization, they must also be orga-
nized into functional and pragmatic categories that
are not part of the typical range of classes used to
talk about printed words.

We have mentioned the notion of emoji-sense
disambiguation (ESD). ESD in the model of tra-
ditional WSD would seem to require an empirical
inventory of emoji senses. Even our small sample
has shown a number of characters that are used
both as content words and as topical or gestural
cues. Our data included “Mean girls ”, i.e. ‘I
am watching the movie Mean Girls’, which has
no propositional content in common with (unat-
tested in our data set) “Mean girls ”, i.e. ‘girls
who are mean upset me’. There are a number of
flower emoji: sometimes they are used to decorate
a message about flowers themselves, and some-
times they add sentiment to a message—and, just
as in culture away from keyboards, a rose is
always marked as conveying a message of ‘love’,
while a cherry blossom is consistently associ-
ated with ‘beauty’.
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feature TP labeled true precision recall F1
mm topic 38 53 44 0.7170 0.8636 0.7835
mm attitude 11 26 16 0.4231 0.6875 0.5238
content noun 6 11 11 0.5455 0.5455 0.5455
mm gesture 2 2 8 1.0000 0.2500 0.4000
content verb 0 0 2 0.0000 0.0000 0.0000
func aux 0 0 2 0.0000 0.0000 0.0000

Table 4: performance of best model on subtype labels

There can be little question that individuals use
emoji differently, and this will certainly confound
the study of emoji semantics in the immediate
term. The study of community dialects will be es-
sential to emoji semantics, and there is certain also
to be strong variation on the level of idiolect. The
categorizations may need refinement, but the phe-
nomenon is undeniably worthy of further study.
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Abstract

Doctor-patient conversation is considered
a contributing factor to antibiotic over-
prescription. Some language practices
have been identified as parent pressuring
doctors for prescribing; other practices are
considered as likely to engender parent re-
sistance to non-antibiotic treatment rec-
ommendations. In social science stud-
ies, approaches such as conversation anal-
ysis have been applied to identify those
language practices. Current research for
dialogue systems offer an alternative ap-
proach. Past research proved that corpus-
based approaches have been effectively
used for research involving modeling dia-
logue acts and sequential relations. In this
proposal, we propose a corpus-based study
of doctor-patient conversations of antibi-
otic treatment negotiation in pediatric con-
sultations. Based on findings from conver-
sation analysis studies, we use a compu-
tational linguistic approach to assist anno-
tating and modeling of doctor-patient lan-
guage practices, and analyzing their influ-
ence on antibiotic over-prescribing.

1 Introduction

“How to do things with words” has long been a
topic interested to researchers from various disci-
plines, such as pragmatics (Austin, 1962; Levin-
son, 1983), conversation analysis (CA) (Drew and
Heritage, 1992; Heritage and Maynard, 2006), and
computational linguistics (Stolcke et al., 2000;
Williams et al., 2013; Schlöder and Fernandez,
2015). Although computational methods have
been widely used to conduct text mining tasks
such as detecting reader bias and predicting mood
shift in vast populations (Flaounas et al., 2013;

Lansdall-Welfare et al., 2012; Ritter et al., 2011),
studies on computational modeling of human nat-
ural conversational acts are rare, especially for
investigating associations with social behavioral
outcomes.

Doctor-patient conversations have been proved
highly consequential on a lot of worldwide public
health problems and population health outcomes
(Zolnierek and DiMatteo., 2009; Mangione-Smith
et al., 2015). Over-prescription of antibiotics is of-
ten related to interaction-generated problems aris-
ing from doctor-patient conversations, which has
little to do with rational medical judgments (Mac-
farlane et al., 1997). For example, some par-
ent language practices are frequently understood
by physicians as advocating antibiotics, resulting
in significantly higher likelihood of inappropri-
ate prescriptions (Mangione-Smith et al., 1999;
Stivers, 2002, 2007).

This antibiotic resistance and over-prescription
phenomenon also has its presence in China. Pre-
scription rates of antibiotics is high (Li et al., 2012;
Wang et al., 2014; Xiao et al., 2012); multiple
types of antibiotic resistant pathogens have been
discovered nationwide. However, determinants of
the over-prescription problem in China have not
been well studied, especially the impact of doctor-
patient conversation in medical consultations.

In this proposal, we propose a corpus based
study to examine doctor-patient conversation of
antibiotic treatment negotiation in Chinese pedi-
atric settings, using a mixed methodology of con-
versation analysis and computational linguistics.
Particularly, we aim to discover (1) how parent
requests of antibiotic prescriptions are made in
doctor-patient conversations and their effects on
prescribing decision outcomes; (2) how physi-
cians’ non-antibiotic treatment recommendations
are delivered and responded by parents; In con-
ducting this study, our findings about doctor-
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patient conversation are expected to be extended
beyond medical setting to natural human conver-
sations. These findings include:

• How actions are formulated with various
forms of language practice in conversations;

• How meaning of language practices is under-
stood by speakers as performing a certain ac-
tion;

• How choice of one form of language prac-
tices in performing an action is associated
with its response of various kinds.

In conducting this study, we attempt to bridge
the gap between social scientific methods and
computational methods in researching the afore-
mentioned questions.

In the following sections, we will introduce our
corpus, preliminary findings from CA, and related
computational approaches. This is followed by a
discussion of contributions of the proposed study.

2 Data

The corpus of this study is constructed from nat-
ural human conversations. In order to obtain the
conversations, 318 video-recorded doctor-patient
conversations were collected in 6 Chinese hospi-
tals between September and December in 2013.
Each conversation is around 5 minutes in length,
resulting in 30 hours of video-recordings in to-
tal. The conversations were mostly between doc-
tors and patients’ caregivers regarding patients’
health conditions and lifestyle-related issues that
are commonly discussed in pediatrics.

Video-recordings were then transcribed manu-
ally. Six researchers were employed to transcribe
the data, including one manager and five anno-
tators. All of them are native speakers of Chi-
nese. The five annotators received basic training
in CA and its transcribing conventions before they
started transcribing. The manager is a specialist
in CA, who controlled the work flow and trouble-
shot during the transcribing process.

Following the Jeffersonian transcribing conven-
tions (Jefferson, 2004), the video-recorded conver-
sational data were transcribed with considerable
details with respect to speech production, includ-
ing the speech text verbatim and other paralinguis-
tic features such as intonations, overlaps, visible
non-verbal activities and noticeable timed silence
(Auer et al., 1992).

TID SID RID UID Speech text
1 1 0 M 您好 . 就 是 咳嗽.

Hello. He’s just coughing.
2 2 0 D ((处理病历文件))

((Processing medical docu-
ment))

3 3 0 D 来 看 过 的, 是 啊?
You have visited us for this,
have you?

4 3 3 M 嗯, 那 天 晚 上
来 挂 了 急诊 室,=
Yeah, we came to the emer-
gency room that night.

5 4 4 D =嗯, 嗯.
Yeah, yeah.

Table 1: An example of annotated conversation.

To answer our research questions, we devel-
oped an annotation schema, capturing the follow-
ing aspects of the conversations, including (1)
turn-taking and speakership (TID, UID), (2) multi-
turn dependency relations, such as adjacency pair1

(SID) and rhetorical relations2 (RID). In addition,
the speech text was also word segmented corre-
sponding to Chinese Penn Tree Bank segmenta-
tion guideline (Xia et al., 2000). An example of
the corpus is shown in Table 1.

The current annotated corpus contains 318 con-
versations with nearly 40K turns and 470K Chi-
nese characters. It has on average 123 turns and 81
adjacency pairs in each conversation. The average
number of participants is 3 in each conversation,
with a minimum of 2 speakers and a maximum of
8 speakers.

3 Conversation Analysis

Conversation analysis (CA) is used to identify the
dialogue acts in the corpus. CA views sequence
organization a core feature of conversation that is
important for understanding the meaning of an ut-
terance and its significance as an action in con-
versation (Schegloff, 1968). The idea is that the
action which some talk is doing can be grounded
in its position, not just its composition. Therefore,
some talk (e.g. “It’s raining.”) can be heard as an
answer to a question (e.g. “Are we going to the
game?”), even they are apparently semantically
unrelated. The relationship of adjacency between
turns is central to the ways in which talk in con-
versation is organized and understood (Schegloff,

1A basic sequential relationship defined in conventional
conversation analysis literature, to be explained in the next
section.

2RID: Information reflecting topical relevances across
turns.
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2007). The adjacency relationship most power-
fully operates in two ways: (1) backwards - next
turns are understood by co-participants to display
their speaker’s understanding of the prior turn and
to embody an action responsive to the prior turn
so understood; (2) prospective - a first pair part in
an adjacency pair projects some prospective rele-
vance rules for the second pair part. Specifically,
it makes relevant a limited set of possible second
pair parts, and thereby sets some terms by which a
next turn will be understood (Schegloff, 2007).

The methodology of CA relies on audio or
video-recordings of naturally occurring conversa-
tions, which are then transcribed in details for
analyses of turns and sequences in the conversa-
tion (Sidnell et al., 2013) and the embodied actions
that speakers use to accomplish their goals in so-
cial interactions (Drew and Heritage, 1992; Drew
et al., 2001). In general, CA looks for patterns
in the conversation which form evidence of sys-
tematic usage that can be identified as a ’practice’
through which people accomplish a social action.
To be identified as a practice, a particular commu-
nication behavior must be seen to be recurrent and
to be routinely treated by recipients in a way such
that it can be discriminated from related or similar
practices (Heritage, 1984; Stivers, 2005).

Utilizing CA, we identify parent practices of
making requests and physician practices making
treatment recommendations in our corpus. These
findings are then used for developing an annota-
tion schema for computational modeling of these
dialogue acts and the associations with their re-
sponses or action outcomes.

4 Preliminary Results

Based on conversation analytical study, we find
that four parent language practices are recurrently
treated by physicians as requesting antibiotic treat-
ment:

• Explicit requests of an antibiotic treatment;

• Desire statements of an antibiotic treatment;

• Inquiries about an antibiotic treatment;

• Evaluations of a past treatment.

Among the four language practices, only the first
practice takes a canonical form of request (e.g.,
“Can you prescribe me some antibiotics?”), while
the other three practices take less explicit language

formats, putting varying degree of impositions on
physicians’ responsive acts.

For example, an explicit request of antibiotic
treatment is the strongest form of request as it puts
the highest degree of impositions on physicians’
responsive action, by making physicians’ grant or
rejection of the request relevant in the next turn. In
contrast, a statement of desire for antibiotic treat-
ment does not put physicians under any constraint
for granting an antibiotic prescription, but it gener-
ates an understanding that prescribing antibiotics
is a desirable act under this circumstance. Simi-
larly, an inquiry about antibiotics raises antibiotic
treatment as a topic for discussion and implicates
a preference for the treatment, yet it does not put
physicians under the constraint as an explicit re-
quest does. Moreover, a positive evaluation of
past experience with antibiotics may be subject
to physicians’ understanding as desiring for an-
tibiotics for the current condition, yet it does not
even require any response physicians as an inquiry
about antibiotics does.

The CA study of the requesting practices en-
ables us to identify the utterances that are recur-
rently understood or subject to speakers’ under-
standing as doing the act of requesting. In addi-
tion, we find that explicit requests are least fre-
quently used by parents, while less explicit forms
of requests occur more frequently. Table 2 de-
scribes the frequency (number of cases) and per-
centage of the requesting practices out of total
number of cases in the corpus.

In order to quantitatively investigate the correla-
tion between the presence of the requesting prac-
tices and the prescribing decision outcomes, we
conduct a Pearson’s χ2 test between the two vari-
ables X and Y , where X is whether parents use at
least one of the four requesting practices, and Y is
whether they receive an antibiotic treatment by the
end of the consultation. The χ2 test suggests that
parents using at least one of the four requesting
practices is significantly associated with that they
receive an antibiotic treatment (χ2=5.625, df =
13, p = 0.0184). It is worth noting that this is an
approximation of the correlation between parent
use of the requesting practices and the prescribing
outcomes. Investigation of correlations between
individual parent requesting practices and the pre-
scribing outcomes will be carried out in our ongo-

3Degrees of freedom.
4At the 0.05 significance level.
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Request Frequency Percentage
Explicit requests 23 7.23%
Desire statements 38 11.94%
Inquiries 90 28.30%
Evaluations 69 21.70%
Total 220 69.17%

Table 2: Distribution of requesting practices in the
corpus. Each cell reports the number of cases (and
percentage) containing the practice.

ing work. Moreover, computational methods will
also be introduced to examine the correlations.

In examining what kind of treatment recom-
mendations are more likely to be resisted by par-
ents, we investigate the association between physi-
cians’ non-antibiotic treatment recommendations
and parents’ responses in the next turn.

One way to distinguish the delivery format
of a non-antibiotic treatment recommendation is
whether it is negative-format or positive-format
(Stivers, 2005). A negative-format recommenda-
tion is to recommend against a particular treatment
(e.g., “She doesn’t need any antibiotics.”); while
a positive-format one is to recommend for a par-
ticular treatment (e.g., “I’m gonna give her some
cough medicine.”). Findings from the American
pediatric settings show that physicians’ positive-
format recommendations are less likely to engen-
der parent resistant response to a non-antibiotic
treatment recommendation than negative-format
recommendations, and thus suggests that rec-
ommendations delivered in an affirmative, spe-
cific form are most receptive to parents for non-
antibiotic treatment (Stivers, 2005).

Beyond distinguishing the recommendations
into positive-format and negative-format, there are
many other features which could be taken into
consideration regarding to their consequences on
parents’ responses (e.g. epistemic stances5 and
deontic stances6 that are embodied in the rec-
ommending practices). For example, physicians’
treatment recommendations can be produced with
the following types, including assertions, propos-
als and offers. The assertions are recommen-

5The epistemic stance refers to speakers’ orientation to-
ward the relative primacy/subordination in terms of their
knowledge access. See (Heritage and Raymond, 2005) for
more details.

6The deontic stance refers to speakers’ orientation toward
their relative primacy/subordination in terms of their rights to
decide future events. See (Stevanovic and Peräkylä, 2014) for
more details.

Recommendation Frequency Percentage
Assertions 128 51.00%
Proposals 87 34.66%
Offers 31 12.35%
Total 246 98.01%

Table 3: Distribution of recommending practices
in the corpus. Each cell reports the number of
cases (and percentage) containing the correspond-
ing practice.

dations such as “You have to take some fever
medicine.”. Proposals are such as “Why don’t
you take some cough syrup?”. Offers are mostly
recommendations that are offered following par-
ent indication of their treatment preference or de-
sires, e.g. “I’ll give you some fever medicine if
you want.”. The assertions index higher physi-
cian epistemic and deontic rights in terms of who
knows the best about the treatment and who deter-
mines what the patient needs to do respectively.
Compared to assertions, physicians claim less
epistemic and deontic authority by using the pro-
posal format; and offers embody the least amount
epistemic and deontic primacy. Table 3 describes
the distribution of physicians’ practices of making
treatment recommendations across the corpus.

We also conduct a Pearson’s χ2 test between
physicians’ choice of recommending practice and
parent response. The test shows that we cannot
reject the null hypothesis that physicians’ choices
of recommending practice type are independent
of parent response types (χ2=0.327, df = 2,
p = 0.849). Thus our ongoing work is to exam-
ine other complexities of treatment recommending
practices and their effect on parents’ response.

5 Computational Approach

Conversation analysis allows us to manually iden-
tify language practices that are recurrently under-
stood and subject to speaker understanding of do-
ing a particular act; while computational approach
is used to assist tasks such as entity type recog-
nition, dialogue act classification, and analyses of
interested correlations in a more scalable way.

Early research (Jurafsky et al., 1998; Stolcke
et al., 2000) on computational modeling of conver-
sational language has demonstrated that automatic
modeling based on manually transcribed conver-
sational data by including features such as speak-
ership, dependency relations have achieved supe-
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rior performance results compared to datasets oth-
erwise. In using the computational approach in
our study, several techniques will be used. In gen-
eral, we can divide our computational tasks into
two categories, fundamental and dialogue specific
tasks.

5.1 Fundamental Tasks

Fundamental tasks mainly involve solving general
problems that are across all language processing
tasks, e.g. named entity recognition and corefer-
ence resolution. This part of work lays founda-
tions for more advanced dialogue specific tasks to
be discussed in the next section.

5.1.1 Named Entity Recognition

Entities are very important in spoken language un-
derstanding, as it conveys key information in de-
termining task objectives, intents, etc. In the med-
ical domain, entity recognition is particularly cru-
cial in identifying information such as treatment or
prescriptions. As a fundamental natural language
processing (NLP) technique for various tasks, e.g.
machine translation (Babych and Hartley, 2003),
information retrieval (Guo et al., 2009), named en-
tity recognition (NER) (Nadeau and Sekine, 2007)
is also used in our study. Using NER in our study
has several challenges. For example, utterances
in dialogues are shorter compared to other types
of texts. Also, NER is conducted on Chinese.
Thus, domain specific word segmentation (Song
and Xia, 2012) is a prerequisite if we extend our
work to larger datasets in a more scalable way.
However, using NER in our study has the advan-
tage that utterances in dialogues are not isolated.
The sequential relations between the utterances
thus potentially provides us with more informa-
tion to build a better model. Previous work (We-
ston et al., 2015) proved that information extrac-
tion which takes into account information from
previous utterances with recurrent neural networks
was more effective. NER in our study can provide
more in-depth annotations to the corpus, allow-
ing models trained on the corpus to incorporate
more information. To accelerate the annotation
process, semi-supervised methods are used for di-
alogue acts recognition and classification. Specif-
ically, we annotate some seed data, use the trained
model to automatically annotate the rest, and fi-
nally check the automatically generated annota-
tions manually.

5.1.2 Coreference Resolution
In natural language, reference is used widely for
communication efficiency. In dialogue environ-
ments, person reference and even omissions are
very common. Therefore, coreference resolution
can help us add useful semantic information into
our language models (Recasens et al., 2013; Clark
and Manning, 2015). General coreference resolu-
tion is usually performed on multiple sentences in
a document; however, the relations of these sen-
tences are vague. Based on our multi-turn rhetori-
cal relation annotations, information that are ab-
sent or abstract in a turn can be extracted from
turns that are rhetorically related. This could ef-
fectively enhance the performance of coreference
resolution and provide more accurate information
about the referent. For example, the pronoun that
may not be clear about what it refers to in one ut-
terance; however, the co-reference resolution tech-
nique links it to previous turns which contain the
information of its referent.

5.2 Dialogue Specific Tasks

Our research is closely related to the studies on di-
alogue systems (Henderson, 2015), in which mod-
els are built to structure conversations. To achieve
our research goals, models are built to track states
in a dialogue and to build connections between ut-
terances and action outcomes.

5.2.1 Dialogue State Modeling
One important task is to classify types of an utter-
ance and types of the action required. For exam-
ple, to judge whether an utterance is a question,
answer, or other dialogue act, classification can be
performed, taking into account turns in previous
context. Previous work (Henderson et al., 2013;
Ren et al., 2014) demonstrated that using a clas-
sifier was effective for modeling user intents and
utterance types. In our research, we will use this
approach to classify utterances into different types
such as dialogue acts, parent responses and treat-
ment decisions. In order to perform such classifi-
cation, further annotations are conducted based on
the findings of conversation analyses, including:

• Dialogue act - parent requests for antibiotic
treatment, physician treatment recommenda-
tions;

• Treatment type - antibiotic or non-antibiotic
treatment;
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• Response type - grant or rejection to recom-
mendation.

By using these classifiers, it allows us to investi-
gate the features that are most important for clas-
sifying the utterances, and then align them with
the qualitative findings from CA studies.

Another way to model dialogue states is treating
dialogues as a sequence of observations and then
build models (e.g., CRF (Lafferty et al., 2001),
LSTM (Hochreiter and Schmidhuber, 1997)) to
perform labeling or classification based on that.
This is a natural way of modeling dialogues in
terms of the problem proximity. Current state-of-
the-art studies suggest that LSTM is a good choice
for modeling not only sequences of turns, but also
sequences of words (or other basic units) within a
turn (Zilka and Jurcı́cek, 2015). Using our corpus,
an LSTM model can be trained to achieve the same
goal as static classifiers for practice type classi-
fication, and to model the sequential relationship
between turns in real conversations.

Previous studies (Lee and Eskenazi, 2013;
Williams, 2014; Henderson et al., 2014) found that
systems combining the classifier approach and the
sequence model approach showed competitive re-
sults. In doing so, one can train several differ-
ent models with different sets of parameters and
join their results accordingly (Henderson et al.,
2014). For the aforementioned classification and
sequence modeling tasks, the combined model is
expected to outperform individual models.

5.2.2 Domain Adaptation
Since our data is of the particular domain of
medicine, domain adaptation is another task in-
volved in our research. Almost all of the afore-
mentioned tasks can be affected by domain spe-
cific variance. Besides, conversational data in
medical domain is also lacking. Therefore, ac-
quiring more data from other or general domain
can be useful in completing the tasks in the med-
ical domain, and improving the capability of con-
versational understanding, Training data selec-
tion/acquisition (Axelrod et al., 2011; Song et al.,
2012) could be the first step to solve the problem
of domain variance, without the need to modify
the existing models to fit our domain. Moreover,
when this work has to be extended to other do-
mains, e.g., law, education, etc., domain adapta-
tion is required to transfer the knowledge from this
domain to another.

6 Discussion

In this proposal, we propose a study on doctor-
patient conversations based on a corpus of natu-
rally occurring medical conversation that are tran-
scribed and annotated manually. With the com-
bination of the social science research method of
conversation analysis and computational methods
for language modeling, we aim to discover how
language practices in doctor-patient conversation
influence antibiotic over-prescribing.

Although previous studies (Macfarlane et al.,
1997; Mangione-Smith et al., 1999; Stivers, 2007)
proved that doctor-patient conversation were con-
sequential on medical decision-making and pop-
ulation health outcomes, findings from the extant
social science research are still limited in answer-
ing the question “in what way the language prac-
tices that doctors and patients use in medical con-
sultations influence the decision outcomes”.

Based on our preliminary findings from the CA
studies, we propose to use the computational ap-
proach to help answer our research questions. In
doing so, language patterns that are interested in
CA studies can be automatically modeled and pre-
dicted with classifier or sequence models, leading
us to more interesting findings. Also, by using the
computational approach, we can also build a di-
alogue system based on our corpus. This system
can be useful for analyzing doctor-patient conver-
sation and assisting decision-making process in
medical consultations.

In addition, we constructed a manually tran-
scribed and annotated corpus. Our ongoing work
involves formalizing and adding additional anno-
tations to the corpus. We will release the cor-
pus to the community in near future. It will be a
unique resource for both social scientific and com-
putational linguistic studies of conversations in the
medical domain.
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