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Abstract

We present a new visual reasoning lan-
guage dataset, containing 92,244 pairs of
examples of natural statements grounded
in synthetic images with 3,962 unique sen-
tences. We describe a method of crowd-
sourcing linguistically-diverse data, and
present an analysis of our data. The data
demonstrates a broad set of linguistic phe-
nomena, requiring visual and set-theoretic
reasoning. We experiment with various
models, and show the data presents a
strong challenge for future research.

1 Introduction

Understanding complex compositional language
in context is a challenge shared by many tasks.
Visual question answering and robot instruction
systems require reasoning about sets of objects,
quantities, comparisons, and spatial relations; for
example, when instructing home assistance or
assembly-line robots to manipulate objects in clut-
tered environments. This reasoning requires ro-
bust language understanding, and is only partially
addressed by existing datasets. VQA (Antol et al.,
2015), while lexically and visually diverse, in-
cludes relatively short sentences with limited cov-
erage of such phenomena. CLEVR (Johnson et al.,
2016) and SHAPES (Andreas et al., 2016b), in
contrast, display complex compositional structure,
but include only synthetic language.

In this paper, we introduce the Cornell Natural
Language Visual Reasoning (NLVR) corpus and
task. We define the binary prediction task of judg-
ing if a statement is true for an image or not, and
introduce a corpus of annotated pairs of natural
language statements and synthetic images.

Collecting this kind of language presents two
challenges. First, we must design environments to

There are two towers with the same height but their base

is not the same in color.

There is a box with 2 triangles of same color nearly

touching each other.

Figure 1: Example sentences and images from our cor-
pus. Each image includes three boxes with different ob-
ject types. The truth value of the top sentence is true,
while the bottom is false.

support such descriptions. We use simple visual
environments displaying objects with complex vi-
sual relations between them. Figure 1 shows two
generated images. The second challenge is elic-
iting complex descriptions displaying a range of
syntactic and semantic phenomena. We use a two-
stage crowdsourcing process. In the first stage, we
present sets of images and ask workers to write de-
scriptive statements that distinguish them. Using
synthetic images with abstract shapes allows us
to control the potential distinctions between them;
for example, by discouraging simple statements
about object existence. In the second stage, we
ask workers to label the truth value for the sen-
tences and images generated in the first stage.

Our data includes 92,244 sentence-image pairs
with 3,962 unique sentences. We include both
images and the structured representation used to
generate them to support research using both raw
visual information and structured data. Figure 1
shows two examples. To assess the difficulty of
NLVR, we experiment with multiple baselines.
The best model using images achieves an accu-
racy of 66.12, demonstrating remaining challenges
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in the data. We also analyze the language in
our data for presence of certain linguistic phe-
nomena, and compare this analysis with related
datasets. The data and leaderboard are available
at http://lic.nlp.cornell.edu/nlvr.

2 Related Work and Datasets

Several datasets have been created to study vi-
sual reasoning and language. VQA (Antol et al.,
2015; Zitnick and Parikh, 2013) includes crowd-
sourced questions and answers for photographs
and abstract scenes, and has been studied exten-
sively (e.g., Lu et al., 2016; Xu and Saenko, 2016;
Zhou et al., 2015; Chen et al., 2015a; Andreas
et al., 2016b,a; Ray et al., 2016). In contrast to
VQA, we use synthetic images and emphasize rep-
resenting a broad range of language phenomena.
Our motivation is similar to that of SHAPES (An-
dreas et al., 2016b) and CLEVR (Johnson et al.,
2016). Both datasets also use synthetic images and
emphasize representing diverse spatial language.
However, unlike our approach, they include only
automatically generated language.

Visual reasoning has also been addressed in in-
structional language corpora (e.g., MacMahon
et al., 2006; Chen and Mooney, 2011; Bisk et al.,
2016), where executable instructions are grounded
in manipulable environments. The language we
observe is similar to the type of language studied
for understanding and generation of referential ex-
pressions (Mitchell et al., 2010; Matuszek et al.,
2012; FitzGerald et al., 2013).

Our task is related to caption generation,
which has been studied extensively (e.g., Peder-
soli et al., 2016; Carrara et al., 2016; Chen et al.,
2016) with MSCOCO (Chen et al., 2015b) and
Flickr30K (Young et al., 2014; Plummer et al.,
2015). In contrast to caption generation, our task
does not require approximate metrics like BLEU.

Several existing datasets focus on natural lan-
guage querying of structured representations, in-
cluding GeoQuery (Zelle, 1995) and WikiTa-
bles (Pasupat and Liang, 2015). Our work is com-
plementary to these resources. While our corpus
was collected using images, we also provide struc-
tured representations. When used with these rep-
resentations, our corpus is similar to WikiTables,
where questions are paired with small web tables.
Instead of web tables, we use object sets and focus
on visual language.

3 Task

Statements in our data are grounded in synthetic
images rendered from structured representations.
Given an example, the task is to determine whether
a statement is true or false for the image or struc-
tured representation. While we describe the im-
age, the structured representation is equivalent.
We provide examples of the structured represen-
tation in the supplementary material. Images are
divided into three boxes. Figure 1 shows two
images. Each box contains 1-8 objects. Each
object has four properties: position (x/y coordi-
nates), color (black, blue, yellow), shape (triangle,
square, circle), and size (small, medium, large).
Objects within a box cannot overlap and must be
contained entirely in the box. We distinguish be-
tween images containing scattered objects and im-
ages containing only squares arranged in towers
up to four blocks tall. The top image in Figure 1 is
a tower example; the bottom is a scatter example.

This design encourages compositional language
with complex visual reasoning. We divide the im-
age into boxes to encourage set theoretic reasoning
within and between boxes. We also use a relatively
limited number of values for each property. While
a large number of properties provides a more di-
verse image, it is likely to result in descriptions
that refer to property differences. We find that the
limited number of properties elicits descriptions
with rich compositional structure.

4 Data Collection

We generate images following the structure de-
scribed in Section 3, and collect grounded natu-
ral language descriptions. Data is collected in two
phases: sentence writing and validation. During
sentence writing, workers are asked to write con-
trasting descriptions about a set of images. To val-
idate sentences, the description is paired with each
of the images. We execute the collection process
four times to collect training, development, and
two test sets (Test-P and Test-U). We retain one
test set as unreleased (Test-U).
Generating Images We generate images by ren-
dering a randomly sampled structured representa-
tion. The number of objects in each box and their
properties are sampled uniformly. We generate an
equal number of scatter and tower images. To gen-
erate the sets of images presented to annotators,
we generate two images independently, a third im-
age by using the set of objects in the first im-
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(A)

(B)

(C)

(D)

Write one sentence. This sentence must meet all of the
following requirements:

• It describes A.
• It describes B.
• It does not describe C.
• It does not describe D.
• It does not mention the images explicitly (e.g. “In im-

age A, ...”).
• It does not mention the order of the light grey squares

(e.g. “In the rightmost square...”)
There is no one correct sentence for this image. There
may be multiple sentences which satisfy the above re-
quirements. If you can think of more than one sentence,
submit only one.

Figure 2: Sentence writing prompt. The bottom sen-
tence in Figure 1 was generated from this prompt.

age and randomly re-shuffling them between the
boxes, and a fourth image by re-shuffling the ob-
jects in the second image. For images with towers,
we constrain the re-shuffling to form towers.

Phase 1 – Sentence Writing Each writing task
presents an annotator with four images. Figure 2
shows the sentence writing prompt, including the
set of constraints, which is shown for all writing
tasks. The constraints force the worker to contrast
two pairs by referring to similarities and differ-
ences between the images, but not to refer to the
position of the image in the prompt, or of each
box in each image. These constraints are placed
to elicit more set-theoretic language, and to allow
us to divide the result of each task into four exam-
ples, pairing the annotator’s sentence with each of
the four images it was presented with.

Phase 2 – Validation In the second phase, we
pair each sentence with the four images used to
generate it. We re-label all sentence-image pairs
as true or false, correcting for any violations of
the constraints in the first phase. We do not use
the original position of the image as any part of
the final label to neutralize any ordering effect.
In practice, 8.2% of examples had a different la-
bel than inferred from their original position in

Unique sentences Examples
Train 3,163 74,460
Dev 267 5,940
Test-P 266 5,934
Test-U 266 5,910
Total 3,962 92,244

Table 1: Data statistics.

the first phase. During validation, boxes are ran-
domly permuted to ensure the last constraint was
followed. We allow workers to annotate a sentence
as nonsensical with regard to the image, and in-
struct annotators to ignore grammar errors.
Post-processing We prune pairs when their ma-
jority class is nonsensical. When collecting mul-
tiple annotations for a pair, we prune pairs if the
gap between the classes is less than two votes.

5 Data Statistics and Analysis

We use the crowdsourcing platform Upwork,1 and
select ten annotators using a small set of exam-
ple questions. We collect 3,974 task instances and
28,723 total validation judgments at a total cost
of $5,526. From these 3,974 task instances we
extract 15,896 sentence-image pairs. We prune
522 pairs in post-processing. For the training set
we collect a single validation annotation for each
sentence-image pair; for the rest of the data we
collect five annotations each. Finally, we gener-
ate six sentence-image pairs from each sample by
permuting the boxes. The validation step ensures
this permutation does not change the label. Table 1
shows the number of sentences and pairs, includ-
ing permutations, for each split.

We merge the development and test splits to cal-
culate agreement statistics. We calculate Krippen-
dorf’s α and Fleiss’ κ (Cocos et al., 2015) on both
the full and pruned datasets. To calculate Fleiss’
κ, we randomly permute the five annotations to
be assigned to five “raters” and compute average
kappa from 100 iterations. Before pruning, we ob-
serve α = 0.768 and κ = 0.709, indicating sub-
stantial agreement (Landis and Koch, 1977). Prun-
ing improves agreement to α = 0.831 (indicating
almost-perfect agreement) and κ = 0.808.

We analyze 200 development sentences to iden-
tify the distribution of semantic phenomena and
syntactic ambiguity (Table 2). For comparison,
we apply this analysis to 200 abstract-image and
200 real-image sentences from VQA (Antol et al.,
2015). The difference in the distribution illustrates
the complexity of our data. The mean sentence

1http://upwork.com
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VQA VQA Our NMN Example
(abs) (real) Data Correct

Semantics
Cardinality (hard) 12 11.5 66 63.8 There are exactly four objects not touching any edge
Cardinality (soft) 0 1 16 63.4 There is a box with at least one square and at least three

triangles.
Existential 4.5 11.5 88 64.2 There is a tower with yellow base.
Universal 1 1 7.5 67.8 There is a black item in every box.
Coordination 3 5 17 58.5 There are 2 blue circles and 1 blue triangle
Coreference 8.5 6.5 3 55.3 There is a blue triangle touching the wall with its side.
Spatial Relations 31 42.5 66 61.6 there is one tower with a yellow block above a yellow block
Comparative 1.5 1 3 73.6 There is a box with multiple items and only one item has a

different color.
Presupposition2 79 80 19.5 54.0 There is a box with seven items and the three black items

are the same in shape.
Negation 0 1 9.5 51.0 there is exactly one black triangle not touching the edge
Syntax
Coordination 0 0 4.5 53.4 There is a box with at least one square and at least three

triangles.
PP Attachment 7 3 23 70.9 There is a black block on a black block as the base of a

tower with three blocks.

Table 2: Qualitative and empirical analysis of our data and VQA (Antol et al., 2015). We analyze 200 sentences
for each dataset. The data is categorized to semantic and syntactic categories. We use the terms hard and soft
cardinality to differentiate between language using exact numerical values and ranges. For each dataset, we show
the percentage of the samples analyzed that demonstrate the phenomena. We analyze abstract (abs) and real images
from VQA separately. For our data, we also include the accuracy using the NMN system (Section 6) for the subset
of images we tagged with this category.
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Figure 3: Distribution of sentence lengths.

length in our data is 11.22 tokens and the vocabu-
lary size is 262. In Figure 3, we compare sentence
length distribution to VQA, MSCOCO (Chen
et al., 2015b), and CLEVR (Johnson et al., 2016).
Our sentences are generally longer than VQA and
more similar in length to MSCOCO. However, our
task is more similar to VQA, where context is used
to understand language, rather than to generate.

6 Methods

We evaluate multiple methods on the rendered
images and structured representations. Hyper-
parameters and initialization details are described
in the supplementary material.

2We say a statement or question uses presupposition when
it assumes the truth value of some proposition in order for its
entire truth value to be defined. In this example, an image
which does not have three black items will have no defined
truth value for this statement.

6.1 Majority Class and Single Modality

We use image- and text-only models to measure
how well biases in our data can be used to solve
the task. If the model is able to do well on the
text- or image-only baselines, this implies our data
does not require the two modalities. Antol et al.
(2015) performed a similar analysis of VQA with
the questions only to gauge how and if background
knowledge of the domain could aid performance.

Majority Assign the most common label (true)
to all examples.

Text Only Encode the sentence with a recurrent
neural network (RNN; Elman, 1990) with long
short-term memory units (LSTM; Hochreiter and
Schmidhuber, 1997) and a binary softmax com-
puted from the final output.

Image Only Encode the image with a convo-
lutional neural network (CNN) with three layers.
The CNN output is used by a three-layer percep-
tron with a softmax on the final layer.3

6.2 Structured Representation

We use the structured representations described in
Sections 3 and 4.

3We also experimented using the ImageNet-trained Incep-
tion v4 model (Szegedy et al., 2017), but found it did not im-
prove performance, possibly due to the difference between
our images and ImageNet.
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Train Dev Test-P Test-U
Majority 56.37 55.31 56.16 55.43
Text only 58.36 ±0.6 56.61 ±0.5 57.18 ±0.6 56.21 ±0.4

Image Only 56.79 ±1.3 55.35 ±0.1 56.05 ±0.3 55.33 ±0.3

Structured representation
MaxEnt 99.99 68.04 67.68 67.82
MLP 96.15 ±1.3 67.50 ±0.5 66.28 ±0.4 65.32 ±0.4

Image features+RNN 59.71 ±1.0 57.72 ±1.4 57.62 ±1.3 56.29 ±0.9

Raw image CNN+RNN 58.85 ±0.2 56.59 ±0.3 58.01 ±0.3 56.30 ±0.6

NMN 98.37±0.6 63.06 ±0.1 66.12 ±0.4 61.99 ±0.8

Table 3: Mean accuracy and standard deviation results. We report accuracy for the train, development, and both
test sets. Three systems use the structured representation. Two systems (and Image Only) use the raw image.

MaxEnt Train a MaxEnt classifier. We use
the text and structured representation to compute
property- and count-based features. Property-
based features trigger when some property (e.g.,
an object is touching a wall) is true in the structure.
We create features by crossing triggered proper-
ties with each n-grams from the sentence, up to
n = 6. Count-based features trigger when a count
we observe in the image (e.g., the number of black
triangles) is present in the sentence. We generate
features combining the type of item counted (e.g.,
black triangles) with the n-grams surrounding the
count in the sentence, up to n = 6. We provide
details in the supplementary material.
MLP Train a single-layer perceptron with a soft-
max layer. The input to the perceptron is the mean
of the feature embeddings. We use the same fea-
ture set as the MaxEnt model.
Image Features+RNN Compute features from
the structure representation only, and encode the
text with an LSTM RNN. The two representations
are concatenated, and used as input to a two-layer
perceptron and a softmax layer.

6.3 Image Representation
CNN+RNN Concatenate the CNN and RNN
representations (Section 6.1) and apply a multi-
layer perceptron with a softmax.
NMN The neural module networks approach of
Andreas et al. (2016b). We experiment with the
default maximum leaves of two, and with allowing
for more expressive representations with a max-
imum leaves of five. We observe higher devel-
opment accuracy with the trees using maximum
leaves of five (63.06% vs. 62.4% with the default
of two), which we use in our experiments.

7 Results

We run each experiment ten times and report mean
accuracy as well as standard deviation for ran-
domly initialized models. Table 3 shows our re-

sults. NMN is the best performing model using
images. Table 2 shows the NMN accuracy for
each category in our qualitative analysis sample.
While the number of sentences in some categories
is relatively small, we observe a higher number
of failures in sentences that include negations and
coordinations. For models using the structured
representation, the MaxEnt model provides the
best performance. When ablating count-based fea-
tures from the MaxEnt model, development accu-
racy decreases from 68.04 to 57.7. This indicates
counting is an important aspect of the problem.

8 Discussion

We introduce the Cornell Natural Language Vi-
sual Reasoning dataset and task. The data in-
cludes complex compositional language grounded
in images and structured representations. The
task requires addressing challenges in visual and
set-theoretic reasoning. We experiment with
multiple systems and, in general, observe rel-
atively low performance. Together with our
qualitative analysis, this exemplifies the com-
plexity of the data. We release our annotated
training and development sets, and create two
test sets. The public test set will be released
along with its annotation. Computing results on
the unreleased test data will require submitting
trained models. Procedures for submitting mod-
els and the task leader board are available at
http://lic.nlp.cornell.edu/nlvr.
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