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Abstract

Word embeddings provide point represen-
tations of words containing useful seman-
tic information. We introduce multimodal
word distributions formed from Gaussian
mixtures, for multiple word meanings, en-
tailment, and rich uncertainty informa-
tion. To learn these distributions, we pro-
pose an energy-based max-margin objec-
tive. We show that the resulting approach
captures uniquely expressive semantic in-
formation, and outperforms alternatives,
such as word2vec skip-grams, and Gaus-
sian embeddings, on benchmark datasets
such as word similarity and entailment.

1 Introduction

To model language, we must represent words.
We can imagine representing every word with a
binary one-hot vector corresponding to a dictio-
nary position. But such a representation contains
no valuable semantic information: distances be-
tween word vectors represent only differences in
alphabetic ordering. Modern approaches, by con-
trast, learn to map words with similar meanings
to nearby points in a vector space (Mikolov et al.,
2013a), from large datasets such as Wikipedia.
These learned word embeddings have become
ubiquitous in predictive tasks.

Vilnis and McCallum (2014) recently proposed
an alternative view, where words are represented
by a whole probability distribution instead of a de-
terministic point vector. Specifically, they model
each word by a Gaussian distribution, and learn
its mean and covariance matrix from data. This
approach generalizes any deterministic point em-
bedding, which can be fully captured by the mean
vector of the Gaussian distribution. Moreover, the
full distribution provides much richer information

than point estimates for characterizing words, rep-
resenting probability mass and uncertainty across
a set of semantics.

However, since a Gaussian distribution can have
only one mode, the learned uncertainty in this rep-
resentation can be overly diffuse for words with
multiple distinct meanings (polysemies), in or-
der for the model to assign some density to any
plausible semantics (Vilnis and McCallum, 2014).
Moreover, the mean of the Gaussian can be pulled
in many opposing directions, leading to a biased
distribution that centers its mass mostly around
one meaning while leaving the others not well rep-
resented.

In this paper, we propose to represent each
word with an expressive multimodal distribution,
for multiple distinct meanings, entailment, heavy
tailed uncertainty, and enhanced interpretability.
For example, one mode of the word ‘bank’ could
overlap with distributions for words such as ‘fi-
nance’ and ‘money’, and another mode could
overlap with the distributions for ‘river’ and
‘creek’. It is our contention that such flexibility
is critical for both qualitatively learning about the
meanings of words, and for optimal performance
on many predictive tasks.

In particular, we model each word with a mix-
ture of Gaussians (Section 3.1). We learn all
the parameters of this mixture model using a
maximum margin energy-based ranking objective
(Joachims, 2002; Vilnis and McCallum, 2014)
(Section 3.3), where the energy function describes
the affinity between a pair of words. For analytic
tractability with Gaussian mixtures, we use the in-
ner product between probability distributions in a
Hilbert space, known as the expected likelihood
kernel (Jebara et al., 2004), as our energy func-
tion (Section 3.4). Additionally, we propose trans-
formations for numerical stability and initializa-
tion A.2, resulting in a robust, straightforward, and
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scalable learning procedure, capable of training on
a corpus with billions of words in days. We show
that the model is able to automatically discover
multiple meanings for words (Section 4.3), and
significantly outperform other alternative meth-
ods across several tasks such as word similarity
and entailment (Section 4.4, 4.5, 4.7). We have
made code available at http://github.com/
benathi/word2gm, where we implement our
model in Tensorflow (Abadi et. al, 2015).

2 Related Work

In the past decade, there has been an explo-
sion of interest in word vector representations.
word2vec, arguably the most popular word em-
bedding, uses continuous bag of words and skip-
gram models, in conjunction with negative sam-
pling for efficient conditional probability estima-
tion (Mikolov et al., 2013a,b). Other popular ap-
proaches use feedforward (Bengio et al., 2003)
and recurrent neural network language models
(Mikolov et al., 2010, 2011b; Collobert and We-
ston, 2008) to predict missing words in sentences,
producing hidden layers that can act as word em-
beddings that encode semantic information. They
employ conditional probability estimation tech-
niques, including hierarchical softmax (Mikolov
et al., 2011a; Mnih and Hinton, 2008; Morin and
Bengio, 2005) and noise contrastive estimation
(Gutmann and Hyvärinen, 2012).

A different approach to learning word em-
beddings is through factorization of word co-
occurrence matrices such as GloVe embeddings
(Pennington et al., 2014). The matrix factoriza-
tion approach has been shown to have an implicit
connection with skip-gram and negative sampling
Levy and Goldberg (2014). Bayesian matrix fac-
torization where row and columns are modeled as
Gaussians has been explored in Salakhutdinov and
Mnih (2008) and provides a different probabilistic
perspective of word embeddings.

In exciting recent work, Vilnis and McCallum
(2014) propose a Gaussian distribution to model
each word. Their approach is significantly more
expressive than typical point embeddings, with the
ability to represent concepts such as entailment,
by having the distribution for one word (e.g. ‘mu-
sic’) encompass the distributions for sets of related
words (‘jazz’ and ‘pop’). However, with a uni-
modal distribution, their approach cannot capture
multiple distinct meanings, much like most deter-

ministic approaches.
Recent work has also proposed deterministic

embeddings that can capture polysemies, for ex-
ample through a cluster centroid of context vec-
tors (Huang et al., 2012), or an adapted skip-gram
model with an EM algorithm to learn multiple la-
tent representations per word (Tian et al., 2014).
Neelakantan et al. (2014) also extends skip-gram
with multiple prototype embeddings where the
number of senses per word is determined by a
non-parametric approach. Liu et al. (2015) learns
topical embeddings based on latent topic models
where each word is associated with multiple top-
ics. Another related work by Nalisnick and Ravi
(2015) models embeddings in infinite-dimensional
space where each embedding can gradually repre-
sent incremental word sense if complex meanings
are observed.

Probabilistic word embeddings have only re-
cently begun to be explored, and have so far shown
great promise. In this paper, we propose, to the
best of our knowledge, the first probabilistic word
embedding that can capture multiple meanings.
We use a Gaussian mixture model which allows
for a highly expressive distributions over words.
At the same time, we retain scalability and analytic
tractability with an expected likelihood kernel en-
ergy function for training. The model and train-
ing procedure harmonize to learn descriptive rep-
resentations of words, with superior performance
on several benchmarks.

3 Methodology

In this section, we introduce our Gaussian mix-
ture (GM) model for word representations, and
present a training method to learn the parameters
of the Gaussian mixture. This method uses an
energy-based maximum margin objective, where
we wish to maximize the similarity of distribu-
tions of nearby words in sentences. We propose an
energy function that compliments the GM model
by retaining analytic tractability. We also pro-
vide critical practical details for numerical stabil-
ity and initialization. The code for model training
and evaluation is available at http://github.
com/benathi/word2gm.

3.1 Word Representation

We represent each word w in a dictionary as a
Gaussian mixture with K components. Specif-
ically, the distribution of w, fw, is given by the
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density

fw(~x) =

K∑

i=1

pw,i N [~x; ~µw,i,Σw,i] (1)

=
K∑

i=1

pw,i√
2π|Σw,i|

e−
1
2

(~x−~µw,i)>Σ−1
w,i(~x−~µw,i) ,

where
∑K

i=1 pw,i = 1. The mean vectors ~µw,i
represent the location of the ith component of
word w, and are akin to the point embeddings
provided by popular approaches like word2vec.
pw,i represents the component probability (mix-
ture weight), and Σw,i is the component covari-
ance matrix, containing uncertainty information.
Our goal is to learn all of the model parameters
~µw,i, pw,i,Σw,i from a corpus of natural sentences
to extract semantic information of words. Each
Gaussian component’s mean vector of word w can
represent one of the word’s distinct meanings. For
instance, one component of a polysemous word
such as ‘rock’ should represent the meaning re-
lated to ‘stone’ or ‘pebbles’, whereas another com-
ponent should represent the meaning related to
music such as ‘jazz’ or ‘pop’. Figure 1 illustrates
our word embedding model, and the difference be-
tween multimodal and unimodal representations,
for words with multiple meanings.

3.2 Skip-Gram

The training objective for learning θ =
{~µw,i, pw,i,Σw,i} draws inspiration from the
continuous skip-gram model (Mikolov et al.,
2013a), where word embeddings are trained to
maximize the probability of observing a word
given another nearby word. This procedure
follows the distributional hypothesis that words
occurring in natural contexts tend to be semanti-
cally related. For instance, the words ‘jazz’ and
‘music’ tend to occur near one another more often
than ‘jazz’ and ‘cat’; hence, ‘jazz’ and ‘music’
are more likely to be related. The learned word
representation contains useful semantic informa-
tion and can be used to perform a variety of NLP
tasks such as word similarity analysis, sentiment
classification, modelling word analogies, or as a
preprocessed input for complex system such as
statistical machine translation.
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Figure 1: Top: A Gaussian Mixture embed-
ding, where each component corresponds to a dis-
tinct meaning. Each Gaussian component is rep-
resented by an ellipsoid, whose center is specified
by the mean vector and contour surface specified
by the covariance matrix, reflecting subtleties in
meaning and uncertainty. On the left, we show ex-
amples of Gaussian mixture distributions of words
where Gaussian components are randomly initial-
ized. After training, we see on the right that
one component of the word ‘rock’ is closer to
‘stone’ and ‘basalt’, whereas the other component
is closer to ‘jazz’ and ‘pop’. We also demonstrate
the entailment concept where the distribution of
the more general word ‘music’ encapsulates words
such as ‘jazz’, ‘rock’, ‘pop’. Bottom: A Gaussian
embedding model (Vilnis and McCallum, 2014).
For words with multiple meanings, such as ‘rock’,
the variance of the learned representation becomes
unnecessarily large in order to assign some proba-
bility to both meanings. Moreover, the mean vec-
tor for such words can be pulled between two clus-
ters, centering the mass of the distribution on a re-
gion which is far from certain meanings.

3.3 Energy-based Max-Margin Objective

Each sample in the objective consists of two pairs
of words, (w, c) and (w, c′). w is sampled from a
sentence in a corpus and c is a nearby word within
a context window of length `. For instance, a word
w = ‘jazz’ which occurs in the sentence ‘I listen
to jazz music’ has context words (‘I’, ‘listen’, ‘to’
, ‘music’). c′ is a negative context word (e.g. ‘air-
plane’) obtained from random sampling.

The objective is to maximize the energy be-
tween words that occur near each other, w and c,
and minimize the energy between w and its nega-
tive context c′. This approach is similar to neg-
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ative sampling (Mikolov et al., 2013a,b), which
contrasts the dot product between positive context
pairs with negative context pairs. The energy func-
tion is a measure of similarity between distribu-
tions and will be discussed in Section 3.4.

We use a max-margin ranking objective
(Joachims, 2002), used for Gaussian embeddings
in Vilnis and McCallum (2014), which pushes the
similarity of a word and its positive context higher
than that of its negative context by a margin m:

Lθ(w, c, c
′) = max(0,

m− logEθ(w, c) + logEθ(w, c
′))

This objective can be minimized by mini-batch
stochastic gradient descent with respect to the pa-
rameters θ = {~µw,i, pw,i,Σw,i} – the mean vec-
tors, covariance matrices, and mixture weights –
of our multimodal embedding in Eq. (1).

Word Sampling We use a word sampling
scheme similar to the implementation in
word2vec (Mikolov et al., 2013a,b) to bal-
ance the importance of frequent words and rare
words. Frequent words such as ‘the’, ‘a’, ‘to’
are not as meaningful as relatively less frequent
words such as ‘dog’, ‘love’, ‘rock’, and we are
often more interested in learning the semantics
of the less frequently observed words. We use
subsampling to improve the performance of
learning word vectors (Mikolov et al., 2013b).
This technique discards word wi with probability
P (wi) = 1 −

√
t/f(wi), where f(wi) is the

frequency of word wi in the training corpus and t
is a frequency threshold.

To generate negative context words, each word
type wi is sampled according to a distribution
Pn(wi) ∝ U(wi)

3/4 which is a distorted version
of the unigram distribution U(wi) that also serves
to diminish the relative importance of frequent
words. Both subsampling and the negative distri-
bution choice are proven effective in word2vec
training (Mikolov et al., 2013b).

3.4 Energy Function

For vector representations of words, a usual choice
for similarity measure (energy function) is a dot
product between two vectors. Our word repre-
sentations are distributions instead of point vec-
tors and therefore need a measure that reflects not
only the point similarity, but also the uncertainty.
We propose to use the expected likelihood kernel,

which is a generalization of an inner product be-
tween vectors to an inner product between distri-
butions (Jebara et al., 2004). That is,

E(f, g) =

∫
f(x)g(x) dx = 〈f, g〉L2

where 〈·, ·〉L2 denotes the inner product in Hilbert
space L2. We choose this form of energy since it
can be evaluated in a closed form given our choice
of probabilistic embedding in Eq. (1).

For Gaussian mixtures f, g representing the
words wf , wg, f(x) =

∑K
i=1 piN (x; ~µf,i,Σf,i)

and g(x) =
∑K

i=1 qiN (x; ~µg,i,Σg,i),
∑K

i=1 pi =

1, and
∑K

i=1 qi = 1, we find (see Section A.1) the
log energy is

logEθ(f, g) = log
K∑

j=1

K∑

i=1

piqje
ξi,j (2)

where

ξi,j ≡ logN (0; ~µf,i − ~µg,j ,Σf,i + Σg,j)

= −1

2
log det(Σf,i + Σg,j)−

D

2
log(2π)

−1

2
(~µf,i − ~µg,j)>(Σf,i + Σg,j)

−1(~µf,i − ~µg,j)
(3)

We call the term ξi,j partial (log) energy. Observe
that this term captures the similarity between the
ith meaning of word wf and the jth meaning of
word wg. The total energy in Equation 2 is the
sum of possible pairs of partial energies, weighted
accordingly by the mixture probabilities pi and qj .

The term−(~µf,i−~µg,j)>(Σf,i+Σg,j)
−1(~µf,i−

~µg,j) in ξi,j explains the difference in mean vectors
of semantic pair (wf , i) and (wg, j). If the seman-
tic uncertainty (covariance) for both pairs are low,
this term has more importance relative to other
terms due to the inverse covariance scaling. We
observe that the loss function Lθ in Section 3.3 at-
tains a low value when Eθ(w, c) is relatively high.
High values of Eθ(w, c) can be achieved when the
component means across different words ~µf,i and
~µg,j are close together (e.g., similar point repre-
sentations). High energy can also be achieved by
large values of Σf,i and Σg,j , which washes out
the importance of the mean vector difference. The
term− log det(Σf,i+Σg,j) serves as a regularizer
that prevents the covariances from being pushed
too high at the expense of learning a good mean
embedding.
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At the beginning of training, ξi,j roughly are on
the same scale among all pairs (i, j)’s. During this
time, all components learn the signals from the
word occurrences equally. As training progresses
and the semantic representation of each mixture
becomes more clear, there can be one term of ξi,j’s
that is predominantly higher than other terms, giv-
ing rise to a semantic pair that is most related.

The negative KL divergence is another sensible
choice of energy function, providing an asymmet-
ric metric between word distributions. However,
unlike the expected likelihood kernel, KL diver-
gence does not have a closed form if the two dis-
tributions are Gaussian mixtures.

4 Experiments

We have introduced a model for multi-prototype
embeddings, which expressively captures word
meanings with whole probability distributions.
We show that our combination of energy and ob-
jective functions, proposed in Section 3, enables
one to learn interpretable multimodal distribu-
tions through unsupervised training, for describing
words with multiple distinct meanings. By rep-
resenting multiple distinct meanings, our model
also reduces the unnecessarily large variance of a
Gaussian embedding model, and has improved re-
sults on word entailment tasks.

To learn the parameters of the proposed mix-
ture model, we train on a concatenation of
two datasets: UKWAC (2.5 billion tokens) and
Wackypedia (1 billion tokens) (Baroni et al.,
2009). We discard words that occur fewer than
100 times in the corpus, which results in a vocab-
ulary size of 314, 129 words. Our word sampling
scheme, described at the end of Section 4.3, is sim-
ilar to that of word2vec with one negative con-
text word for each positive context word.

After training, we obtain learned parameters
{~µw,i,Σw,i, pi}Ki=1 for each word w. We treat the
mean vector ~µw,i as the embedding of the ith mix-
ture component with the covariance matrix Σw,i

representing its subtlety and uncertainty. We per-
form qualitative evaluation to show that our em-
beddings learn meaningful multi-prototype repre-
sentations and compare to existing models using a
quantitative evaluation on word similarity datasets
and word entailment.

We name our model as Word to Gaussian Mix-
ture (w2gm) in constrast to Word to Gaussian
(w2g) (Vilnis and McCallum, 2014). Unless

stated otherwise, w2g refers to our implementa-
tion of w2gm model with one mixture component.

4.1 Hyperparameters

Unless stated otherwise, we experiment with K =
2 components for the w2gm model, but we have
results and discussion of K = 3 at the end of sec-
tion 4.3. We primarily consider the spherical case
for computational efficiency. We note that for di-
agonal or spherical covariances, the energy can be
computed very efficiently since the matrix inver-
sion would simply require O(d) computation in-
stead of O(d3) for a full matrix. Empirically, we
have found diagonal covariance matrices become
roughly spherical after training. Indeed, for these
relatively high dimensional embeddings, there are
sufficient degrees of freedom for the mean vec-
tors to be learned such that the covariance matrices
need not be asymmetric. Therefore, we perform
all evaluations with spherical covariance models.

Models used for evaluation have dimension
D = 50 and use context window ` = 10 unless
stated otherwise. We provide additional hyperpa-
rameters and training details in the supplementary
material (A.2).

4.2 Similarity Measures

Since our word embeddings contain multiple vec-
tors and uncertainty parameters per word, we use
the following measures that generalizes similarity
scores. These measures pick out the component
pair with maximum similarity and therefore deter-
mine the meanings that are most relevant.

4.2.1 Expected Likelihood Kernel
A natural choice for a similarity score is the ex-
pected likelihood kernel, an inner product between
distributions, which we discussed in Section 3.4.
This metric incorporates the uncertainty from the
covariance matrices in addition to the similarity
between the mean vectors.

4.2.2 Maximum Cosine Similarity
This metric measures the maximum similarity of
mean vectors among all pairs of mixture com-
ponents between distributions f and g. That is,

d(f, g) = max
i,j=1,...,K

〈µf,i,µg,j〉
||µf,i|| · ||µg,j ||

, which corre-

sponds to matching the meanings of f and g that
are the most similar. For a Gaussian embedding,
maximum similarity reduces to the usual cosine
similarity.
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Word Co. Nearest Neighbors

rock 0 basalt:1, boulder:1, boulders:0, stalagmites:0, stalactites:0, rocks:1, sand:0, quartzite:1, bedrock:0
rock 1 rock/:1, ska:0, funk:1, pop-rock:1, punk:1, indie-rock:0, band:0, indie:0, pop:1
bank 0 banks:1, mouth:1, river:1, River:0, confluence:0, waterway:1, downstream:1, upstream:0, dammed:0
bank 1 banks:0, banking:1, banker:0, Banks:1, bankas:1, Citibank:1, Interbank:1, Bankers:0, transactions:1

Apple 0 Strawberry:0, Tomato:1, Raspberry:1, Blackberry:1, Apples:0, Pineapple:1, Grape:1, Lemon:0
Apple 1 Macintosh:1, Mac:1, OS:1, Amiga:0, Compaq:0, Atari:1, PC:1, Windows:0, iMac:0

star 0 stars:0, Quaid:0, starlet:0, Dafoe:0, Stallone:0, Geena:0, Niro:0, Zeta-Jones:1, superstar:0
star 1 stars:1, brightest:0, Milky:0, constellation:1, stellar:0, nebula:1, galactic:1, supernova:1, Ophiuchus:1
cell 0 cellular:0, Nextel:0, 2-line:0, Sprint:0, phones.:1, pda:1, handset:0, handsets:1, pushbuttons:0
cell 1 cytoplasm:0, vesicle:0, cytoplasmic:1, macrophages:0, secreted:1, membrane:0, mitotic:0, endocytosis:1
left 0 After:1, back:0, finally:1, eventually:0, broke:0, joined:1, returned:1, after:1, soon:0
left 1 right-hand:0, hand:0, right:0, left-hand:0, lefthand:0, arrow:0, turn:0, righthand:0, Left:0

Word Nearest Neighbors

rock band, bands, Rock, indie, Stones, breakbeat, punk, electronica, funk
bank banks, banking, trader, trading, Bank, capital, Banco, bankers, cash
Apple Macintosh, Microsoft, Windows, Macs, Lite, Intel, Desktop, WordPerfect, Mac

star stars, stellar, brightest, Stars, Galaxy, Stardust, eclipsing, stars., Star
cell cells, DNA, cellular, cytoplasm, membrane, peptide, macrophages, suppressor, vesicles
left leaving, turned, back, then, After, after, immediately, broke, end

Table 1: Nearest neighbors based on cosine similarity between the mean vectors of Gaussian components
for Gaussian mixture embedding (top) (forK = 2) and Gaussian embedding (bottom). The notation w:i
denotes the ith mixture component of the word w.

4.2.3 Minimum Euclidean Distance
Cosine similarity is popular for evaluating em-
beddings. However, our training objective di-
rectly involves the Euclidean distance in Eq. (3),
as opposed to dot product of vectors such as in
word2vec. Therefore, we also consider the Eu-
clidean metric: d(f, g) = min

i,j=1,...,K
[||µf,i−µg,j ||].

4.3 Qualitative Evaluation

In Table 1, we show examples of polysemous
words and their nearest neighbors in the embed-
ding space to demonstrate that our trained em-
beddings capture multiple word senses. For in-
stance, a word such as ‘rock’ that could mean ei-
ther ‘stone’ or ‘rock music’ should have each of its
meanings represented by a distinct Gaussian com-
ponent. Our results for a mixture of two Gaussians
model confirm this hypothesis, where we observe
that the 0th component of ‘rock’ being related to
(‘basalt’, ‘boulders’) and the 1st component being
related to (‘indie’, ‘funk’, ‘hip-hop’). Similarly,
the word bank has its 0th component representing
the river bank and the 1st component representing
the financial bank.

By contrast, in Table 1 (bottom), see that for
Gaussian embeddings with one mixture compo-
nent, nearest neighbors of polysemous words are
predominantly related to a single meaning. For in-
stance, ‘rock’ mostly has neighbors related to rock

music and ‘bank’ mostly related to the financial
bank. The alternative meanings of these polyse-
mous words are not well represented in the embed-
dings. As a numerical example, the cosine simi-
larity between ‘rock’ and ‘stone’ for the Gaussian
representation of Vilnis and McCallum (2014) is
only 0.029, much lower than the cosine similarity
0.586 between the 0th component of ‘rock’ and
‘stone’ in our multimodal representation.

In cases where a word only has a single popu-
lar meaning, the mixture components can be fairly
close; for instance, one component of ‘stone’ is
close to (‘stones’, ‘stonework’, ‘slab’) and the
other to (‘carving, ‘relic’, ‘excavated’), which re-
flects subtle variations in meanings. In general, the
mixture can give properties such as heavy tails and
more interesting unimodal characterizations of un-
certainty than could be described by a single Gaus-
sian.

Embedding Visualization We provide an
interactive visualization as part of our code repos-
itory: https://github.com/benathi/
word2gm#visualization that allows real-
time queries of words’ nearest neighbors (in the
embeddings tab) for K = 1, 2, 3 components.
We use a notation similar to that of Table 1, where
a token w:i represents the component i of a
word w. For instance, if in the K = 2 link we
search for bank:0, we obtain the nearest neigh-
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bors such as river:1, confluence:0,
waterway:1, which indicates that the 0th

component of ‘bank’ has the meaning ‘river
bank’. On the other hand, searching for bank:1
yields nearby words such as banking:1,
banker:0, ATM:0, indicating that this com-
ponent is close to the ‘financial bank’. We also
have a visualization of a unimodal (w2g) for
comparison in the K = 1 link.

In addition, the embedding link for our Gaus-
sian mixture model with K = 3 mixture compo-
nents can learn three distinct meanings. For in-
stance, each of the three components of ‘cell’ is
close to (‘keypad’, ‘digits’), (‘incarcerated’, ‘in-
mate’) or (‘tissue’, ‘antibody’), indicating that the
distribution captures the concept of ‘cellphone’,
‘jail cell’, or ‘biological cell’, respectively. Due
to the limited number of words with more than 2
meanings, our model with K = 3 does not gen-
erally offer substantial performance differences to
our model with K = 2; hence, we do not further
display K = 3 results for compactness.

4.4 Word Similarity

We evaluate our embeddings on several standard
word similarity datasets, namely, SimLex (Hill
et al., 2014), WS or WordSim-353, WS-S (sim-
ilarity), WS-R (relatedness) (Finkelstein et al.,
2002), MEN (Bruni et al., 2014), MC (Miller and
Charles, 1991), RG (Rubenstein and Goodenough,
1965), YP (Yang and Powers, 2006), MTurk(-
287,-771) (Radinsky et al., 2011; Halawi et al.,
2012), and RW (Luong et al., 2013). Each dataset
contains a list of word pairs with a human score of
how related or similar the two words are.

We calculate the Spearman correlation (Spear-
man, 1904) between the labels and our scores gen-
erated by the embeddings. The Spearman corre-
lation is a rank-based correlation measure that as-
sesses how well the scores describe the true labels.

The correlation results are shown in Table 2 us-
ing the scores generated from the expected like-
lihood kernel, maximum cosine similarity, and
maximum Euclidean distance.

We show the results of our Gaussian mixture
model and compare the performance with that
of word2vec and the original Gaussian em-
bedding by Vilnis and McCallum (2014). We
note that our model of a unimodal Gaussian
embedding w2g also outperforms the original
model, which differs in model hyperparame-

ters and initialization, for most datasets. Our
multi-prototype model w2gm also performs better
than skip-gram or Gaussian embedding methods
on many datasets, namely, WS, WS-R, MEN,
MC, RG, YP, MT-287, RW. The maximum
cosine similarity yields the best performance on
most datasets; however, the minimum Euclidean
distance is a better metric for the datasets MC
and RW. These results are consistent for both the
single-prototype and the multi-prototype models.

We also compare out results on WordSim-353
with the multi-prototype embedding method by
Huang et al. (2012) and Neelakantan et al. (2014),
shown in Table 3. We observe that our single-
prototype model w2g is competitive compared to
models by Huang et al. (2012), even without us-
ing a corpus with stop words removed. This could
be due to the auto-calibration of importance via
the covariance learning which decrease the impor-
tance of very frequent words such as ‘the’, ‘to’,
‘a’, etc. Moreover, our multi-prototype model sub-
stantially outperforms the model of Huang et al.
(2012) and the MSSG model of Neelakantan et al.
(2014) on the WordSim-353 dataset.

4.5 Word Similarity for Polysemous Words

We use the dataset SCWS introduced by Huang
et al. (2012), where word pairs are chosen to
have variations in meanings of polysemous and
homonymous words.

We compare our method with multiprototype
models by Huang (Huang et al., 2012), Tian
(Tian et al., 2014), Chen (Chen et al., 2014), and
MSSG model by (Neelakantan et al., 2014). We
note that Chen model uses an external lexical
source WordNet that gives it an extra advantage.

We use many metrics to calculate the scores for
the Spearman correlation. MaxSim refers to the
maximum cosine similarity. AveSim is the aver-
age of cosine similarities with respect to the com-
ponent probabilities.

In Table 4, the model w2g performs the best
among all single-prototype models for either 50
or 200 vector dimensions. Our model w2gm
performs competitively compared to other multi-
prototype models. In SCWS, the gain in flexibility
in moving to a probability density approach ap-
pears to dominate over the effects of using a multi-
prototype. In most other examples, we see w2gm
surpass w2g, where the multi-prototype structure
is just as important for good performance as the
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Dataset sg* w2g* w2g/mc w2g/el w2g/me w2gm/mc w2gm/el w2gm/me

SL 29.39 32.23 29.35 25.44 25.43 29.31 26.02 27.59
WS 59.89 65.49 71.53 61.51 64.04 73.47 62.85 66.39
WS-S 69.86 76.15 76.70 70.57 72.3 76.73 70.08 73.3
WS-R 53.03 58.96 68.34 54.4 55.43 71.75 57.98 60.13
MEN 70.27 71.31 72.58 67.81 65.53 73.55 68.5 67.7
MC 63.96 70.41 76.48 72.70 80.66 79.08 76.75 80.33
RG 70.01 71 73.30 72.29 72.12 74.51 71.55 73.52
YP 39.34 41.5 41.96 38.38 36.41 45.07 39.18 38.58
MT-287 - - 64.79 57.5 58.31 66.60 57.24 60.61
MT-771 - - 60.86 55.89 54.12 60.82 57.26 56.43
RW - - 28.78 32.34 33.16 28.62 31.64 35.27

Table 2: Spearman correlation for word similarity datasets. The models sg, w2g, w2gm denote
word2vec skip-gram, Gaussian embedding, and Gaussian mixture embedding (K=2). The measures
mc, el, me denote maximum cosine similarity, expected likelihood kernel, and minimum Euclidean
distance. For each of w2g and w2gm, we underline the similarity metric with the best score. For each
dataset, we boldface the score with the best performance across all models. The correlation scores for
sg*, w2g* are taken from Vilnis and McCallum (2014) and correspond to cosine distance.

MODEL ρ× 100
HUANG 64.2
HUANG* 71.3
MSSG 50D 63.2
MSSG 300D 71.2
W2G 70.9
W2GM 73.5

Table 3: Spearman’s correlation (ρ) on WordSim-
353 datasets for our Word to Gaussian Mixture
embeddings, as well as the multi-prototype em-
bedding by Huang et al. (2012) and the MSSG
model by Neelakantan et al. (2014). Huang* is
trained using data with all stop words removed.
All models have dimension D = 50 except for
MSSG 300D with D = 300 which is still outper-
formed by our w2gm model.

probabilistic representation.

4.6 Reduction in Variance of Polysemous
Words

One motivation for our Gaussian mixture embed-
ding is to model word uncertainty more accurately
than Gaussian embeddings, which can have overly
large variances for polysemous words (in order
to assign some mass to all of the distinct mean-
ings). We see that our Gaussian mixture model
does indeed reduce the variances of each compo-
nent for such words. For instance, we observe that
the word rock in w2g has much higher variance
per dimension (e−1.8 ≈ 1.65) compared to that of
Gaussian components of rock in w2gm (which
has variance of roughly e−2.5 ≈ 0.82). We also

MODEL DIMENSION ρ× 100
WORD2VEC SKIP-GRAM 50 61.7
HUANG-S 50 58.6
W2G 50 64.7
CHEN-S 200 64.2
W2G 200 66.2

HUANG-M AVGSIM 50 62.8
TIAN-M MAXSIM 50 63.6
W2GM MAXSIM 50 62.7
MSSG AVGSIM 50 64.2
CHEN-M AVGSIM 200 66.2
W2GM MAXSIM 200 65.5

Table 4: Spearman’s correlation ρ on dataset
SCWS. We show the results for single proto-
type (top) and multi-prototype (bottom) The suffix
-(S,M) refers to single and multiple prototype
models, respectively.

see, in the next section, that the Gaussian mixture
model has desirable quantitative behavior for word
entailment.

4.7 Word Entailment
We evaluate our embeddings on the word entail-
ment dataset from Baroni et al. (2012). The lexical
entailment between words is denoted by w1 |= w2

which means that all instances of w1 are w2. The
entailment dataset contains positive pairs such as
aircraft |= vehicle and negative pairs such as air-
craft 6|= insect.

We generate entailment scores of word pairs
and find the best threshold, measured by Average
Precision (AP) or F1 score, which identifies neg-
ative versus positive entailment. We use the max-
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MODEL SCORE BEST AP BEST F1
W2G (5) COS 73.1 76.4
W2G (5) KL 73.7 76.0

W2GM (5) COS 73.6 76.3
W2GM (5) KL 75.7 77.9

W2G (10) COS 73.0 76.1
W2G (10) KL 74.2 76.1

W2GM (10) COS 72.9 75.6
W2GM (10) KL 74.7 76.3

Table 5: Entailment results for models w2g and
w2gm with window size 5 and 10. The metrics
used are the maximum cosine similarity, or the
maximum negative KL divergence. We calculate
the best average precision as well as the best F1
score. In most cases, w2gm outperforms w2g for
describing entailment.

imum cosine similarity and the minimum KL di-
vergence, d(f, g) = min

i,j=1,...,K
KL(f ||g), for en-

tailment scores. The minimum KL divergence is
similar to the maximum cosine similarity, but also
incorporates the embedding uncertainty. In addi-
tion, KL divergence is an asymmetric measure,
which is more suitable for certain tasks such as
word entailment where a relationship is unidirec-
tional. For instance, w1 |= w2 does not imply
w2 |= w1. Indeed, aircraft |= vehicle does not im-
ply vehicle |= aircraft, since all aircraft are vehi-
cles but not all vehicles are aircraft. The difference
between KL(w1||w2) versus KL(w2||w1) distin-
guishes which word distribution encompasses an-
other distribution, as demonstrated in Figure 1.

Table 5 shows the results of our w2gm model
versus the Gaussian embedding model w2g. We
observe a trend for both models with window size
5 and 10 that the KL metric yields improvement
(both AP and F1) over cosine similarity. In ad-
dition, w2gm has a better performance compared
to w2g. The multi-prototype model estimates the
meaning uncertainty better since it is no longer
constrained to be unimodal, leading to better char-
acterizations of entailment. On the other hand,
the Gaussian embedding model suffers from large
variance problem for polysemous words, which
results in less informative word distribution and
inferior entailment scores.

5 Discussion

We introduced a model that represents words with
expressive multimodal distributions formed from
Gaussian mixtures. To learn the properties of each

mixture, we proposed an analytic energy function
for combination with a maximum margin objec-
tive. The resulting embeddings capture different
semantics of polysemous words, uncertainty, and
entailment, and also perform favorably on word
similarity benchmarks.

Elsewhere, latent probabilistic representations
are proving to be exceptionally valuable, able to
capture nuances such as face angles with varia-
tional autoencoders (Kingma and Welling, 2013)
or subtleties in painting strokes with the InfoGAN
(Chen et al., 2016). Moreover, classically deter-
ministic deep learning architectures are now being
generalized to probabilistic deep models, for full
predictive distributions instead of point estimates,
and significantly more expressive representations
(Wilson et al., 2016b,a; Al-Shedivat et al., 2016;
Gan et al., 2016; Fortunato et al., 2017).

Similarly, probabilistic word embeddings can
capture a range of subtle meanings, and advance
the state of the art in predictive tasks. Multimodal
word distributions naturally represent our belief
that words do not have single precise meanings:
indeed, the shape of a word distribution can ex-
press much more semantic information than any
point representation.

In the future, multimodal word distributions
could open the doors to a new suite of applica-
tions in language modelling, where whole word
distributions are used as inputs to new probabilis-
tic LSTMs, or in decision functions where un-
certainty matters. As part of this effort, we can
explore different metrics between distributions,
such as KL divergences, which would be a natu-
ral choice for order embeddings that model entail-
ment properties. It would also be informative to
explore inference over the number of components
in mixture models for word distributions. Such an
approach could potentially discover an unbounded
number of distinct meanings for words, but also
distribute the support of each word distribution to
express highly nuanced meanings. Alternatively,
we could imagine a dependent mixture model
where the distributions over words are evolving
with time and other covariates. One could also
build new types of supervised language models,
constructed to more fully leverage the rich infor-
mation provided by word distributions.
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A Supplementary Material

A.1 Derivation of Expected Likelihood
Kernel

We derive the form of expected likelihood kernel for
Gaussian mixtures. Let f, g be Gaussian mixture
distributions representing the words wf , wg . That
is, f(x) =

∑K
i=1 piN (x;µf,i,Σf,i) and g(x) =∑K

i=1 qiN (x;µg,i,Σg,i),
∑K
i=1 pi = 1, and

∑K
i=1 qi = 1.
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The expected likelihood kernel is given by

Eθ(f, g) =

∫ ( K∑

i=1

piN (x;µf,i,Σf,i)

)
·

(
K∑

j=1

qjN (x;µg,j ,Σg,j)

)
dx

=

K∑

i=1

K∑

j=1

piqj

∫
N (x;µf,i,Σf,i) · N (x;µg,j ,Σg,j) dx

=

K∑

i=1

K∑

j=1

piqjN (0;µf,i − µg,j ,Σf,i + Σg,j)

=

K∑

i=1

K∑

j=1

piqje
ξi,j

where we note that
∫
N (x;µi,Σi)N (x;µj ,Σj) dx =

N (0, µi − µj ,Σi + Σj) (Vilnis and McCallum, 2014) and
ξi,j is the log partial energy, given by equation 3.

A.2 Implementation
In this section we discuss practical details for training the pro-
posed model.

Reduction to Diagonal Covariance
We use a diagonal Σ, in which case inverting the covariance
matrix is trivial and computations are particularly efficient.

Let df ,dg denote the diagonal vectors of Σf ,Σg The ex-
pression for ξi,j reduces to

ξi,j = −1

2

D∑

r=1

log(dpr + dqr)

−1

2

∑[
(µp,i − µq,j) ◦ 1

dp + dq
◦ (µp,i − µq,j)

]

where ◦ denotes element-wise multiplication. The spherical
case which we use in all our experiments is similar since we
simply replace a vector d with a single value.

Optimization Constraint and Stability
We optimize logd since each component of diagonal vector
d is constrained to be positive. Similarly, we constrain the
probability pi to be in [0, 1] and sum to 1 by optimizing over
unconstrained scores si ∈ (−∞,∞) and using a softmax
function to convert the scores to probability pi = esi∑K

j=1 e
sj .

The loss computation can be numerically unstable if ele-
ments of the diagonal covariances are very small, due to the
term log(dfr + dgr) and 1

dq+dp . Therefore, we add a small
constant ε = 10−4 so that dfr + dgr and dq + dp becomes
dfr + dgr + ε and dq + dp + ε.

In addition, we observe that ξi,j can be very small which
would result in eξi,j ≈ 0 up to machine precision. In order to
stabilize the computation in eq. 2, we compute its equivalent
form

logE(f, g) = ξi′,j′ + log

K∑

j=1

K∑

i=1

piqje
ξi,j−ξi′,j′

where ξi′,j′ = maxi,j ξi,j .

Model Hyperparameters and Training Details
In the loss function Lθ , we use a margin m = 1 and a batch
size of 128. We initialize the word embeddings with a uni-

form distribution over [−
√

3
D
,
√

3
D

] so that the expectation
of variance is 1 and the mean is zero (LeCun et al., 1998).
We initialize each dimension of the diagonal matrix (or a sin-
gle value for spherical case) with a constant value v = 0.05.
We also initialize the mixture scores si to be 0 so that the
initial probabilities are equal among all K components. We
use the threshold t = 10−5 for negative sampling, which is
the recommended value for word2vec skip-gram on large
datasets.

We also use a separate output embeddings in addition
to input embeddings, similar to word2vec implementation
(Mikolov et al., 2013a,b). That is, each word has two sets of
distributions qI and qO , each of which is a Gaussian mixture.
For a given pair of word and context (w, c), we use the input
distribution qI for w (input word) and the output distribution
qO for context c (output word). We optimize the parameters
of both qI and qO and use the trained input distributions qI
as our final word representations.

We use mini-batch asynchronous gradient descent with
Adagrad (Duchi et al., 2011) which performs adaptive learn-
ing rate for each parameter. We also experiment with Adam
(Kingma and Ba, 2014) which corrects the bias in adaptive
gradient update of Adagrad and is proven very popular for
most recent neural network models. However, we found
that it is much slower than Adagrad (≈ 10 times). This is
because the gradient computation of the model is relatively
fast, so a complex gradient update algorithm such as Adam
becomes the bottleneck in the optimization. Therefore, we
choose to use Adagrad which allows us to better scale to large
datasets. We use a linearly decreasing learning rate from 0.05
to 0.00001.
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