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Abstract

In this paper, we define a measure of de-
pendency between two random variables,
based on the Jensen-Shannon (JS) diver-
gence between their joint distribution and
the product of their marginal distributions.
Then, we show that word2vec’s skip-gram
with negative sampling embedding algo-
rithm finds the optimal low-dimensional
approximation of this JS dependency mea-
sure between the words and their contexts.
The gap between the optimal score and the
low-dimensional approximation is demon-
strated on a standard text corpus.

1 Introduction

Continuous word representations, derived from un-
labeled text, have proven useful in many NLP tasks.
Such word representations (or embeddings) asso-
ciate a low-dimensional, real-valued vector with
each word, typically induced via neural language
models or matrix factorization.

Substantial benefit arises when embeddings can
be efficiently trained on large volumes of data.
Hence the recent considerable interest in the con-
tinuous bag-of-words (CBOW) and skip-gram with
negative sampling (SGNS) models, described in
(Mikolov et al., 2013), as implemented in the open-
source toolkit word2vec. These models are based
on a relatively simple log-linear method and avoid
hidden layers typical to neural networks. Conse-
quently, they can be trained to produce high-quality
word embeddings on large corpora like the entirety
of English Wikipedia in several hours, compared to
days or even weeks in the case of other continuous
models. Recent studies obtained state-of-the-art
results by using skip-gram embeddings on a va-
riety of natural language processing tasks, such
as named entity extraction (Passos et al., 2014)

and dependency parsing (Bansal et al., 2014). In
recent years, there were several attempts to mathe-
matically interpret word embedding models (Arora
et al., 2016; Pennington et al., 2014; Stratos et al.,
2015). Our study pursues this established line of
work, attempting to explain the objective function
of the SGNS word embedding algorithm.

In the SGNS model, the energy function takes
the form of a dot product between the vectors of an
observed word and an observed context. The objec-
tive function is a binary logistic regression classifier
that treats a word and its observed context as a pos-
itive example, and a word and a randomly sampled
context as a negative example. Levy and Goldberg
(2014) offered a motivation for this function by
showing that it obtains its global maximum value
at the word-context pointwise mutual information
(PMI) matrix. In this study, we take their analy-
sis one step further and provide an information-
theoretical interpretation of the SGNS objective
function. In Section 2, we define a new measure
of mutual information between random variables
based the Jensen-Shennon divergence (Lin, 1991)
instead of the KL divergence. In Section 3, we
show that the value of the SGNS objective com-
puted at the PMI matrix is this information measure.
We then derive an explicit expression for the infor-
mation loss caused by the low-dimensional embed-
ding learned by the SGNS algorithm. Finally, in
Section 4, we illustrate this by computing the infor-
mation loss caused by actual SGNS embeddings
learned on a standard text corpus.

2 A Dependency Measure based on
Jensen-Shannon

In this section, we define a dependency measure be-
tween two random variables, which is based on the
Jensen-Shannon divergence. Later, in Section 3, we
show how it relates to the SGNS objective function.
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There are several standard methods of measuring
the distance between two discrete probability dis-
tributions, defined on a given finite set A. The
Kullback-Leibler (KL) divergence of a distribu-
tion p from a distribution q is defined as follows:
KL(p||q) =∑i∈A pi log

pi
qi

. The mutual informa-
tion between two jointly distributed random vari-
ables X and Y is defined as the KL divergence
of the joint distribution p(x, y) from the product
p(x)p(y) of the marginal distributions of X and Y,
i.e. I(X;Y ) = KL(p(x, y)||p(x)p(y)).

The Jensen-Shannon (JS) divergence (Lin, 1991)
between distributions p and q is:

JSα(p, q) =αKL(p||r) + (1−α)KL(q||r) (1)

= H(r)− αH(p)− (1−α)H(q)

such that 0 < α < 1, r = αp+ (1− α)q and H is
the entropy function (i.e. H(p) = −∑i pi log pi).
Unlike KL divergence, JS divergence is bounded
from above and 0 ≤ JSα(p, q) ≤ 1.

We next propose a new measure for mutual-
information using the JS-divergence between
p(x, y) and p(x)p(y) instead of the KL-divergence.
We define the Jensen-Shannon Mutual information
(JSMI) as follows:

JSMIα(X,Y ) = JSα(p(x, y), p(x)p(y)). (2)

It can be easily verified that X and Y are indepen-
dent if and only if JSMIα(X,Y ) = 0.

We next derive an alternative definition of the
JSMI dependency measure. Assume we choose be-
tween the two distributions, p(x, y) and the product
of marginal distributions p(x)p(y), according to a
binary random variableZ, such that p(Z = 1) = α.
We first sample a binary value for Z and next, we
sample a r.v. W as follows:

p(W =(x, y)|Z)=
{
p(x)p(y) if Z=0
p(x, y) if Z=1.

(3)
The divergence measure JSMIα(X,Y ) can be al-
ternatively defined in terms of mutual information
between W and Z. The mutual-information be-
tween W and Z is:

I(W;Z) = H(W )−
∑

i=0,1

p(Z= i)H(W |Z= i)

= H(αp(x, y) + (1−α)p(x)p(y))

−αH(p(x, y))− (1−α)H(p(x)p(y)).

Eq. (1) thus implies that:

JSMIα(X,Y ) = I(W ;Z). (4)

Applying Bayes rule we obtain:

p(Z=1|W =(x, y)) (5)

=
αp(x, y)

αp(x, y) + (1−α)p(x)p(y)

=
1

1 + exp(− log( αp(x,y)
(1−α)p(x)p(y)))

= σ(pmix,y)

such that σ(u) = 1
1+exp(−u) is the sigmoid func-

tion and

pmix,y = log
p(x, y)

p(x)p(y)
+ log

α

1−α (6)

is a shifted version of the PMI function. Equa-
tions (4) and (5) imply that:

JSMIα(X,Y ) = H(Z)−H(Z|W ) (7)

= h(α)+α
∑

x,y

p(x, y) log σ(pmix,y)

+(1−α)
∑

x,y

p(x)p(y) log σ(−pmix,y)

such that h(α) = −α log(α) − (1−α) log(1−α)
is the binary entropy function.

3 The Skip-Gram Embedding Algorithm

The SGNS embedding algorithm (Mikolov et al.,
2013) represents each word x and each context y
as d-dimensional vectors ~x and ~y, with the purpose
that words that are “similar” to each other will have
similar vector representations. We can represent
a given d-dimensional embedding by a matrix m,
such that m(x, y) = ~x · ~y. The rank of the embed-
ding matrix m is (at most) d.

Let p(x, y) be the normalized number of co-
occurrences of word x and context-word y in a
given corpus and let p(x) and p(y) be the corre-
sponding unigram distributions. Consider a binary
classifier that treats a word and its observed con-
text as a positive example, and a word and a ran-
domly sampled context as a negative example. The
classification is made based on the embedding in
such a way that the probability that (x, y) is a pos-
itive example is σ(~x · ~y). The objective function
ideally maximized by the SGNS word embedding
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algorithm is the expectation of the log-likelihood
function of the embedding:

S(m) = h(
1

k+1
) +

1

k+1

∑

x,y

p(x, y) log σ(~x · ~y)

+
k

k+1

∑

x,y

p(x)p(y) log σ(−~x · ~y).

(8)
Note that the term h( 1

k+1), which does not appear
in the original SGNS objective function (Mikolov
et al., 2013), is a constant number that was added
here to simplify the following presentation.

The sparsity of p(x, y) (which is obtained as
normalized counts from a given learning corpus)
makes it feasible to compute the second term of (8).
The number of summed-over elements in the third
term of (8), however, is quadratic in the size of the
vocabulary, making it hard to compute. Therefore,
in practice, we can approximate the expectation by
sampling of ‘negative’ examples. The actual SGNS
score, then, is:

S(m) ≈ h( 1

k+1
) +

1

k+1
· 1
n

n∑

t=1

(log σ(~xt · ~yt)

+

k∑

i=1

log σ(−~xt · ~yti)).

(9)
such that t goes over all the word-context pairs
in a given corpus. The negative examples yti are
created for each pair (xt, yt) by drawing k random
contexts from the context-word distribution p(y).

As pointed out in (Levy et al., 2015), k has two
distinct functions in the SGNS objective function.
First, it is used to better estimate the distribution of
negative examples. Second, it is used as a weight
on the probability of observing a positive example
versus a negative example; a higher k means that
negative examples are more probable.

We can compute the SGNS score function S(m)
for every real-valued matrix m = (mx,y). Levy
and Goldberg (2014) showed that the function
achieves its global maximal value when for each
word-pair (x, y) the inner product of the embed-
ding vectors ~x · ~y is equal to pmi(x, y). In other
words they showed that S(m) ≤ S(pmi) for every
matrix m. We next show that the value of the func-
tion S(m) at its maximum point, the PMI matrix,
has a concrete interpretation, namely it is exactly
the Jensen-Shannon Mutual Information (JSMI)
between words and their contexts.

Theorem 1: The value of the SGNS score with k
negative samples (8) at the PMI matrix satisfies:

S(pmi) = JSMIα(X,Y )

such that α = 1
k+1 .

Proof: It can be easily verified that by substituting
α = 1

k+1 in the definition of JSMI (Eq. (7)), we ex-
actly obtain the SGNS score (8) at the PMI matrix.
2

Levy and Goldberg (2014) showed that SGNS’s
objective achieves its maximal value at the PMI ma-
trix. However, this result reveals nothing about the
more interesting lower dimensional case, where the
PMI matrix factorization is forced to compress the
joint distribution and thereby learn a meaningful
embedding. We next derive an explicit description
of the approximation criterion that quantifies the
gap between S(m) and S(pmi).

Given the word co-occurrences joint distribution
p(x, y), we obtained in Eq. (5) a conditional distri-
bution on the alphabet of (Z,W ) as follows:

p(Z=1|W =(x, y)) = σ(pmix,y).

In a similar way, given any matrixm, we can define
a conditional distribution pm on the alphabet of
(Z,W ) as follows:

pm(Z=1|W =(x, y)) = σ(mx,y).

Note that in the special case where m is the PMI
matrix, ppmi(z|w) coincides with the original
p(z|w) that was defined in Eq. (5).
Theorem 2: The difference between the SGNS
score at the PMI matrix and the SGNS score at a
given matrix m can be written as:

S(pmi)− S(m) = KL(ppmi(Z|W )||pm(Z|W ))
(10)

Proof:

S(pmi)−S(m) =
∑

x,y

(αp(x, y) log
σ(pmix,y)
σ(mx,y)

+(1−α)p(x)p(y) log
σ(−pmix,y)
σ(−mx,y)

)

=
∑

x,y

(αp(x, y) log
ppmi(Z=1|x, y)
pm(Z=1|x, y)

+(1−α)p(x)p(y) log
ppmi(Z=0|x, y)
pm(Z=0|x, y) )
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=
∑

w,z

p(W =w,Z=z) log
ppmi(Z=z|W =w)

pm(Z=z|W =w)

= KL(ppmi(Z|W )||pm(Z|W )).2

The KL divergence between two distributions is
always non-negative and is zero only if the two
distributions are the same. Therefore, we red-
erive the results of (Levy and Goldberg, 2014)
that S(pmi) = maxm S(m). Theorem 2 can be
viewed as an instance of the well-known connec-
tion between maximizing log-likelihood and mini-
mizing KL divergence between the estimated and
the true data-generating distribution. In this case,
the true distribution is the pmi-based classifier
ppmi(Z|W ).

Combining theorems 1 and 2 we obtain that
S(m) ≤ JSMIα(X,Y ) for every low-dimensional
embedding matrix. The difference JSMIα(X,Y )−
S(m) is the information loss caused by the low-
dimensional embedding. We can view it as a
Jensen-Shannon variant of the information bottle-
neck principle (Tishby et al., 1999; Globerson et al.,
2007) that is defined in terms of the KL divergence.
The optimal d-dimensional embedding, is the best
d-dimensional approximation of the JSMI depen-
dency measure in the sense that it minimizes the
information loss. The JSMI is the upper bound
that any embedding can obtain. To illustrate that,
in the next section we compute the JSMI between
words and their contexts based on a standard text
corpus and show the information gap between the
JSMI and the actual SGNS score as a function of
the embedding dimension d.

From Theorem 2 we can also derive an explicit
information-theoretic interpretation of the score
function S(m) (7) as the difference between two
KL-divergence terms:

S(m) = S(pmi)− (S(pmi)− S(m)) =

I(Z;W )− (S(pmi)− S(m)) =

KL(p(Z|W )||p(Z))− KL(p(Z|W )||pm(Z|W ))

The word embedding problem can be also
viewed as a factorization of the PMI matrix. Previ-
ous works suggested other criteria for matrix fac-
torization such as least-squares (Eckart and Young,
1936) and KL-divergence between the original ma-
trix and the low-rank matrix approximation (Lee
and Seung, 2000). We have shown that the SGNS
algorithm factorizes the PMI matrix based on the
JSMI-based criterion stated in Eq. (10).

Figure 1: SGNS objective function score of trained
embeddings models, compared to the optimal PMI-
based score. dim and iter denote the dimensionality
and training iterations used for each model.

4 Experiments

In this section we use word2vec to train real skip-
gram with negative sampling (SGNS) embedding
models. By measuring the value of their objec-
tive function and comparing it against the optimal
one using exact PMI values, we demonstrate how
a well-trained model minimizes the difference in
Eq. (10). We note that this is an intrinsic measure
that does not necessarily reflect the usefulness of
the learned embeddings for other tasks.

We used the Penn Tree Bank (PTB), a popu-
lar small-scale corpus, for our experiments. A
version of this dataset is available from Tomas
Mikolov.1 It consists of 929K training words with
a 10K word vocabulary, which we used to train our
models. To learn the SGNS word embeddings, we
used word2vec’s default parameter values: window-
size = 5, min-count = 5, and number of negative
samples k = 5. We varied the dimensionality of
the embeddings and the number of training itera-
tions performed. Once the models were trained, we
measured their score (9) on the training corpus.

Based on the same learning corpus, we computed
S(pmi) = JSMIα(X,Y ) for α = 1

k+1 = 1/6.
Note that p(x, y) = 0 implies that pmix,y = −∞
and therefore log σ(−pmix,y) = 0. Hence, as in
the second term, to compute the third term of S(m)
(8) for the case of m = pmi, we can sum only

1http://www.fit.vutbr.cz/~imikolov/
rnnlm/simple-examples.tgz
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over the positive pairs (x, y) that actually appear
in the corpus.2 In other words, for the special
case m = pmi, it is feasible to compute the ex-
act score (8) and not just its approximation (9) that
is based on negative sampling. Figure 1 illustrates
the optimal PMI-based score, compared with the
scores obtained by different models with varied
embedding dimensionality and number of training
iterations. As can be seen, the embeddings score
gets close to the optimal value using higher dimen-
sionality and more training iterations, but doesn’t
surpass it.

5 Conclusion

In this study, we developed a new correlation mea-
sure between random variables, denoted JSMI.
This measure is based on the JS divergence and dif-
fers from the standard mutual information measure
that is based on the KL divergence. We showed that
the optimization of skip-gram embeddings with
negative sampling finds the best low-dimensional
approximation of the JSMI measure. Thus, we pro-
vided an information theory framework that hope-
fully contributes to a better understanding of this
embedding algorithm. Furthermore, although we
focused here on the case of word-context joint dis-
tributions, the connection we haven shown between
the PMI matrix and the JSMI function is valid for
every joint distribution of two random variables.
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