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Abstract

This paper focuses on the task of noisy
label aggregation in social media, where
users with different social or culture back-
grounds may annotate invalid or malicious
tags for documents. To aggregate noisy la-
bels at a small cost, a network framework
is proposed by calculating the matching
degree of a document’s topics and the
annotators’ meta-data. Unlike using the
back-propagation algorithm, a probabilis-
tic inference approach is adopted to esti-
mate network parameters. Finally, a new
simulation method is designed for vali-
dating the effectiveness of the proposed
framework in aggregating noisy labels.

1 Introduction

Social media allows users to share their views,
opinions, emotion tendencies, and other person-
al information online. It is quite valuable to ana-
lyze and predict user opinions from these materials
(Wang and Pal, 2015), in which supervised learn-
ing is one of the effective paradigms (Xu et al.,
2015). However, the performance of a supervised
learning algorithm relies heavily on the quality of
training labels (Song et al., 2015). In social media,
many training data are collected via simple heuris-
tic rules or online crowdsourcing systems, such
as Amazon’s Mechanical Turk (www.mturk.com)
which allows multiple labelers to annotate the
same object (Zhang et al., 2013). Due to the lack
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of quality control, it can be hard for a model to
reconcile such noise in training labels.

This study aims to aggregate noisy labels by
matching annotators and documents. Unlike other
noisy label aggregation and integration tasks (or
algorithms), such as Learning to Rank (LtR) and
integrating crowdsourced labels which rely on ac-
curate instance sources (Ustinovskiy et al., 2016)
or confidence scores (Oyama et al., 2013), we on-
ly need features that can be obtained with a small
cost (i.e., topics). Compared with acquiring accu-
rate instance sources or confidence scores, which
is very hard, extracting topics can be done con-
veniently by many existing topic models. Note
that label noise is not always random, as adver-
sarial noise may occur in real-world environments
when a malicious agent is permitted to select la-
bels for certain instances (Auer and Cesa-Bianchi,
1998). For example, a fake annotator is purchased
to promote defective goods by giving high ratings.
Noisy labels in such a manner are extremely dif-
ficult to be handled (Nicholson et al., 2015). To
validate the effectiveness of aggregating the afore-
mentioned noisy labels, we propose to design a
new simulation method in Section 4.

2 Related Work

To aggregate or refine noisy labels, several ap-
proaches have been proposed recently. Whitehill
et al. (Whitehill et al., 2009) explored a proba-
bilistic model to combine labels from both human
labelers and automatic classifiers in image classi-
fication. Raykar et al. (Raykar et al., 2010) used
a Bayesian approach for supervised learning over
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noisy labels from multiple annotators. Oyama et
al. (Oyama et al., 2013) proposed to integrate la-
bels of crowdsourcing workers using their con-
fidence scores. Song et al. (Song et al., 2015)
developed a single-label refinement algorithm to
adjust noisy and missing labels. Ustinovskiy et
al. (Ustinovskiy et al., 2016) proposed an opti-
mization framework via remapping and reweight-
ing methods to solve the problem of LtR with the
existence of noisy labels.

Different from the previous study that modeled
the difficulties of instances and the user’s author-
ity (Whitehill et al., 2009), we target at integrat-
ing multiple labels for each instance by estimat-
ing the matching degree of documents and anno-
tators. Consequently, our work is applicable to
aggregating individual sentiment labels in social
media, where users under various scenarios (e.g.,
character and preference) may express invalid or
noisy sentiments to different topics.

3 Noisy Label Aggregation Framework

3.1 Problem Definition

The problem of noisy label aggregation is defined
as follows: Given N documents (instances) anno-
tated by M users (annotators) over C kinds of la-
bels, we generate D topics by existing unsuper-
vised topic models. Let T ∈ RN×D be topics of
all instances, where the i-th row of T (i.e., Ti) is
the topic distribution of document i, and the size
of Ti (i.e., |Ti|) is D. Let F ∈ RM×U be features
(e.g., age and gender) of all annotators, where Fj

is the feature distribution of user j and |Fj | = U .
To model different dimensions of document topics
(D) and annotator features (U ) jointly, we map Ti

and Fj to K latent factors denoted as Si and Aj ,
i.e., |Si| = |Aj | = K.
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Figure 1: Our proposed network framework.

To estimate the ground truth label Zi, we pro-
pose a novel network framework via aggregating
the observable labels Vi, as shown in Fig. 1. In
our framework, the correctness of Vij depends on
whether annotator j matches document i.

3.2 Detailed Steps

Topic Extraction (TE): For document features, it
is rough to use tf or tf-idf since they ignore the
versatility of semantics among various contexts.
Without considering the semantic units called top-
ics, the accurate category of each document may
be hard to access (Song et al., 2016). Short mes-
sages (e.g., tweets) are prevalent in social media,
which differ from normal documents insofar as the
number of words is fewer and most words only oc-
cur once in each instance. To extract topics from
such a sparse word space, we employ the Biterm
Topic Model (BTM) by breaking each document
into biterms and leveraging the information of the
whole corpus (Yan et al., 2013).

Fully-connected Operation (FcO): There can
be a large difference between dimensions of doc-
ument topics and annotator features, so we need
convert T and F to the same latent space. This
step conducts linear transformation by introduc-
ing fully-connected weights WT ∈ RD×K and
WF ∈ RU×K , as follows: S = TWT and
A = FWF. The values of S and A are propor-
tional to the label correctness probability.

Since more cohesive topics may indicate that
the document’s category is more concentrated and
can be correctly annotated by more users, the
topic distribution embeds key information on the
document factors S. To map T to S well, we
propose the concept of topic entropy that acts
as the constraint factor, by calculating the cen-
tralization of each document’s topics: H(di) =
−∑D

z=1 p(tz|di) logD

(
p(tz|di)

)
, where p(tz|di)

is the probability of the z-th topic conditioned to
document i, and D constrains the values ranging
from 0 to 1. The lower H(di), the higher the con-
centration of topics and the label correctness for
document i. We thus infer the relationship be-
tween Si and H(di) as ||Si||2 ∝ 1/H(di), where
||Si||2 is the Euclidean norm of Si.

Matching Degree Calculation (MDC): This
step calculates the matching degree of document
i and annotator j, which is denoted as gij by the
similarity/distance between latent factors Si and
Aj . Intuitively, a basketball enthusiast j matches
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close to a document i that contains the “basket-
ball” topic, which indicates that the “matching de-
gree” of i and j is high with a large similarity. The
inner product is used here, and it can be replaced
by distance measures.

Weight Transformation (WT): We employ
transformation to distinguish different scores ef-
fectively. The activation function is sigmoid (soft-
max) or tanh. Since most document labels are as-
sumed to be discrete independent variables, we en-
code Vij as a binary vector. The higher gij of a
label, the closer it is to the ground truth. Namely,
we should weight these labels in such a way that
if a label has high gij , its weight will be increased;
meanwhile, other labels should be punished. For
sigmoid and tanh, the punishment is 1 − wij and
−wij , respectively. Take four labels, the transfor-
mation weight wij and Vij = (1, 0, 0, 0) as an ex-
ample, the label weight via sigmoid is V new

ij =
(wij , 1− wij , 1− wij , 1− wij).

Label Weighting (LW) and One-max Pooling:
The final step is to output by integrating weight-
ed labels, where the multiplicative combination is
used in aggregation, and the output is the maxi-
mum one of aggregated labels ZiC .

3.3 Parameter Estimation
Since training labels may contain noise, it is in-
accurate to employ the back-propagation method
which uses the error between predicted and train-
ing labels as feedback for parameter estimation.
Thus, we turn the estimation of model parameters
WT and WF into a probabilistic problem. The
graphical representation is illustrated in Fig. 2.
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Figure 2: Probabilistic graphical representation.

Firstly, we define W = {WT,WF} for sim-
plicity. Secondly, the parameter distribution is de-
termined by the Maximum A Posteriori (MAP)
principal: W∗ = arg maxW Pr(W|V,T,F) =
arg maxW

∑
Z Pr(Z)Pr(W|V,T,F,Z).

Finally, the following Expectation Maximiza-
tion (EM) algorithm is used to estimate W∗.

Initialization: We first initialize W randomly.
The prior of ground truth Z can be set to 1/C or
the frequency of each observable label.

Expectation (E): We then compute the expecta-
tion of the joint log-likelihood of observable and
hidden variables given W (i.e., the Q function),
as follows: Q(W) = E[lnPr(V,Z,T,F|W)] =
E[lnPr(V|Z,T,F,W)]+E[lnPr(Z,T,F|W)].

Maximization (M): According to the Q func-
tion, the maximum likelihood of hidden variables
is estimated by the gradient ascent method.

Alternation: The above E and M steps are alter-
nately performed until the likelihood converges.

4 Experiments

4.1 Datasets and Baselines

As sentiment and emotion detection are widely
studied in social media analysis (Wang and Pal,
2015), we test model performance based on the
Stanford Twitter Sentiment (STS) and the Interna-
tional Survey on Emotion Antecedents and Reac-
tions (ISEAR) corpus. The original STS dataset
(Go et al., 2009) contains 1.6 million tweets that
were automatically labeled as positive or negative
using emoticons as labels, in which 80K (5%)
randomly selected tweets were used to speed up
the training process, 16K (1%) randomly select-
ed tweets were used as the validation set, and
359 tweets were manually annotated as the test-
ing set (dos Santos and Gatti, 2014). ISEAR is
composed of 7, 666 sentences annotated by 1, 096
participants with different culture backgrounds
(Scherer and Wallbott, 1994). These participants
completed questionnaires about their 34 kinds of
personal information (e.g., age, gender, city, coun-
try, and religion), as well as their experiences and
reactions over seven emotions. For the ISEAR
corpus, we randomly selected 60% of sentences
as the training set, 20% as the validation set, and
the remaining 20% as the testing set.

We use the following models for comparison:
Majority Voting (MV) (Sheng et al., 2008), Maxi-
mum Likelihood Estimator (MLE) (Raykar et al.,
2010), and Generative model of Labels, Abilities
and Difficulties (GLAD) (Whitehill et al., 2009).
The baselines of MV and MLE are implement-
ed by following (Sheng et al., 2008; Raykar et al.,
2010), and GLAD is run by the software that is
available in public at (Whitehill et al., 2009). We
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also implement the multivariate version of GLAD,
called MGLAD as the baseline for the ISEAR
corpus with seven emotions. Although there are
some more recent models on label aggregation
(Oyama et al., 2013) or refinement (Song et al.,
2015; Ustinovskiy et al., 2016), they either require
additional features like users’ reported confidence
scores, or are only suitable to a corpus with one
label for each document. To compare sentiment
and emotion classification performance using the
aggregated labels for training, we further apply
the above noisy label aggregation models to a lin-
ear Support Vector Machine (SVM) with squared
hinge loss (Chang and Lin, 2011). As shown in
the existing studies with refined labels, the lin-
ear SVM performed well on sentiment classifi-
cation of reviews (Pang et al., 2002) and tweets
(Vo and Zhang, 2015).

4.2 Experimental Design

To evaluate the performance of noisy label ag-
gregation models, each instance should be anno-
tated by multiple users. Unlike previous studies
which introduced a parameter to disturb ground
truth labels (Sheng et al., 2008) or employed
online crowdsourcing systems (Whitehill et al.,
2009; Raykar et al., 2010) to generate noisy an-
notations, we design a new simulation approach
by following the process of Profile Injection
Attack in Collaborative Recommender Systems
(Williams and Mobasher, 2006). This is because
the existing methods can not assign multiple labels
to each instance, or are difficult to generate virtual
users and access their information (e.g., age and
gender). In particular, the following steps have
been performed. First, we generate virtual user-
s with different features, making them the neigh-
bors of existing (actual) annotators. For each di-
mension of the actual annotators’ features, we take
the mean value if the attribute is continuous. For
discrete attributes, we randomly select one type
from the existing attribute values. If the dataset
has no user features, we set it as a unit vector.
Second, we generate document annotating vectors
for virtual users. Each annotating vector is com-
posed of three parts: annotating for filler instances
(IF ), which is a set of randomly chosen filler in-
stances drawn from the whole dataset, untagged
instances (I∅), and the target instance (it). The
purpose of setting IF and I∅ is to make the vir-
tual user looks like an ordinary annotator. We

select three simulation types from Profile Injec-
tion Attack (Williams and Mobasher, 2006), i.e.,
random, average, and love/hate. In the random
method, the label for each instance i ∈ IF is
drawn from a normal distribution around the an-
notations across the whole dataset, and the prob-
ability of labeling correctly to i is 1/C. The cor-
responding probabilities are 0.5 and 1 for the av-
erage and love/hate methods, respectively. In all
these methods, the annotation for it is randomly
selected from wrong labels.

We tune the number of topics D and annota-
tor features U by performing a grid search over
all D and U values, with D ∈ {2, 3, 4, ..., 10}
on both datasets, U = 34 on ISEAR, and U ∈
{1, 10, 100, 500, 1000} on STS that contains user
ID only. The value of K is set to the maximum of
D and U . Based on the performance on the vali-
dation set, we set D = 6, U = 1000,K = 1000
for STS, and D = 2, U = 34,K = 34 for ISEAR.
For the sum of |IF | and |it| (i.e., attack size) for
each virtual user, we set it as the mean number
of annotations in actual users. The sum of se-
lecting it in each simulation is called the profile
size, and the percentage of the profile size is de-
noted as o. Following the previous criterion of
choosing the noise rate (Auer and Cesa-Bianchi,
1998), we set o ∈ {0.05, 0.1, 0.2, 0.5}. Ac-
cording to (Ustinovskiy et al., 2016), each target
instance except for those in IF is annotated by
three users. Thus, the number of virtual users is
set to 2oN . We set the parameter values of MV,
MLE, and M/GLAD according to (Sheng et al.,
2008; Raykar et al., 2010; Whitehill et al., 2009),
and apply the grid search method to obtain the op-
timal parameters for SVM.

4.3 Results and Analysis

Firstly, we evaluate the noisy label aggregation
performance of different models by comparing the
proportion of estimated labels which match the ac-
tual categories (i.e., accuracy). The results are
shown in Fig. 3, which indicates that our model
performs the best under various conditions. From
the aspect of simulation methods, the accuracy of
the random one is the lowest and the Love/Hate
one is the highest, which is consistent to the cor-
rectly labeling probability for each method. The
results of the random and average ones over STS
are similar, because C = 2 on STS.

Particularly, our model performs better than
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(a) Random over STS (b) Random over ISEAR

(c) Average over STS (d) Average over ISEAR

(e) Love/Hate over STS (f) Love/Hate over ISEAR

Figure 3: Label aggregation performance.

baselines in aggregating noisy labels, especially
when the noise scale becomes large. For instance,
our model achieves 85% and 57% accuracies on
STS and ISEAR when using the random method
and o = 0.5, which indicates that our model has
higher capability of recognizing adversarial noise
(it). In the random method, we can also observe
that the performance differences are more signifi-
cant on ISEAR than STS. This is because ISEAR
has more elaborate, i.e., 34 kinds of observable
user information, which validates the joint influ-
ence of users and documents on noisy label aggre-
gation. To evaluate the performance differences
statistically, we use the 12 groups of results over
all methods and o values based on the convention-
al significance level (i.e., p value) of 0.05. The
p values of t-tests between our model and MV,
M/GLAD, MLE are 0.0087, 0.0009, 0.0067 over
STS, and 0.0535, 0.1037, 0.0007 over ISEAR,
which indicates that the performance differences
between our model and baselines are statistically
significant on both datasets, except for MV and
MGLAD in the love/hate method over ISEAR.
The reason may be that each virtual user annotates
around seven instances on ISEAR, and only one
label is incorrect for the love/hate method, which
makes the simple MV perform competitively.

Secondly, we compare the classification perfor-

(a) Random over STS (b) Random over ISEAR

(c) Average over STS (d) Average over ISEAR

(e) Love/Hate over STS (f) Love/Hate over ISEAR

Figure 4: Classification performance.

mance of SVM using labels from different noisy
label aggregation models for training. The accura-
cies are shown in Fig. 4, in which dotted lines rep-
resent results on benchmark datasets without con-
ducting the Profile Injection Attack process. Com-
pared to other methods, the performance of SVM
based on the aggregated labels from our model is
almost closer to that of SVM using benchmark
datasets. For the average method and o = 0.2
over STS, we can observe that SVM in conjunc-
tion with our model performs even better than that
on the benchmark dataset. This is because emoti-
cons are used as annotations for STS, which may
introduce errors to the original labels.

5 Conclusions

In this paper, we proposed a network frame-
work for noisy label aggregation by calculating
the matching degree of documents and annotators.
Experiments using a new simulation method of
generating noisy labels validated the effectiveness
of the proposed framework. As our model is linear
in feature transformation, it is flexible to handle
large-scale datasets. In the future, we plan to com-
pare the model performance using different topic
models, improve our model by exploiting the feed-
back of a small proportion of refined labels, and
recruit actual participants to provide noisy labels.
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A ISEAR’s Annotator Features

The ISEAR corpus contains 34 kinds of personal
information of participants. For clarity, the total
set of annotator features is given below.

• Subject’s backgrounds: (1) city, (2) Country,
(3) ID suffix, (4) gender, (5) age, (6) reli-
gion, (7) practising religion, (8) father’s job,
(9) mother’s job, and (10) field of study.

• Questionnaire: (11) when did the situation or
event happen? (12) how long did you feel the
emotion? (13) how intense was this feeling?

• Physiological symptoms of participants: (14)
ergotropic arousal, (15) trophotropic arousal,
and (16) felt temperature.

• Expressive behavior and other features of
participants: (17) movement behavior, (18)
laughing or smiling, (19) crying or sobbing,
(20) nonverbal activity, (21) paralinguistic
activity, (22) verbal activity, (23) moving a-
gainst people or things, aggression, (24) did
you expect the situation or event that caused
your emotion to occur? (25) did you try to
hide or to control your feelings so that no-
body would know how you really felt? (26)
did you find the event itself pleasant or un-
pleasant? (27) would you say that the situ-
ation or event that caused your emotion was
unjust or unfair? (28) did the event help or
hinder you to follow your plans or to achieve
your aims? (29) who do you think was re-
sponsible for the event in the first place? (30)
how did you evaluate your ability to act on or
to cope with the event and its consequences
when you were first confronted with this sit-
uation? (31) if the event was caused by your
own or someone else’s behavior, would this
behavior itself be judged as improper or im-
moral by your acquaintances? (32) how did
this event affect your feelings about yourself,
such as your self-esteem or your self confi-
dence? (33) how did this event change your
relationships with the people involved? and
(34) the “NEUTRO” attribute.

B Noisy Label Aggregation Algorithm

In our method of noisy label aggregation as
shown in Algorithm 1, the cost of calculating S
and A by FcO (line 6) is linear to the number of

Algorithm 1 Noisy Label Aggregation
Input:

V: Observable labels;
F: Features of users;
ω: Words of documents;
δ: Threshold of convergence.

Output:
Aggregated labels.

1: T← TE(ω);
2: Initialize parameter W randomly;
3: Q← 0;
4: repeat
5: lastQ← Q;
6: {S,A} ← FcO(W, T, F);
7: for each i ∈ [1, N ] do
8: for each j ∈ [1,M ] do
9: gij = MDC(Si,Aj);

10: V new
ij = WT (gij , Vij , sigmoid);

11: end for
12: ZiC = LW(Vnew

i );
13: end for
14: Q← E-Step(ZiC);
15: W←M-Step(Q, W);
16: until |Q - lastQ| < δ;
17: return Zi, i.e., the maximum one of ZiC .

instances, i.e., O(NDK), and the total number
of users, i.e., O(MUK), respectively. Before the
EM iteration (lines 7 to 13), it takes O(NM(K +
C)) to weigh all labels V. For each iteration of
EM (lines 14 to 15), the optimization with stochas-
tic gradient descent takes O(NMC+NK+MK)
when each user annotates all documents. Assume
that our algorithm converges after t iterations (t <
10 in our experiments), the overall time complex-
ity is O(NM(K + C)t), which is linear to the
numbers of instances and users.

C Gradient Derivation

Given the estimated value of ZiC , the Q function
can be calculated by Q(W) =

∑
ij ZiC lnV new

ij +
const. Since the vector V new

ij has two possible
values when using sigmoid (i.e., wij and 1 −
wij), the gradient of lnV new

ij on parameter W i,k
T

is (Vij−wij)Ajk, i.e., [wij(1−wij)]/wijAjk and
[−wij(1−wij)]/(1−wij)Ajk, respectively. Then,
the gradient of Q on parameter W i,k

T can be de-
rived as ∂Q/∂W i,k

T =
∑

j ZiC(Vij − wij)Ajk.

Similarly, the gradient of Q on parameter W j,k
F is

given by ∂Q/∂W j,k
F =

∑
i ZiC(Vij − wij)Sik.
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