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Abstract

We present neural network-based joint
models for Chinese word segmentation,
POS tagging and dependency parsing. Our
models are the first neural approaches for
fully joint Chinese analysis that is known
to prevent the error propagation problem
of pipeline models. Although word em-
beddings play a key role in dependency
parsing, they cannot be applied directly to
the joint task in the previous work. To
address this problem, we propose embed-
dings of character strings, in addition to
words. Experiments show that our mod-
els outperform existing systems in Chinese
word segmentation and POS tagging, and
perform preferable accuracies in depen-
dency parsing. We also explore bi-LSTM
models with fewer features.

1 Introduction

Dependency parsers have been enhanced by the
use of neural networks and embedding vectors
(Chen and Manning, 2014; Weiss et al., 2015;
Zhou et al., 2015; Alberti et al., 2015; Andor et al.,
2016; Dyer et al., 2015). When these dependency
parsers process sentences in English and other lan-
guages that use symbols for word separations, they
can be very accurate. However, for languages
that do not contain word separation symbols, de-
pendency parsers are used in pipeline processes
with word segmentation and POS tagging mod-
els, and encounter serious problems because of
error propagations. In particular, Chinese word
segmentation is notoriously difficult because sen-
tences are written without word dividers and Chi-
nese words are not clearly defined. Hence, the
pipeline of word segmentation, POS tagging and
dependency parsing always suffers from word seg-

mentation errors. Once words have been wrongly-
segmented, word embeddings and traditional one-
hot word features, used in dependency parsers,
will mistake the precise meanings of the original
sentences. As a result, pipeline models achieve
dependency scores of around 80% for Chinese.

A traditional solution to this error propagation
problem is to use joint models. Many Chinese
words play multiple grammatical roles with only
one grammatical form. Therefore, determining
the word boundaries and the subsequent tagging
and dependency parsing are closely correlated.
Transition-based joint models for Chinese word
segmentation, POS tagging and dependency pars-
ing are proposed by Hatori et al. (2012) and Zhang
et al. (2014). Hatori et al. (2012) state that de-
pendency information improves the performances
of word segmentation and POS tagging, and de-
velop the first transition-based joint word seg-
mentation, POS tagging and dependency parsing
model. Zhang et al. (2014) expand this and find
that both the inter-word dependencies and intra-
word dependencies are helpful in word segmenta-
tion and POS tagging.

Although the models of Hatori et al. (2012) and
Zhang et al. (2014) perform better than pipeline
models, they rely on the one-hot representation
of characters and words, and do not assume the
similarities among characters and words. In ad-
dition, not only words and characters but also
many incomplete tokens appear in the transition-
based joint parsing process. Such incomplete or
unknown words (UNK) could become important
cues for parsing, but they are not listed in dic-
tionaries or pre-trained word embeddings. Some
recent studies show that character-based embed-
dings are effective in neural parsing (Ballesteros
et al., 2015; Zheng et al., 2015), but their models
could not be directly applied to joint models be-
cause they use given word segmentations. To solve
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these problems, we propose neural network-based
joint models for word segmentation, POS tagging
and dependency parsing. We use both character
and word embeddings for known tokens and apply
character string embeddings for unknown tokens.

Another problem in the models of Hatori et al.
(2012) and Zhang et al. (2014) is that they rely
on detailed feature engineering. Recently, bidi-
rectional LSTM (bi-LSTM) based neural network
models with very few feature extraction are pro-
posed (Kiperwasser and Goldberg, 2016; Cross
and Huang, 2016). In their models, the bi-LSTM
is used to represent the tokens including their con-
text. Indeed, such neural networks can observe
whole sentence through the bi-LSTM. This bi-
LSTM is similar to that of neural machine trans-
lation models of Bahdanau et al. (2014). As a
result, Kiperwasser and Goldberg (2016) achieve
competitive scores with the previous state-of-the-
art models. We also develop joint models with n-
gram character string bi-LSTM.

In the experiments, we obtain state-of-the-art
Chinese word segmentation and POS tagging
scores, and the pipeline of the dependency model
achieves the better dependency scores than the
previous joint models. To the best of our knowl-
edge, this is the first model to use embeddings and
neural networks for Chinese full joint parsing.

Our contributions are summarized as follows:
(1) we propose the first embedding-based fully
joint parsing model, (2) we use character string
embeddings for UNK and incomplete tokens. (3)
we also explore bi-LSTM models to avoid the de-
tailed feature engineering in previous approaches.
(4) in experiments using Chinese corpus, we
achieve state-of-the-art scores in word segmenta-
tion, POS tagging and dependency parsing.

2 Model

All full joint parsing models we present in this
paper use the transition-based algorithm in Sec-
tion 2.1 and the embeddings of character strings
in Section 2.2. We present two neural networks:
the feed-forward neural network models in Sec-
tion 2.3 and the bi-LSTM models in Section 2.4.

2.1 Transition-based Algorithm for Joint
Segmentation, POS Tagging, and
Dependency Parsing

Based on Hatori et al. (2012), we use a modi-
fied arc-standard algorithm for character transi-

技术有了新的进展。

新的进展。

Stack (word-based) Buffer (character-based)

SH RL SH

技术

RR

了

AP SH

Technology have made new progress.

Left children
(word-based)

Right children
(word-based)

Transitions History:

有

Figure 1: Transition-based Chinese joint model
for word segmentation, POS tagging and depen-
dency parsing.

tions (Figure 1). The model consists of one buffer
and one stack. The buffer contains characters in
the input sentence, and the stack contains words
shifted from the buffer. The stack words may
have their child nodes. The words in the stack are
formed by the following transition operations.

• SH(t) (shift): Shift the first character of the
buffer to the top of the stack as a new word.

• AP (append): Append the first character of
the buffer to the end of the top word of the
stack.

• RR (reduce-right): Reduce the right word of
the top two words of the stack, and make the
right child node of the left word.

• RL (reduce-left): Reduce the left word of the
top two words of the stack, and make the left
child node of the right word.

The RR and RL operations are the same as those
of the arc-standard algorithm (Nivre, 2004a). SH
makes a new word whereas AP makes the current
word longer by adding one character. The POS
tags are attached with the SH(t) transition.

In this paper, we explore both greedy models
and beam decoding models. This parsing algo-
rithm works in both types. We also develop a
joint model of word segmentation and POS tag-
ging, along with a dependency parsing model. The
joint model of word segmentation and POS tag-
ging does not have RR and RL transitions.

2.2 Embeddings of Character Strings
First, we explain the embeddings used in the neu-
ral networks. Later, we explain details of the neu-
ral networks in Section 2.3 and 2.4.
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Both meaningful words and incomplete tokens
appear during transition-based joint parsing. Al-
though embeddings of incomplete tokens are not
used in previous work, they could become use-
ful features in several cases. For example, “南京
东路” (Nanjing East Road, the famous shopping
street of Shanghai) is treated as a single Chinese
word in the Penn Chinese Treebank (CTB) cor-
pus. There are other named entities of this form in
CTB, e.g, “北京西路” (Beijing West Road) and
“湘西路” (Hunan West Road). In these cases,
“南京” (Nanjing) and “北京” (Beijing) are loca-
tion words, while “东路” (East Road) and “西
路” (West Road) are sub-words. “东路” and “西
路” are similar in terms of their character com-
position and usage, which is not sufficiently con-
sidered in the previous work. Moreover, rep-
resentations of incomplete tokens are helpful for
compensating the segmentation ambiguity. Sup-
pose that the parser makes over-segmentation er-
rors and segments “南京东路” to “南京” and “东
路”. In this case, “东路” becomes UNK. However,
the models could infer that “东路” is also a loca-
tion, from its character composition and neighbor-
ing words. This could give models robustness of
segmentation errors. In our models, we prepare
the word and character embeddings in the pre-
training. We also use the embeddings of character
strings for sub-words and UNK which are not in
the pre-trained embeddings.

The characters and words are embedded in the
same vector space during pre-training. We pre-
pare the same training corpus with the segmented
word files and the segmented character files. Both
files are concatenated and learned by word2vec
(Mikolov et al., 2013). We use the embeddings
of 1M frequent words and characters. Words and
characters that are in the training set and do not
have pre-trained embeddings are given randomly
initialized embeddings. The development set and
the test set have out-of-vocabulary (OOV) tokens
for these embeddings.

The embeddings of the unknown character
strings are generated in the neural computation
graph when they are required. Consider a char-
acter string c1c2 · · · cn consisting of characters
ci. When this character string is not in the pre-
trained embeddings, the model obtains the embed-
dings v(c1c2 · · · cn) by the mean of each character
embeddings

∑n
i=1 v(ci). Embeddings of words,

characters and character strings have the same di-

Word embeddings Character embeddings

mean

Embedding layer

Hidden layer 1

Hidden layer 2

ReLU

ReLU

Character Strings

softmax

pgreedyt

ρ

Greedy output

Beam output

Figure 2: The feed-forward neural network model.
The greedy output is obtained at the second top
layer, while the beam decoding output is obtained
at the top layer. The input character strings are
translated into word embeddings if the embed-
dings of the character strings are available. Other-
wise, the embeddings of the character strings are
used.

mension and are chosen in the neural computation
graph. We avoid using the “UNK” vector as far as
possible, because this degenerates the information
about unknown tokens. However, models use the
“UNK” vector if the parser encounters characters
that are not in the pre-trained embeddings, though
this is quite uncommon.

2.3 Feed-forward Neural Network
2.3.1 Neural Network
We present a feed-forward neural network model
in Figure 2. The neural network for greedy train-
ing is based on the neural networks of Chen and
Manning (2014) and Weiss et al. (2015). We add
the dynamic generation of the embeddings of char-
acter strings for unknown tokens, as described in
Section 2.2. This neural network has two hidden
layers with 8,000 dimensions. This is larger than
Chen and Manning (2014) (200 dimensions) or
Weiss et al. (2015) (1,024 or 2,048 dimensions).
We use the ReLU for the activation function of
the hidden layers (Nair and Hinton, 2010) and the
softmax function for the output layer of the greedy
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Type Value

Size of h1,h2 8,000
Initial learning rate 0.01
Initial learning rate of beam decoding 0.001
Embedding vocabulary size 1M
Embedding vector size 200
Small embedding vector size 20
Minibatch size 200

Table 1: Parameters for neural network structure
and training.

neural network. There are three randomly initial-
ized weight matrices between the embedding lay-
ers and the softmax function. The loss function
L(θ) for the greedy training is

L(θ) = −
∑

s,t

log pgreedys,t +
λ

2
||θ||2,

pgreedys,t (β) ∝ exp


∑

j

wtjβj + bt


 ,

where t denotes one transition among the transi-
tion set T ( t ∈ T ). s denotes one element of the
single mini-batch. β denotes the output of the pre-
vious layer. w and b denote the weight matrix and
the bias term. θ contains all parameters. We use
the L2 penalty term and the Dropout. The back-
prop is performed including the word and charac-
ter embeddings. We use Adagrad (Duchi et al.,
2010) to optimize learning rate. We also consider
Adam (Kingma and Ba, 2015) and SGD, but find
that Adagrad performs better in this model. The
other learning parameters are summarized in Ta-
ble 1.

In our model implementation, we divide all sen-
tences into training batches. Sentences in the same
training batches are simultaneously processed by
the neural mini-batches. By doing so, the model
can parse all sentences of the training batch in the
number of transitions required to parse the longest
sentence in the batch. This allows the model to
parse more sentences at once, as long as the neural
mini-batch can be allocated to the GPU memory.
This can be applied to beam decoding.

2.3.2 Features
The features of this neural network are listed in
Table 2. We use three kinds of features: (1) fea-
tures obtained from Hatori et al. (2012) by remov-
ing combinations of features, (2) features obtained
from Chen and Manning (2014), (3) original fea-
tures related to character strings. In particular,

Type Features

Stack word and tags s0w, s1w, s2w
s0p, s1p, s2p

Stack 1 children and tags s0l0w, s0r0w, s0l1w, s0r1w
s0l0p, s0r0p, s0l1p, s0r1p

Stack 2 children s1l0w, s1r0w, s1l1w, s1r1w
Children of children s0l0lw, s0r0rw, s1l0lw, s1r0rw
Buffer characters b0c, b1c, b2c, b3c
Previously shifted words q0w, q1w
Previously shifted tags q0p, q1p
Character of q0 q0e
Parts of q0 word q0f1, q0f2, q0f3
Strings across q0 and buf. q0b1, q0b2, q0b3
Strings of buffer characters b0-2, b0-3, b0-4

b1-3, b1-4, b1-5
b2-4, b2-5, b2-6
b3-5, b3-6
b4-6

Length of q0 lenq0

Table 2: Features for the joint model. “q0” denotes
the last shifted word and “q1” denotes the word
shifted before “q0”. In “part of q0 word”, “f1”,
“f2” and “f3” denote sub-words of “q0”, which
are 1, 2 and 3 sequential characters including the
last character of “q0” respectively. In “strings
across q0 and buf.”, “q0bX” denotes “q0” and X
sequential characters of the buffer. This feature
could capture words that boundaries have not de-
termined yet. In “strings of buffer characters”,
“bX-Y” denotes sequential characters from theX-
th to Y -th character of the buffer. The suffix “e”
denotes the end character of the word. The dimen-
sion of the embedding of “length of q0” is 20.

the original features include sub-words, character
strings across the buffer and the stack, and charac-
ter strings in the buffer. Character strings across
the buffer and stack could capture the currently-
segmented word. To avoid using character strings
that are too long, we restrict the length of charac-
ter string to a maximum of four characters. Un-
like Hatori et al. (2012), we use sequential char-
acters of sentences for features, and avoid hand-
engineered combinations among one-hot features,
because such combinations could be automatically
generated in the neural hidden layers as distributed
representations (Hinton et al., 1986).

In the later section, we evaluate a joint model
for word segmentation and POS tagging. This
model does not use the children and children-of-
children of stack words as features.
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2.3.3 Beam Search
Structured learning plays an important role in pre-
vious joint parsing models for Chinese.1 In this
paper, we use the structured learning model pro-
posed by Weiss et al. (2015) and Andor et al.
(2016).

In Figure 2, the output layer for the beam de-
coding is at the top of the network. There are
a perceptron layer which has inputs from the
two hidden layers and the greedy output layer:
[h1,h2,p

greedy(y)]. This layer is learned by the
following cost function (Andor et al., 2016):

L(d∗1:j ; θ) = −
j∑

i=1

ρ(d∗1:i−1, d
∗
i ; θ)

+ ln
∑

d′1:j∈B1:j
exp

j∑

i=1

ρ(d′1:i−1, d
′
i; θ),

where d1:j denotes the transition path and d∗1:j de-
notes the gold transition path. B1:j is the set of
transition paths from 1 to j step in beam. ρ is
the value of the top layer in Figure 2. This train-
ing can be applied throughout the network. How-
ever, we separately train the last beam layer and
the previous greedy network in practice, as in An-
dor et al. (2016). First, we train the last percep-
tron layer using the beam cost function freezing
the previous greedy-trained layers. After the last
layer has been well trained, backprop is performed
including the previous layers. We notice that train-
ing the embedding layer at this stage could make
the results worse, and thus we exclude it. Note
that this whole network backprop requires consid-
erable GPU memory. Hence, we exclude particu-
larly large batches from the training, because they
cannot be on GPU memory. We use multiple beam
sizes for training because models can be trained
faster with small beam sizes. After the small beam
size training, we use larger beam sizes. The test of
this fully joint model takes place with a beam size
of 16.

Hatori et al. (2012) use special alignment steps
in beam decoding. The AP transition has size-2
steps, whereas the other transitions have a size-1
step. Using this alignment, the total number of
steps for an N -character sentence is guaranteed to
be 2N − 1 (excluding the root arc) for any transi-
tion path. This can be interpreted as the AP transi-
tion doing two things: appending characters and

1Hatori et al. (2012) report that structured learning with a
beam size of 64 is optimal.

resolving intra-word dependencies. This align-
ment stepping assumes that the intra-word depen-
dencies of characters to the right of the characters
exist in each Chinese word.

2.4 Bi-LSTM Model
In Section 2.3, we describe a neural network
model with feature extraction. Unfortunately, al-
though this model is fast and very accurate, it
has two problems: (1) the neural network can-
not see the whole sentence information. (2) it re-
lies on feature engineering. To solve these prob-
lems, Kiperwasser and Goldberg (2016) propose
a bi-LSTM neural network parsing model. Sur-
prisingly, their model uses very few features, and
bi-LSTM is applied to represent the context of the
features. Their neural network consists of three
parts: bi-LSTM, a feature extraction function and
a multilayer perceptron (MLP). First, all tokens in
the sentences are converted to embeddings. Sec-
ond, the bi-LSTM reads all embeddings of the sen-
tence. Third, the feature function extracts the fea-
ture representations of tokens from the bi-LSTM
layer. Finally, an MLP with one hidden layer out-
puts the transition scores of the transition-based
parser.

In this paper, we propose a Chinese joint pars-
ing model with simple and global features using
n-gram bi-LSTM and a simple feature extraction
function. The model is described in Figure 3.
We consider that Chinese sentences consist of to-
kens, including words, UNKs and incomplete to-
kens, which can have some meanings and are use-
ful for parsing. Such tokens appear in many parts
of the sentence and have arbitrary lengths. To
capture them, we propose the n-gram bi-LSTM.
The n-gram bi-LSTM read through characters
ci · · · ci+n−1 of the sentence (ci is the i-th charac-
ter). For example, the 1-gram bi-LSTM reads each
character, and the 2-gram bi-LSTM reads two con-
secutive characters cici+1. After the n-gram for-
ward LSTM reads character string ci · · · ci+n−1,
it next reads ci+1 · · · ci+n. The backward LSTM
reads from ci+1 · · · ci+n toward ci · · · ci+n−1. This
allows models to capture any n-gram character
strings in the input sentence.2 All n-gram in-
puts to bi-LSTM are given by the embeddings of
words and characters or the dynamically generated
embeddings of character strings, as described in

2At the end of the sentence of length N , character strings
ci · · · cN (N < i+n−1), which are shorter than n characters,
are used.
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Figure 3: The bi-LSTM model. (a): The Chinese
sentence “技术有了新的进展。” has been pro-
cessed. (b): Similar to the feed-forward neural
network model, the embeddings of words, char-
acters and character strings are used. In this fig-
ure, a word “技术”(technology) has its embed-
ding, while a token “技术有了”(technology have
made) does not.

Section 2.2. Although these arbitrary n-gram to-
kens produce UNKs, character string embeddings
can capture similarities among them. Following
the bi-LSTM layer, the feature function extracts
the corresponding outputs of the bi-LSTM layer.
We summarize the features in Table 3. Finally,
MLP and the softmax function outputs the transi-
tion probability. We use an MLP with three hidden
layers as for the model in Section 2.3. We train
this neural network with the loss function for the
greedy training.

Model Features

4 features s0w, s1w, s2w, b0c
8 features s0w, s1w, s2w, b0c

s0r0w, s0l0w, s1r0w, s1l0w

Table 3: Features for the bi-LSTM models. All
features are words and characters. We experiment
both four and eight features models.

#snt #oov

CTB-5 Train 18k -
Dev. 350 553
Test 348 278

CTB-7 Train 31k -
Dev. 10k 13k
Test 10k 13k

Table 4: Summary of datasets.

3 Experiments

3.1 Experimental Settings

We use the Penn Chinese Treebank 5.1 (CTB-
5) and 7 (CTB-7) datasets to evaluate our mod-
els, following the splitting of Jiang et al. (2008)
for CTB-5 and Wang et al. (2011) for CTB-7.
The statistics of datasets are presented in Table
4. We use the Chinese Gigaword Corpus for em-
bedding pre-training. Our model is developed for
unlabeled dependencies. The development set is
used for parameter tuning. Following Hatori et al.
(2012) and Zhang et al. (2014), we use the stan-
dard word-level evaluation with F1-measure. The
POS tags and dependencies cannot be correct un-
less the corresponding words are correctly seg-
mented.

We trained three models: SegTag, SegTagDep
and Dep. SegTag is the joint word segmentation
and POS tagging model. SegTagDep is the full
joint segmentation, tagging and dependency pars-
ing model. Dep is the dependency parsing model
which is similar to Weiss et al. (2015) and Andor
et al. (2016), but uses the embeddings of character
strings. Dep compensates for UNKs and segmen-
tation errors caused by previous word segmenta-
tion using embeddings of character strings. We
will examine this effect later.

Most experiments are conducted on GPUs, but
some of beam decoding processes are performed
on CPUs because of the large mini-batch size. The
neural network is implemented with Theano.
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Model Seg POS

Hatori+12 SegTag 97.66 93.61
Hatori+12 SegTag(d) 98.18 94.08
Hatori+12 SegTagDep 97.73 94.46
Hatori+12 SegTagDep(d) 98.26 94.64
M. Zhang+14 EAG 97.76 94.36
Y. Zhang+15 98.04 94.47

SegTag(g) 98.41 94.84
SegTag 98.60 94.76

Table 5: Joint segmentation and POS tagging
scores. Both scores are in F-measure. In Ha-
tori et al. (2012), (d) denotes the use of dictio-
naries. (g) denotes greedy trained models. All
scores for previous models are taken from Hatori
et al. (2012), Zhang et al. (2014) and Zhang et al.
(2015).

3.2 Results

3.2.1 Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS
tagging model (SegTag). Table 5 compares the
performance of segmentation and POS tagging us-
ing the CTB-5 dataset. We train two modles: a
greedy-trained model and a model trained with
beams of size 4. We compare our model to three
previous approaches: Hatori et al. (2012), Zhang
et al. (2014) and Zhang et al. (2015). Our SegTag
joint model is superior to these previous models,
including Hatori et al. (2012)’s model with rich
dictionary information, in terms of both segmen-
tation and POS tagging accuracy.

3.2.2 Joint Segmentation, POS Tagging and
Dependency Parsing

Table 6 presents the results of our full joint model.
We employ the greedy trained full joint model
SegTagDep(g) and the beam decoding model Seg-
TagDep. All scores for the existing models in this
table are taken from Zhang et al. (2014). Though
our model surpasses the previous best end-to-end
joint models in terms of segmentation and POS
tagging, the dependency score is slightly lower
than the previous models. The greedy model
SegTagDep(g) achieves slightly lower scores than
beam models, although this model works consid-
erably fast because it does not use beam decoding.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83 81.42

Table 6: Joint Segmentation, POS Tagging and
Dependency Parsing. Hatori et al. (2012)’s CTB-5
scores are reported in Zhang et al. (2014). EAG in
Zhang et al. (2014) denotes the arc-eager model.
(g) denotes greedy trained models.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 STD 97.67 94.28 81.63
M. Zhang+14 EAG 97.76 94.36 81.70
Y. Zhang+15 98.04 94.47 82.01

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83‡ 81.42‡

SegTag+Dep 98.60‡ 94.76‡ 82.60‡

Table 7: The SegTag+Dep model. Note that the
model of Zhang et al. (2015) requires other base
parsers. ‡ denotes that the improvement is statisti-
cally siginificant at p < 0.01 compared with Seg-
TagDep(g) using paired t-test.

3.2.3 Pipeline of Our Joint SegTag and Dep
Model

We use our joint SegTag model for the pipeline
input of the Dep model (SegTag+Dep). Both Seg-
Tag and Dep models are trained and tested by the
beam cost function with beams of size 4. Table
7 presents the results. Our SegTag+Dep model
performs best in terms of the dependency and
word segmentation. The SegTag+Dep model is
better than the full joint model. This is because
most segmentation errors of these models occur
around named entities. Hatori et al. (2012)’s align-
ment step assumes the intra-word dependencies in
words, while named entities do not always have
them. For example, SegTag+Dep model treats
named entity “海赛克”, a company name, as one
word, while the SegTagDep model divides this to
“海” (sea) and “赛克”, where “赛克” could be
used for foreigner’s name. For such words, Seg-
TagDep prefers SH because AP has size-2 step
of the character appending and intra-word depen-
dency resolution, which does not exist for named
entities. This problem could be solved by adding
a special transition AP_named_entity which
is similar to AP but with size-1 step and used
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Model Dep

Dep(g)-cs 80.51
Dep(g) 80.98

Table 8: SegTag+Dep(g) model with and without
character strings (cs) representations. Note that
we compare these models with greedy training for
simplicity’s sake.

only for named entities. Additionally, Zhang et al.
(2014)’s STD (arc-standard) model works slightly
better than Hatori et al. (2012)’s fully joint model
in terms of the dependency score. Zhang et al.
(2014)’s STD model is similar to our SegTag+Dep
because they combine a word segmentator and a
dependency parser using “deque” of words.

3.2.4 Effect of Character String Embeddings
Finally, we compare the two pipeline models of
SegTag+Dep to show the effectiveness of using
character string representations instead of “UNK”
embeddings. We use two dependency models with
greedy training: Dep(g) for dependency model
and Dep(g)-cs for dependency model without the
character string embeddings . In the Dep(g)-cs
model, we use the “UNK” embedding when the
embeddings of the input features are unavailable,
whereas we use the character string embeddings in
model Dep(g). The results are presented in Table
8. When the models encounter unknown tokens,
using the embeddings of character strings is better
than using the “UNK” embedding.

3.2.5 Effect of Features across the Buffer and
Stack

We test the effect of special features: q0bX in
Table 2. The q0bX features capture the tokens
across the buffer and stack. Joint transition-based
parsing models by Hatori et al. (2012) and Chen
and Manning (2014) decide POS tags of words
before corresponding word segmentations are de-
termined. In our model, the q0bX features cap-
ture words even if their segmentations are not de-
termined. We examine the effectiveness of these
features by training greedy full joint models with
and without them. The results are shown in Table
9. The q0bX features boost not only POS tagging
scores but also word segmentation scores.

3.2.6 CTB-7 Experiments
We also test the SegTagDep and SegTag+Dep
models on CTB-7. In these experiments, we no-

Model Seg POS Dep

SegTagDep(g) -q0bX 97.81 93.79 79.16
SegTagDep(g) 98.24 94.49 80.15

Table 9: SegTagDep model with and without
(-q0bX) features across the buffer and stack. We
compare these models with greedy training (g).

Model Seg POS Dep

Hatori+12 95.42 90.62 73.58
M. Zhang+14 STD 95.53 90.75 75.63

SegTagDep(g) 96.06 90.28 73.98
SegTagDep 95.86 90.91‡ 74.04
SegTag+Dep 96.23‡ 91.25‡ 75.28‡

Table 10: Results from SegTag+Dep and Seg-
TagDep applied to the CTB-7 corpus. (g) denotes
greedy trained models. ‡ denotes that the improve-
ment is statistically siginificant at p < 0.01 com-
pared with SegTagDep(g) using paired t-test.

tice that the MLP with four hidden layers performs
better than the MLP with three hidden layers, but
we could not find definite differences in the ex-
periments in CTB-5. We speculate that this is
caused by the difference in the training set size.
We present the final results with four hidden lay-
ers in Table 10.

3.2.7 Bi-LSTM Model
We experiment the n-gram bi-LSTMs models with
four and eight features listed in Table 3. We sum-
marize the result in Table 11. The greedy bi-
LSTM models perform slightly worse than the
previous models, but they do not rely on feature
engineering.

4 Related Work

Zhang and Clark (2008) propose an incremental
joint word segmentation and POS tagging model
driven by a single perceptron. Zhang and Clark
(2010) improve this model by using both charac-
ter and word-based decoding. Hatori et al. (2011)
propose a transition-based joint POS tagging and
dependency parsing model. Zhang et al. (2013)
propose a joint model using character structures
of words for constituency parsing. Wang et al.
(2013) also propose a lattice-based joint model
for constituency parsing. Zhang et al. (2015) pro-
pose joint segmentation, POS tagging and depen-
dency re-ranking system. This system requires
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Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70
SegTagDep (g) 98.24 94.49 80.15

Bi-LSTM 4feat.(g) 97.72 93.12 79.03
Bi-LSTM 8feat.(g) 97.70 93.37 79.38

Table 11: Bi-LSTM feature extraction model.
“4feat.” and “8feat.” denote the use of four and
eight features.

base parsers. In neural joint models, Zheng et al.
(2013) propose a neural network-based Chinese
word segmentation model based on tag inferences.
They extend their models for joint segmentation
and POS tagging. Zhu et al. (2015) propose the
re-ranking system of parsing results with recursive
convolutional neural network.

5 Conclusion

We propose the joint parsing models by the feed-
forward and bi-LSTM neural networks. Both of
them use the character string embeddings. The
character string embeddings help to capture the
similarities of incomplete tokens. We also ex-
plore the neural network with few features using
n-gram bi-LSTMs. Our SegTagDep joint model
achieves better scores of Chinese word segmenta-
tion and POS tagging than previous joint models,
and our SegTag and Dep pipeline model achieves
state-of-the-art score of dependency parsing. The
bi-LSTM models reduce the cost of feature engi-
neering.
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