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Abstract
Two types of data shift common in prac-
tice are 1. transferring from synthetic data
to live user data (a deployment shift), and
2. transferring from stale data to current
data (a temporal shift). Both cause a dis-
tribution mismatch between training and
evaluation, leading to a model that over-
fits the flawed training data and performs
poorly on the test data. We propose a solu-
tion to this mismatch problem by framing
it as domain adaptation, treating the flawed
training dataset as a source domain and
the evaluation dataset as a target domain.
To this end, we use and build on several
recent advances in neural domain adap-
tation such as adversarial training (Ganin
et al., 2016) and domain separation net-
work (Bousmalis et al., 2016), proposing a
new effective adversarial training scheme.
In both supervised and unsupervised adap-
tation scenarios, our approach yields clear
improvement over strong baselines.

1 Introduction

Spoken language understanding (SLU) systems
analyze various aspects of a user query by clas-
sifying its domain, intent, and semantic slots.
For instance, the query how is traffic
to target in bellevue has domain
PLACES, intent CHECK ROUTE TRAFFIC,
and slots PLACE NAME: target and
ABSOLUTE LOCATION: bellevue.

We are interested in addressing two types of
data shift common in SLU applications. The
first data shift problem happens when we trans-
fer from synthetic data to live user data (a deploy-
ment shift). This is also known as the “cold-start”

problem; a model cannot be trained on the real
usage data prior to deployment simply because it
does not exist. A common practice is to gener-
ate a large quantity of synthetic training data that
mimics the expected user behavior. Such synthetic
data is crafted using domain-specific knowledge
and can be time-consuming. It is also flawed in
that it typically does not match the live user data
generated by actual users; the real queries submit-
ted to these systems are different from what the
model designers expect to see.

The second data shift problem happens when
we transfer from stale data to current data (a tem-
poral shift). In our use case, we have one set of
training data from 2013 and wish to handle data
from 2014–2016. This is problematic since the
content of the user queries changes over time (e.g.,
new restaurant or movie names may be added).
Consequently, the model performance degrades
over time.

Both shifts cause a distribution mismatch be-
tween training and evaluation, leading to a model
that overfits the flawed training data and performs
poorly on the test data. We propose a solution to
this mismatch problem by framing it as domain
adaptation, treating the flawed training dataset as
a source domain and the evaluation dataset as a
target domain. To this end, we use and build on
several recent advances in neural domain adap-
tation such as adversarial training (Ganin et al.,
2016) and domain separation network (Bousmalis
et al., 2016), proposing a new adversarial training
scheme based on randomized predictions.

We consider both supervised and unsupervised
adaptation scenarios (i.e., absence/presence of la-
beled data in the target domain). We find that un-
supervised DA can greatly improve performance
without requiring additional annotation. Super-
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vised DA with a small amount of labeled data
gives further improvement on top of unsuper-
vised DA. In experiments, we show clear gains
in both deployment and temporal shifts across 5
test domains, yielding average error reductions of
74.04% and 41.46% for intent classification and
70.33% and 32.0% for slot tagging compared to
baselines without adaptation.

2 Related Work

2.1 Domain Adaptation

Our work builds on the recent success of DA in the
neural network framework. Notably, Ganin et al.
(2016) propose an adversarial training method for
unsupervised DA. They partition the model pa-
rameters into two parts: one inducing domain-
specific (or private) features and the other domain-
invariant (or shared) features. The domain-
invariant parameters are adversarially trained us-
ing a gradient reversal layer to be poor at domain
classification; as a consequence, they produce rep-
resentations that are domain agnostic. This ap-
proach is motivated by a rich literature on the the-
ory of DA pioneered by Ben-David et al. (2007).
We describe our use of adversarial training in Sec-
tion 3.2.3. A special case of Ganin et al. (2016)
is developed independently by Kim et al. (2016c)
who motivate the method as a generalization of the
feature augmentation method of Daumé III (2009).

Bousmalis et al. (2016) extend the framework
of Ganin et al. (2016) by additionally encourag-
ing the private and shared features to be mutually
exclusive. This is achieved by minimizing the dot
product between the two sets of parameters and si-
multaneously reconstructing the input (for all do-
mains) from the features induced by these param-
eters.

Both Ganin et al. (2016) and Bousmalis et al.
(2016) discuss applications in computer vision.
Zhang et al. (2017) apply the method of Bousmalis
et al. (2016) to tackle transfer learning in NLP.
They focus on transfer learning between classifi-
cation tasks over the same domain (“aspect trans-
fer”). They assume a set of keywords associated
with each aspect and use these keywords to inform
the learner of the relevance of each sentence for
that aspect.

2.2 Spoken Language Understanding

Recently, there has been much investment on the
personal digital assistant (PDA) technology in in-

dustry (Sarikaya, 2015; Sarikaya et al., 2016). Ap-
ples Siri, Google Now, Microsofts Cortana, and
Amazons Alexa are some examples of personal
digital assistants. Spoken language understanding
(SLU) is an important component of these exam-
ples that allows natural communication between
the user and the agent (Tur, 2006; El-Kahky et al.,
2014). PDAs support a number of scenarios in-
cluding creating reminders, setting up alarms, note
taking, scheduling meetings, finding and consum-
ing entertainment (i.e. movie, music, games), find-
ing places of interest and getting driving directions
to them (Kim et al., 2016a).

Naturally, there has been an extensive line of
prior studies for domain scaling problems to eas-
ily scale to a larger number of domains: pre-
training (Kim et al., 2015c), transfer learning (Kim
et al., 2015d), constrained decoding with a sin-
gle model (Kim et al., 2016a), multi-task learn-
ing (Jaech et al., 2016), neural domain adapta-
tion (Kim et al., 2016c), domainless adaptation
(Kim et al., 2016b), a sequence-to-sequence model
(Hakkani-Tür et al., 2016), domain attention (Kim
et al., 2017) and zero-shot learning(Chen et al.,
2016; Ferreira et al., 2015).

There are also a line of prior works on enhanc-
ing model capability and features: jointly mod-
eling intent and slot predictions (Jeong and Lee,
2008; Xu and Sarikaya, 2013; Guo et al., 2014;
Zhang and Wang, 2016; Liu and Lane, 2016a,b),
modeling SLU models with web search click logs
(Li et al., 2009; Kim et al., 2015a) and enhancing
features, including representations (Anastasakos
et al., 2014; Sarikaya et al., 2014; Celikyilmaz
et al., 2016, 2010; Kim et al., 2016d) and lexicon
(Liu and Sarikaya, 2014; Kim et al., 2015b).

All the above works assume that there are no
any data shift issues which our work try to solve.

3 Method

3.1 BiLSTM Encoder

We use an LSTM simply as a mapping φ : Rd ×
Rd′ → Rd′ that takes an input vector x and a state
vector h to output a new state vector h′ = φ(x, h).
See Hochreiter and Schmidhuber (1997) for a de-
tailed description.

Let C denote the set of character types and W
the set of word types. Let ⊕ denote the vec-
tor concatenation operation. We encode an utter-
ance using the wildly successful architecture given
by bidirectional LSTMs (BiLSTMs) (Schuster and
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Paliwal, 1997; Graves, 2012). The model parame-
ters Θ associated with this BiLSTM layer are

• Character embedding ec ∈ R25 for each c ∈
C

• Character LSTMs φCf , φ
C
b : R25×R25 → R25

• Word embedding ew ∈ R100 for each w ∈ W

• Word LSTMs φWf , φ
W
b : R150×R100 → R100

Letw1 . . . wn ∈ W denote a word sequence where
word wi has character wi(j) ∈ C at position j.
First, the model computes a character-sensitive
word representation vi ∈ R150 as

fCj = φCf
(
ewi(j), f

C
j−1

)
∀j = 1 . . . |wi|

bCj = φCb
(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

for each i = 1 . . . n.1 Next, the model computes

fWi = φWf
(
vi, f

W
i−1

)
∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

)
∀i = n . . . 1

and induces a character- and context-sensitive
word representation hi ∈ R200 as

hi = fWi ⊕ bWi (1)

for each i = 1 . . . n. For convenience, we write
the entire operation as a mapping BiLSTMΘ:

(h1 . . . hn)← BiLSTMΘ(w1 . . . wn)

3.2 Unsupervised DA
In unsupervised domain adaptation, we assume la-
beled data for the source domain but not the target
domain. Our approach closely follows the previ-
ous work on unsupervised neural domain adapta-
tion by Ganin et al. (2016) and Bousmalis et al.
(2016). We have three BiLSTM encoders de-
scribed in Section 3.1:

1. Θsrc: induces source-specific features

2. Θtgt: induces target-specific features

3. Θshd: induces domain-invariant features

We now define a series of loss functions defined
by these encoders.

1For simplicity, we assume some random initial state vec-
tors such as fC

0 and bC|wi|+1 when we describe LSTMs.

3.2.1 Source Side Tagging Loss
The most obvious objective is to minimize the
model’s error on labeled training data for the
source domain. Let w1 . . . wn ∈ W be an utter-
ance in the source domain annotated with labels
y1 . . . yn ∈ L. We induce

(hsrc
1 . . . h

src
n )← BiLSTMΘsrc(w1 . . . wn)

(hshd
1 . . . hshd

n )← BiLSTMΘshd(w1 . . . wn)

Then we define the probability of tag y ∈ L for
the i-th word as

zi = W 2
tag tanh

(
W 1

tagh̄i + b1tag

)
+ b2tag

p(y|hi) ∝ exp ([zi]y)

where h̄i = hsrci ⊕ hshd
i and Θtag =

{W 1
tag,W

2
tag, b

1
tag, b

2
tag} denotes additional feed-

foward parameters. The tagging loss is given by
the negative log likelihood

Ltag (Θsrc,Θshd,Θtag) = −
∑

i

log p
(
yi|h̄i

)

where we iterate over annotated words (wi, yi) on
the source side.

3.2.2 Reconstruction Loss
Following previous works, we ground feature
learning by reconstructing encoded utterances.
Both Bousmalis et al. (2016) and Zhang et al.
(2017) use mean squared errors for reconstruc-
tion, the former of image pixels and the latter of
words in a context window. In contrast, we use an
attention-based LSTM that fully re-generates the
input utterance and use its log loss.

More specifically, let w1 . . . wn ∈ W be an ut-
terance in domain d ∈ {src, tgt}. We first use the
relevant encoders as before

(hd1 . . . h
d
n)← BiLSTMΘd(w1 . . . wn)

(hshd
1 . . . hshd

n )← BiLSTMΘshd(w1 . . . wn)

The concatenated vectors h̄i = hdi ⊕ hshd
i are fed

into the standard attention-based decoder (Bah-
danau et al., 2014) to define the probability of
word w at each position i with state vector µi−1

(where µ0 = h̄n):

αj ∝ exp
(
µ>i−1h̄j

)
∀j ∈ {1 . . . n}

h̃i =
n∑

j=1

αj h̄j

µi = φR(µi−1 ⊕ h̃i, µi−1)

p(w|µi) ∝ exp
(
[W 1

recµi + b1rec]w
)
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where Θrec = {φR,W 1
rec, b

1
rec} denotes additional

parameters. The reconstruction loss is given by
the negative log likelihood

Lrec (Θsrc,Θtgt,Θshd,Θrec) = −
∑

i

log p (wi|µi)

where we iterate over words wi in both the source
and target utterances.

3.2.3 Adversarial Domain Classification Loss
Ganin et al. (2016) propose introducing an ad-
versarial loss to make shared features domain-
invariant. This is motivated by a theoretical result
of Ben-David et al. (2007) who show that the gen-
eralization error on the target domain depends on
how “different” the source and the target domains
are. This difference is approximately measured by

2

(
1− 2 inf

Θ
error(Θ)

)
(2)

where error(Θ) is the domain classification er-
ror using model Θ. It is assumed that the
source and target domains are balanced so that
infΘ error(Θ) ≤ 1/2 and the difference lies in
[0, 2]. In other words, we want to make error(Θ)
as large as possible in order to generalize well to
the target domain. The intuition is that the more
domain-invariant our features are, the easier it is
to benefit from the source side training when test-
ing on the target side. It can also be motivated as
a regularization term (Ganin et al., 2016).

Let w1 . . . wn ∈ W be an utterance in domain
d ∈ {src, tgt}. We first use the shared encoder

(hshd
1 . . . hshd

n )← BiLSTMΘshd(w1 . . . wn)

It is important that we only use the shared encoder
for this loss. Then we define the probability of
domain d for the utterance as

zi = W 2
adv tanh

(
W 1

adv

n∑

i=1

hshd
i + b1adv

)
+ b2adv

p(d|hi) ∝ exp ([zi]d)

where Θadv = {W 1
adv,W

2
adv, b

1
adv, b

2
adv} denotes addi-

tional feedfoward parameters. The adversarial do-
main classification loss is given by the positive log
likelihood

Ladv (Θshd,Θadv) =
∑

i

log p
(
d(i)|w(i)

)

where we iterate over domain-annotated utter-
ances (w(i), d(i)).

Random prediction training While past work
only consider using a negative gradient (Ganin
et al., 2016; Bousmalis et al., 2016) or positive
log likelihood (Zhang et al., 2017) to perform ad-
versarial training, it is unclear whether these ap-
proaches are optimal for the purpose of “confus-
ing” the domain predictor. For instance, mini-
mizing log likelihood can lead to a model accu-
rately predicting the opposite domain, compromis-
ing the goal of inducing domain-invariant repre-
sentations. Thus we propose to instead optimize
the shared parameters for random domain predic-
tions. Specifically, the above loss is replaced with

Ladv (Θshd,Θadv) = −
∑

i

log p
(
d(i)|w(i)

)

where d(i) is set to be src with probability 0.5
and tgt with probability 0.5. By optimizing for
random predictions, we achieve the desired effect:
the shared parameters are trained to induce fea-
tures that cannot discriminate between the source
and the target domains.

3.2.4 Non-Adversarial Domain Classification
Loss

In addition to the adversarial loss for domain-
invariant parameters, we also introduce a non-
adversarial loss for domain-specific parameters.
Given w1 . . . wn ∈ W in domain d ∈ {src, tgt},
we use the private encoder

(hd
1 . . . h

d
n)← BiLSTMΘd(w1 . . . wn)

It is important that we only use the private encoder
for this loss. Then we define the probability of
domain d for the utterance as

zi = W 2
nadv tanh

(
W 1

nadv

n∑

i=1

hd
i + b1nadv

)
+ b2nadv

p(d|hi) ∝ exp ([zi]d)

where Θnadv = {W 1
nadv,W

2
nadv, b

1
nadv, b

2
nadv} denotes

additional feedfoward parameters. The non-
adversarial domain classification loss is given by
the negative log likelihood

Lnadv (Θd,Θnadv) =
∑

i

log p
(
d(i)|w(i)

)

where we iterate over domain-annotated utter-
ances (w(i), d(i)).
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3.2.5 Orthogonality Loss
Finally, following Bousmalis et al. (2016), we
further encourage the domain-specific features
to be mutually exclusive with the shared fea-
tures by imposing soft orthogonality constraints.
This is achieved as follows. Given an utterance
w1 . . . wn ∈ W in domain d ∈ {src, tgt}. We
compute

(hd1 . . . h
d
n)← BiLSTMΘd(w1 . . . wn)

(hshd
1 . . . hshd

n )← BiLSTMΘshd(w1 . . . wn)

The orthogonality loss for this utterance is given
by

Lorth (Θsrc,Θtgt,Θshd) =
∑

i

(hdi )>hshd
i

where we iterate over words i in both the source
and target utterances.

3.2.6 Joint Objective
For unsupervised DA, we optimize

Lunsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) =

Ltag (Θsrc,Θshd,Θtag) +

Lrec (Θsrc,Θtgt,Θshd,Θrec) +

Ladv (Θshd,Θadv) +

Lnadv (Θsrc,Θnadv) +

Lnadv (Θtgt,Θnadv) +

Lorth (Θsrc,Θtgt,Θshd)

with respect to all model parameters. In an online
setting, given an utterance we compute its recon-
struction, adversarial, orthogonality, and tagging
loss if in the source domain, and take a gradient
step on the sum of these losses.

3.3 Supervised DA

In supervised domain adaptation, we assume la-
beled data for both the source domain and the tar-
get domain. We can easily incorporate supervision
in the target domain by adding Ltag (Θtgt,Θshd,Θtag)
to the unsupervised DA objective:

Lsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) =

Lunsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) +

Ltag (Θtgt,Θshd,Θtag) (3)

We mention that the approach by Kim et al.
(2016c) is a special case of this objective; they op-

timize

Lsup2 (Θsrc,Θtgt,Θshd,Θtag) =Ltag (Θsrc,Θshd,Θtag) +

Ltag (Θtgt,Θshd,Θtag)
(4)

which is motivated as a neural extension of the fea-
ture augmentation method of Daumé III (2009).

4 Experiments

In this section, we conducted a series of exper-
iments to evaluate the proposed techniques on
datasets obtained from real usage.

4.1 Test Domains and Tasks
We test our approach on a suite of 5 Microsoft
Cortana domains with 2 separate tasks in spoken
language understanding: (1) intent classifica-
tion and (2) slot (label) tagging. The intent
classification task is a multi-class classification
problem with the goal of determining to which
one of the n intents a user utterance belongs
conditioning on the given domain. The slot
tagging task is a sequence labeling problem with
the goal of identifying entities and chunking of
useful information snippets in a user utterance.
For example, a user could say reserve a
table at joeys grill for thursday
at seven pm for five people. Then
the goal of the first task would be to classify
this utterance as MAKE RESERVATION intent
given the domain PLACES, and the goal of the
second task would be to tag joeys grill as
RESTAURANT, thursday as DATE, seven
pm as TIEM, and five as NUMBER PEOPLE.

Table 1 gives a summary of the 5 test domains.
We note that the domains have various levels of
label granularity.

Domain Intent Slot Description
calendar 23 43 Set appointments in calendar
comm. 38 45 Make calls & send messages
places 35 64 Find locations & directions

reminder 14 35 Remind tasks in a to-do list
weather 13 19 Get weather information

Table 1: The number of intents, the number of
slots and a short description of the test domains.

4.2 Experimental Setup
We consider 2 possible domain adaptation (DA)
scenarios: (1) adaptation of an engineered dataset
to a live user dataset and (2) adaptation of an old
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dataset to a new dataset. For the first DA scenario,
we test whether our approach can effectively make
a system adapt from experimental, engineered data
to real-world, live data. We use synthetic data
which domain experts manually create based on a
given domain schema2 before the system goes live
as the engineered data. We use transcribed dataset
from users’ speech input as the live user data. For
the second scenario, we test whether our approach
can effectively make a system adapt over time. A
large number of users will quickly generate a large
amount of data, and the usage pattern could also
change. We use annotation data over 1 month in
2013 (more precisely August of 2013) as our old
dataset, and use the whole data between 2014 and
2016 as our new dataset regardless of whether the
data type is engineered or live user.

As we describe in the earlier sections, we con-
sider both supervised and unsupervised DA. We
apply our DA approach with labeled data in the
target domain for the supervised setting and with
unlabeled data for the unsupervised one. We give
details of the baselines and variants of our ap-
proach below.

Unsupervised DA baselines and variants:

• SRC: a single LSTM model trained on a
source domain without DA techniques

• DAW : an unsupervised DA model with
a word-level decoder (i.e., re-generate each
word independently)

• DAS : an unsupervised DA model with a
sentence-level decoder described in Section
3.2

Supervised DA baselines and variants:

• SRC: a single LSTM model trained only on a
source domain

• TGT: a single LSTM model trained only on a
target domain

• Union: a single LSTM model trained on the
union of source and target domains.

• DA: a supervised DA model described in
Section 3.3

• DAA: DA with adversary domain training
2This is a semantic template that defines a set of intents

and slots for each domain according to the intended function-
ality of the system.

• DAU : DA with reasonably sufficient unla-
beled data

In our experiments, all the models were imple-
mented using Dynet (Neubig et al., 2017) and
were trained using Stochastic Gradient Descent
(SGD) with Adam (Kingma and Ba, 2015)—an
adaptive learning rate algorithm. We used the ini-
tial learning rate of 4× 10−4 and left all the other
hyper parameters as suggested in Kingma and Ba
(2015). Each SGD update was computed with-
out a minibatch with Intel MKL (Math Kernel Li-
brary)3. We used the dropout regularization (Sri-
vastava et al., 2014) with the keep probability of
0.4.

We encode user utterances with BiLSTMs as
described in Section 3.1. We initialize word em-
beddings with pre-trained embeddings used by
Lample et al. (2016). In the following sections,
we report intent classification results in accuracy
percentage and slot results in F1-score. To com-
pute slot F1-score, we used the standard CoNLL
evaluation script4

4.3 Results: Unsupervised DA

We first show our results in the unsupervised DA
setting where we have a labeled dataset in the
source domain, but only unlabeled data in the tar-
get domain. We assume that the amount of data
in both datasets is sufficient. Dataset statistics are
shown in Table 2.

The performance of the baselines and our model
variants are shown in Table 3. The left side of
the table shows the results of the DA scenario of
adapting from engineered data to live user data,
and the baseline which trained only on the source
domain (SRC) show a poor performance, yield-
ing on average 48.5% on the intent classification
and 42.7% F1-score on the slot tagging. Using our
DA approach with a word-level decoder (DAW )
shows a significant increase in performance in all 5
test domains, yielding on average 82.2% intent ac-
curacy and 80.5% slot F1-score. The performance
increases further using the DA approach with a
sentence-level decoder DAS , yielding on average
85.6% intent accuracy and 83.0% slot F1-score.

The right side of the table shows the results of
the DA scenario of adapting from old to new data,
and the baseline trained only on SRC also show

3https://software.intel.com/en-us/articles/intelr-mkl-and-
c-template-libraries

4http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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Engineered → Live User Old → New
Domain Train Train* Dev Test Train Train* Dev Test
calendar 16904 50000 1878 10k 13165 13165 1463 10k

communication 32072 50000 3564 10k 12631 12631 1403 10k
places 23410 50000 2341 10k 21901 21901 2433 10k

reminder 19328 50000 1933 10k 16245 16245 1805 10k
weather 20794 50000 2079 10k 15575 15575 1731 10k

AVG 23590 50000 2359 10k 15903 15903 1767 10k

Table 2: Data statistics for unsupervised domain adaptation; In the first row, the columns are adaptation
of engineered dataset to live user dataset, and and adaptation of old dataset to new dataset. In the second
row, columns are domain, size of labeled training, unlabeled training, development and test sets. *
denotes unlabeled data

Engineered → User Live Old → New
Task Domain SRC DAW DAS SRC DAW DAS

Intent

calendar 47.5 82.0 84.6 50.7 85.7 88.8
communication 45.8 75.3 81.2 49.4 83.2 86.2

places 48.5 83.7 86.3 51.7 88.1 91.1
reminder 50.7 83.9 88.7 53.3 88.8 92.8
weather 50.3 86.3 87.1 53.4 89.1 92.2

AVG 48.5 82.2 85.6 51.7 86.9 90.2

Slot

calendar 42.4 79.4 81.7 42.2 84.7 87.9
communication 41.1 75.3 79.1 41.5 85.3 89.1

places 40.2 81.6 83.8 44.1 85.4 88.7
reminder 42.6 83.5 85.7 47.4 87.6 91.2
weather 47.2 82.8 84.7 43.2 85.6 89.5

AVG 42.7 80.5 83.0 43.7 85.7 89.3

Table 3: Intent classification accuracy (%) and slot tagging F1-score (%) for the unsupervised domain
adaptation. The results that perform in each domain are in bold font.

Engineered → Live User Old → New
Domain Train Train* Dev Test Train Train* Dev Test
calendar 16904 1000 100 10k 13165 1000 100 10k

communication 32072 1000 100 10k 12631 1000 100 10k
places 23410 1000 100 10k 21901 1000 100 10k

reminder 19328 1000 100 10k 16245 1000 100 10k
weather 20794 1000 100 10k 15575 1000 100 10k

AVG 23590 1000 100 10k 15903 1000 100 10k

Table 4: Data statistics for supervised domain adaptation

Engineered → User Live Old → New
Domain SRC TGT Union DA DAA DAU SRC TGT Union DA DAA DAU

I

calendar 47.5 69.2 48.3 80.7 80.5 82.4 50.7 69.2 49.9 74.4 75.4 75.8
comm. 45.8 67.4 47.0 77.5 78.0 79.7 49.4 65.8 50.0 70.2 70.7 71.9
places 48.5 71.2 48.5 82.0 82.4 83.2 51.7 69.6 52.2 75.8 76.4 77.3

reminder 50.7 75.0 49.9 83.9 84.1 87.3 53.3 72.3 53.9 77.2 78.0 78.5
weather 50.3 73.8 49.6 84.3 84.7 85.6 53.4 71.4 52.7 76.9 78.1 79.2

AVG 48.5 71.3 48.7 81.7 81.9 83.6 51.7 69.7 51.7 74.9 75.7 76.5

S

calendar 42.4 64.9 43.0 76.1 76.7 77.1 42.2 61.8 41.6 68.0 66.9 69.3
comm. 41.1 62.0 40.4 73.3 72.1 73.8 41.5 61.1 44.9 67.2 66.3 68.4
places 40.2 61.8 39.0 72.1 72.0 72.9 44.1 64.6 47.7 70.1 68.7 72.5

reminder 42.6 65.1 42.6 76.8 75.7 80.0 47.4 70.9 44.2 78.4 76.2 78.9
weather 47.2 71.2 46.4 82.6 83.0 84.4 43.2 64.1 44.7 71.0 69.0 70.2

AVG 42.7 65.0 42.3 76.2 75.9 77.6 43.7 64.5 44.6 71.0 69.4 71.9

Table 5: Intent classification accuracy (%) and slot tagging F1-score (%) for the supervised domain
adaptation.

a similar poor performance, yielding on average
51.7% accuracy and 43.7% F1-score. DAW ap-
proach shows a significant performance increase
in all 5 test domains, yielding on average 86.9%

intent accuracy and 85.7% slot F1-score. Simi-
larly, the performance increases further with the
DAS with 90.2% intent accuracy and 89.3% F1-
score.
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Our DA approach variants yield average error
reductions of 72.04% and 79.71% for intent clas-
sification and 70.33% and 80.99% for slot tag-
ging. The results suggest that our DA approach
can quickly make a model adapt from synthetic
data to real-world data and from old data to new
data with the additional use of only 2 to 2.5 more
data from the target domain. Aside from the per-
formance boost itself, the approach shows even
more power since the new data from the target
down do not need to be labeled and it only re-
quires collecting a little more data from the tar-
get domain. We note that the model development
sets were created only from the source domain for
a fully unsupervised setting. But having the de-
velopment set from the target domain shows even
more boost in performance although not shown in
the results, and labeling only the development set
from the target domain is relatively less expensive
than labeling the whole dataset.

4.4 Results: Supervised DA

Second, we show our results in the supervised
DA setting where we have a sufficient amount of
labeled data in the source domain but relatively
insufficient amount of labeled data in the target
domain. Having more labeled data in the target
domain would most likely help with the perfor-
mance, but we intentionally made the setting more
disadvantageous for our DA approach to better
simulate real-world scenarios where there is usu-
ally lack of resources and time to label a large
amount of new data. For each personal assistant
test domain, we only used 1000 training utter-
ances to simulate scarcity of newly labeled data,
and dataset statistics are shown in Table 2. Unlike
the unsupervised DA scenario, here we used the
development sets created from the target domain
shown in Table 4.

The left side of Table 5 shows the results of the
supervised DA approach of adapting from engi-
neered data to live user data. The baseline trained
only on the source (SRC) shows on average 48.5%
intent accuracy and 42.7% slot F1-score. Train-
ing only on the target domain (TGT) increases the
performance to 71.3% and 65.0%, but training on
the union of the source and target domains (Union)
again brings the performance down to 48.7% and
42.3%. As shown in the unsupervised setting, us-
ing our DA approach (DA) shows significant per-
formance increase in all 5 test domains, yielding

on average 81.7% intent accuracy and 76.2% slot
tagging. The DA approach with adversary domain
training (DAA) shows similar performance com-
pared to that ofDA, and performance shows more
increase when using our DA approach with suf-
ficient unlabeled data5 (DAU ), yielding on aver-
age 83.6% and 77.6%. For the second scenario of
adapting from old to new dataset, the results show
a very similar trend in performance.

The results show that our supervised DA (DA)
approach also achieves a significant performance
gain in all 5 test domains, yielding average error
reductions of 68.18% and 51.35% for intent clas-
sification and 60.90% and 50.09% for slot tagging.
The results suggest that an effective domain adap-
tation can be done using the supervised DA by
having only a handful more data of 1k newly la-
beled data points. In addition, having both a small
amount of newly labeled data combined with suffi-
cient unlabeled data can help the models perform
even better. The poor performance of using the
union of both source and target domain data might
be due to the relatively very small size of the tar-
get domain data, overwhelmed by the data in the
source domain.

4.5 Results: Adversarial Domain
Classification Loss

Eng. → User
Task Domain RAND ADV

In
te

nt

calendar 84.6 81.1
communication 81.2 77.9

places 86.3 83.5
reminder 88.7 85.8
weather 87.1 84.2

AVG 85.6 82.5

Sl
ot

calendar 81.7 78.7
communication 79.1 75.7

places 83.8 80.6
reminder 85.7 82.4
weather 84.7 81.7

AVG 83.0 79.8

Table 6: Intent classification accuracy (%) and slot
tagging F1-score (%) for the unsupervised domain
adaptation with two different adversarial classifi-
cation losses – our claimed random domain pre-
dictions (RAND) and adversarial loss (ADVR) of
Ganin et al. (2016) as explained in 3.2.3.

5This data is used for unsupervised DA experiments (Ta-
ble 2).
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The impact on the performance of two different
adversarial classification losses are shown in Table
6. RAND represents the unsupervised DA model
with sentence-level decoder (DAS) using random
prediction loss. The ADV shows the performance
of same model using the adversarial loss of Ganin
et al. (2016) as described in 3.2.3. Unfortunately,
in the deployment shift scenario, using the adver-
sarial loss fails to provide any improvement on
intent classification accuracy and slot tagging F1
score, achieving 82.5% intent accuracy and 79.8%
slot F1 score. These results align with our hypoth-
esis that the adversarial loss using does not con-
fuse the classifier sufficiently.

4.6 Proxy A-distance

Eng. → User Old→ New
Domain dA dA
calendar 0.58 0.43
comm. 0.54 0.44
places 0.68 0.62

reminder 0.54 0.57
weather 0.57 0.54

AVG 0.58 0.52

Table 7: ProxyA-distance of resulting models: (1)
engineered and live user dataset and (2) old and
new dataset.

The results in shown in Table 7 show Proxy A-
distance(Ganin et al., 2016) to check if our ad-
versary domain training generalize well to the tar-
get domain. The distance between two datasets is
computed by

d̂A = 2(1− 2 min {ε, 1− ε}) (5)

where ε is a generalization error in discriminating
between the source and target datasets.

The range of d̂A distance is between 0 and
2.0. 0 is the best case where adversary training
successfully fake shared encoder to predict do-
mains. In other words, thanks to adversary train-
ing our model make the domain-invariant features
in shared encoder in order to generalize well to the
target domain.

4.7 Vocabulary distance between engineered
data and live user data

The results in shown in Table 8 show the discrep-
ancy between two datasets. We measure the de-
gree of overlap between vocabulary V employed

Eng. → User Old→ New
Domain dV dV
calendar 0.80 0.72
comm. 0.80 0.93
places 0.82 0.72

reminder 0.89 0.71
weather 0.72 0.73

AVG 0.80 0.76

Table 8: Distance between different datasets: (1)
engineered and live user dataset and (2) old and
new dataset.

by the two datasets. We simply take the Jaccard
coefficient between the two sets of such vocabu-
lary:

dV (s, t) = 1− JC(Vs, Vt),

where Vs is the set of vocabulary in source s do-
main, and Vt is the corresponding set for target
t domain and JC(A,B) = |A∩B|

|A∪B| is the Jaccard
coefficient, measuring the similarity of two sets.
The distance dV is the high it means that they are
not shared with many words. Overall, the distance
between old and new dataset are still far and the
number of overlapped are small, but better than
live user case.

5 Conclusion

In this paper, we have addressed two types of data
shift common in SLU applications: 1. transferring
from synthetic data to live user data (a deployment
shift), and 2. transferring from stale data to cur-
rent data (a temporal shift). Our method is based
on domain adaptation, treating the flawed train-
ing dataset as a source domain and the evaluation
dataset as a target domain. We use and build on
several recent advances in neural domain adapta-
tion such as adversarial training and domain sep-
aration network, proposing a new effective adver-
sarial training scheme based on randomized pre-
dictions. In both supervised and unsupervised
adaptation scenarios, our approach yields clear im-
provement over strong baselines.
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