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Abstract

Implicit discourse relation classification is
of great challenge due to the lack of con-
nectives as strong linguistic cues, which
motivates the use of annotated implicit
connectives to improve the recognition.
We propose a feature imitation frame-
work in which an implicit relation net-
work is driven to learn from another neu-
ral network with access to connectives,
and thus encouraged to extract similarly
salient features for accurate classification.
We develop an adversarial model to en-
able an adaptive imitation scheme through
competition between the implicit network
and a rival feature discriminator. Our
method effectively transfers discriminabil-
ity of connectives to the implicit features,
and achieves state-of-the-art performance
on the PDTB benchmark.

1 Introduction

Discourse relations connect linguistic units such
as clauses and sentences to form coherent seman-
tics. Identification of discourse relations can ben-
efit a variety of downstream applications includ-
ing question answering (Liakata et al., 2013), ma-
chine translation (Li et al., 2014), text summariza-
tion (Gerani et al., 2014), opinion spam detection
(Chen and Zhao, 2015), and so forth.
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Tong University (No. 14JCRZ04), and Key Project of
National Society Science Foundation of China (No. 15-
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Connectives (e.g., but, so, etc) are one of the
most critical linguistic cues for identifying dis-
course relations. When explicit connectives are
present in the text, a simple frequency-based map-
ping is sufficient to achieve over 85% classifica-
tion accuracy (Xue et al., 2016; Li et al., 2016).
In contrast, implicit discourse relation recognition
has long been seen as a challenging problem, with
the best accuracy so far still lower than 50% (Chen
et al., 2015). In the implicit case, discourse rela-
tions are not lexicalized by connectives, but to be
inferred from relevant sentences (i.e., arguments).
For example, the following two adjacent sentences
Arg1 and Arg2 imply relation Cause (i.e., Arg2 is
the cause of Arg1).

[Arg1]: Never mind.

[Arg2]: You already know the answer.

[Implicit connective]: Because

[Discourse relation]: Cause

Various attempts have been made to directly in-
fer underlying relations by modeling the seman-
tics of the arguments, ranging from feature-based
methods (Lin et al., 2009; Pitler et al., 2009) to the
very recent end-to-end neural models (Chen et al.,
2016a; Qin et al., 2016c). Despite impressive per-
formance, the absence of strong explicit connec-
tive cues has made the inference extremely hard
and hindered further improvement. In fact, even
the human annotators would make use of connec-
tives to aid relation annotation. For instance, the
popular Penn Discourse Treebank (PDTB) bench-
mark data (Prasad et al., 2008) was annotated by
first inserting a connective expression (i.e., im-
plicit connective, as shown in the above example)
manually, and determining the abstract relation by
combining both the implicit connective and con-
textual semantics.
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Therefore, the huge performance gap between
explicit and implicit parsing (namely, 85% vs
50%), as well as the human annotation practice,
strongly motivates to incorporate connective infor-
mation to guide the reasoning process. This paper
aims to advance implicit parsing by making use of
annotated implicit connectives available in train-
ing data. Few recent work has explored such com-
bination. Zhou et al. (2010) developed a two-step
approach by first predicting implicit connectives
whose sense is then disambiguated to obtain the
relation. However, the pipeline approach usually
suffers from error propagation, and the method it-
self has relied on hand-crafted features which do
not necessarily generalize well. Other research
leveraged explicit connective examples for data
augmentation (Rutherford and Xue, 2015; Braud
and Denis, 2015; Ji et al., 2015; Braud and Denis,
2016). Our work is orthogonal and complemen-
tary to this line.

In this paper, we propose a novel neural method
that incorporates implicit connectives in a princi-
pled adversarial framework. We use deep neu-
ral models for relation classification, and take the
intuition that, sentence arguments integrated with
connectives would enable highly discriminative
neural features for accurate relation inference, and
an ideal implicit relation classifier, even though
without access to connectives, should mimic the
connective-augmented reasoning behavior by ex-
tracting similarly salient features. We therefore
setup a secondary network in addition to the im-
plicit relation classifier, building upon connective-
augmented inputs and serving as a feature learning
model for the implicit classifier to emulate.

Methodologically, however, feature imitation in
our problem is challenging due to the semantic gap
induced by adding the connective cues. It is nec-
essary to develop an adaptive scheme to flexibly
drive learning and transfer discriminability. We
devise a novel adversarial approach which enables
a self-calibrated imitation mechanism. Specifi-
cally, we build a discriminator which distinguishes
between the features by the two counterpart net-
works. The implicit relation network is then
trained to correctly classify relations and simulta-
neously to fool the discriminator, resulting in an
adversarial framework. The adversarial mecha-
nism has been an emerging method in different
context, especially for image generation (Good-
fellow et al., 2014) and domain adaptation (Ganin

et al., 2016; Chen et al., 2016c). Our adversar-
ial framework is unique to address neural fea-
ture emulation between two models. Besides, to
the best of our knowledge, this is the first adver-
sarial approach in the context of discourse pars-
ing. Compared to previous connective exploit-
ing work (Zhou et al., 2010; Xu et al., 2012),
our method provides a new integration paradigm
and an end-to-end procedure that avoids inefficient
feature engineering and error propagation.

Our method is evaluated on the PDTB 2.0
benchmark in a variety of experimental settings.
The proposed adversarial model greatly improves
over standalone neural models and previous best-
performing approaches. We also demonstrate that
our implicit recognition network successfully imi-
tates and extracts crucial hidden representations.

We begin by briefly reviewing related work in
section 2. Section 3 presents the proposed adver-
sarial model. Section 4 shows substantially im-
proved experimental results over previous meth-
ods. Section 5 discusses extensions and future
work.

2 Related Work

2.1 Implicit Discourse Relation Recognition

There has been a surge of interest in implicit dis-
course parsing since the release of PDTB (Prasad
et al., 2008), the first large discourse corpus distin-
guishing implicit examples from explicit ones. A
large set of work has focused on direct classifica-
tion based on observed sentences, including struc-
tured methods with linguistically-informed fea-
tures (Lin et al., 2009; Pitler et al., 2009; Zhou
et al., 2010), end-to-end neural models (Qin et al.,
2016b,c; Chen et al., 2016a; Liu and Li, 2016), and
combined approaches (Ji and Eisenstein, 2015; Ji
et al., 2016). However, the lacking of connec-
tive cues makes learning purely from contextual
semantics full of challenges.

Prior work has attempted to leverage connec-
tive information. Zhou et al. (2010) also incorpo-
rate implicit connectives, but in a pipeline man-
ner by first predicting the implicit connective with
a language model and determining discourse rela-
tion accordingly. Instead of treating implicit con-
nectives as intermediate prediction targets which
can suffer from error propagation, we use the con-
nectives to induce highly discriminative features to
guide the learning of an implicit network, serving
as an adaptive regularization mechanism for en-
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hanced robustness and generalization. Our frame-
work is also end-to-end, avoiding costly feature
engineering. Another notable line aims at adapt-
ing explicit examples for data synthesis (Biran
and McKeown, 2013; Rutherford and Xue, 2015;
Braud and Denis, 2015; Ji et al., 2015), multi-task
learning (Lan et al., 2013; Liu et al., 2016), and
word representation (Braud and Denis, 2016). Our
work is orthogonal and complementary to these
methods, as we use implicit connectives which
have been annotated for implicit examples.

2.2 Adversarial Networks

Deep neural networks have gained impressive suc-
cess in various natural language processing tasks
(Wang et al., 2016; Zhang et al., 2016b; Cai
et al., 2017), in which adversarial networks have
been shown especially effective in deep genera-
tive modeling (Goodfellow et al., 2014) and do-
main adaptation (Ganin et al., 2016). Generative
adversarial nets (Goodfellow et al., 2014) learn
to produce realistic samples through competition
between a generator and a real/fake discrimina-
tor. Professor forcing (Lamb et al., 2016) ap-
plies a similar idea to improve long-term gener-
ation of a recurrent neural language model. Other
approaches (Chen et al., 2016b; Hu et al., 2017;
Liang et al., 2017) extend the framework for con-
trollable image/text generation. Li et al. (2015);
Salimans et al. (2016) propose feature matching
which trains generators to match the statistics of
real/fake examples. Their features are extracted
by the discriminator rather than the classifier net-
works as in our case. Our work differs from the
above since we consider the context of discrimi-
native modeling. Adversarial domain adaptation
forces a neural network to learn domain-invariant
features using a classifier that distinguishes the
domain of the network’s input data based on the
hidden feature. Our adversarial framework is dis-
tinct in that besides the implicit relation network
we construct a second neural network serving as a
teacher model for feature emulation.

To the best of our knowledge, this is the first
to employ the idea of adversarial learning in the
context of discourse parsing. We propose a novel
connective exploiting scheme based on feature im-
itation, and to this end derive a new adversar-
ial framework, achieving substantial performance
gain over existing methods. The proposed ap-
proach is generally applicable to other tasks for

utilizing any indicative side information. We give
more discussions in section 5.

3 Adversarial Method

Discourse connectives are key indicators for dis-
course relation. In the annotation procedure of
the PDTB implicit relation benchmark, annotators
inserted implicit connective expressions between
adjacent sentences to lexicalize abstract relations
and help with final decisions. Our model aims at
making full use of the provided implicit connec-
tives at training time to regulate learning of im-
plicit relation recognizer, encouraging extraction
of highly discriminative semantics from raw argu-
ments, and improving generalization at test time.
Our method provides a novel adversarial frame-
work that leverages connective information in a
flexible adaptive manner, and is efficiently trained
end-to-end through standard back-propagation.

The basic idea of the proposed approach is sim-
ple. We want our implicit relation recognizer,
which predicts the underlying relation of sen-
tence arguments without discourse connective, to
have prediction behaviors close to a connective-
augmented relation recognizer which is provided
with a discourse connective in addition to the ar-
guments. The connective-augmented recognizer is
in analogy to an annotator with the help of connec-
tives as in the human annotation process, and the
implicit recognizer would be improved by learn-
ing from such an “informed” annotator. Specif-
ically, we want the latent features extracted by
the two models to match as closely as possible,
which explicitly transfers the discriminability of
the connective-augmented representations to im-
plicit ones.

To this end, instead of manually selecting a
closeness metric, we take advantage of the ad-
versarial framework by constructing a two-player
zero-sum game between the implicit recognizer
and a rival discriminator. The discriminator at-
tempts to distinguish between the features ex-
tracted by the two relation models, while the im-
plicit relation model is trained to maximize the ac-
curacy on implicit data, and at the same time to
confuse the discriminator.

In the next we first present the overall architec-
ture of the proposed approach (section 3.1), then
develop the training procedure (section 3.2). The
components are realized as deep (convolutional)
neural networks, with detailed modeling choices
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x1:  Never mind. 
x2:  You Know the answer. i-CNN

a-CNN

+implicit connective c:  Because Discriminator  D Classifier  C

x1:  Never mind. 
x2:  Because You Know the answer.

HI

HA

Figure 1: Architecture of the proposed method. The framework contains three main components: 1)
an implicit relation network i-CNN over raw sentence arguments, 2) a connective-augmented relation
network a-CNN whose inputs are augmented with implicit connectives, and 3) a discriminator distin-
guishing between the features by the two networks. The features are fed to the final classifier for relation
classification. The discriminator and i-CNN form an adversarial pair for feature imitation. At test time,
the implicit network i-CNN with the classifier is used for prediction.

discussed in section 3.3.

3.1 Model Architecture
Let (x, y) be a pair of input and output of implicit
relation classification, where x = (x1,x2) is a
pair of sentence arguments, and y is the underlying
discourse relation. Each training example also in-
cludes an annotated implicit connective c that best
expresses the relation. Figure 1 shows the archi-
tecture of our framework.

The neural model for implicit relation clas-
sification (i-CNN in the figure) extracts latent
representation from the arguments, denoted as
HI(x1,x2), and feeds the feature into a classifier
C for final prediction C(HI(x1,x2)). For ease
of notation, we will also use HI(x) to denote the
latent feature on data x.

The second relation network (a-CNN) takes
as inputs the sentence arguments along with an
implicit connective, to induce the connective-
augmented representation HA(x1,x2, c), and ob-
tains relation prediction C(HA(x1,x2, c)). Note
that the same final classifierC is used for both net-
works, so that the feature representations by the
two networks are ensured to be within the same
semantic space, enabling feature emulation as pre-
sented shortly.

We further pair the implicit network with a ri-
val discriminator D to form our adversarial game.
The discriminator is to differentiate between the
reasoning behaviors of the implicit network i-CNN
and the augmented network a-CNN. Specifically,
D is a binary classifier that takes as inputs a la-

tent feature H derived from either i-CNN or a-
CNN given appropriate data (where implicit con-
nectives is either missing or present, respectively).
The output D(H) estimates the probability that
H comes from the connective-augmented a-CNN
rather than i-CNN.

3.2 Training Procedure
The system is trained through an alternating op-
timization procedure that updates the components
in an interleaved manner. In this section, we first
present the training objective for each component,
and then give the overall training algorithm.

Let θD denote the parameters of the discrimina-
tor. The training objective ofD is straightforward,
i.e., to maximize the probability of correctly dis-
tinguishing the input features:

max
θD
LD = E(x,c,y)∼data

[
logD(HA(x, c);θD)+

log(1−D(HI(x);θD))
]
,

(1)

where E(x,c,y)∼data[·] denotes the expectation in
terms of the data distribution.

We denote the parameters of the implicit net-
work i-CNN and the classifier C as θI and θC ,
respectively. The model is then trained to (a)
correctly classify relations in training data and
(b) produce salient features close to connective-
augmented ones. The first objective can be ful-
filled by minimizing the usual cross-entropy loss:

LI,C(θI ,θC) = E(x,y)∼data

[
J
(
C(HI(x;θI);θC), y

)]
,

(2)
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Algorithm 1 Adversarial Model for Implicit Recognition

Input: Training data {(x, c, y)n}
Parameters: λ1, λ2 – balancing parameters

1: Initialize {θI ,θC} and {θA} by minimizing
Eq.(2) and Eq.(4), respectively

2: repeat
3: Train the discriminator through Eq.(1)
4: Train the relation models through Eq.(5)
5: until convergence

Output: Adversarially enhanced implicit relation
network i-CNN with classifier C for prediction

where J(p, y) = −∑
k I(y = k) log pk is the

cross-entropy loss between predictive distribution
p and ground-truth label y. We achieve objective
(b) by minimizing the discriminator’s chance of
correctly telling apart the features:

LI(θI) = Ex∼data

[
log
(
1−D(HI(x;θI))

)]
. (3)

The parameters of the augmented network a-
CNN, denoted as θA, can be learned by simply fit-
ting to the data, i.e., minimizing the cross-entropy
loss as follows:

LA(θA) = E(x,c,y)∼data

[
J
(
C(HA(x, c;θA)), y

)]
. (4)

As mentioned above, here we use the same classi-
fierC as for the implicit network, forcing a unified
feature space of both networks. We combine the
above objectives Eqs.(2)-(4) of the relation classi-
fiers and minimize the joint loss:

min
θI ,θA,θC

LI,A,C = LI,C(θI ,θC) + λ1LI(θI) + λ2LA(θA),

(5)

where λ1 and λ2 are two balancing parameters cal-
ibrating the weights of the classification losses and
the feature-regulating loss. In practice, we pre-
train the implicit and augmented networks inde-
pendently by minimizing Eq.(2) and Eq.(4), re-
spectively. In the adversarial training process,
we found setting λ2 = 0 gives stable conver-
gence. That is, the connective-augmented features
are fixed after the pre-training stage.

Algorithm 1 summarizes the training procedure,
where we interleave the optimization of Eq.(1) and
Eq.(5) at each iteration. More practical details are
provided in section 4. We instantiate all modules
as neural networks (section 3.3) which are differ-
entiable, and perform the optimization efficiently
through standard stochastic gradient descent and
back-propagation.

Concat

Max-pooling

Convolution

Embedding

Arg1:  Never mind. Arg2:  You know the answer.

H(x)

Classi�cation: Cause Discrimination

Figure 2: Neural structure of i-CNN. Two sets
of convolutional filters are shown, with the cor-
responding features in red and blue, respectively.
The weights of the filters on two input arguments
are tied.

Through Eq.(1) and Eq.(3), the discriminator
and the implicit relation network follow a min-
imax competition, which drives both to improve
until the implicit feature representations are close
to the connective-augmented latent representa-
tions, encouraging the implicit network to ex-
tract highly discriminative features from raw sen-
tence arguments for relation classification. Alter-
natively, we can see Eq.(3) as an adaptive regu-
larization on the implicit model, which, compared
to pre-fixed regularizors such as `2-regularization,
provides a more flexible, self-calibrated mecha-
nism to improve generalization ability.

0 1

Input

Gate

Output /

HI HA/

Gate

Figure 3: Neural structure of the discriminator D.
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3.3 Component Structures

We have presented our adversarial framework for
implicit relation classification. We now discuss the
model realization of each component. All com-
ponents of the framework are parameterized with
neural networks. Distinct roles of the modules in
the framework lead to different modeling choices.

Relation Classification Networks Figure 2 il-
lustrates the structure of the implicit relation net-
work i-CNN. We use a convolutional network as
it is a common architectural choice for discourse
parsing. The network takes as inputs the word
vectors of the tokens in each sentence argument,
and maps each argument to intermediate features
through a shared convolutional layer. The result-
ing representations are then concatenated and fed
into a max pooling layer to select most salient fea-
tures as the final representation. The final classi-
fier C is a simple fully-connected layer followed
by a softmax classifier.

The connective-augmented network a-CNN has
a similar structure as i-CNN, wherein implicit con-
nective is appended to the second sentence as in-
put. The key difference from i-CNN is that here we
adopt average k-max pooling, which takes the av-
erage of the top-k maximum values in each pool-
ing window. The reason is to prevent the net-
work from solely selecting the connective induced
features (which are typically the most salient fea-
tures) which would be the case when using max
pooling, but instead force it to also attend to con-
textual features derived from the arguments. This
facilitates more homogeneous output features of
the two networks, and thus facilitates feature imi-
tation. In all the experiments we fixed k = 2.

Discriminator The discriminator is a binary
classifier to identify the correct source of an in-
put feature vector. To make it a strong rival to the
feature imitating network (i-CNN), we model the
discriminator as a multi-layer perceptron (MLP)
enhanced with gated mechanism for efficient in-
formation flow (Srivastava et al., 2015; Qin et al.,
2016c), as shown in Figure 3.

4 Experiments

We demonstrate the effectiveness of our approach
both quantitatively and qualitatively with exten-
sive experiments. We evaluate prediction perfor-
mance on the PDTB benchmark in different set-
tings. Our method substantially improves over a

diverse set of previous models, especially in the
practical multi-class classification task. We per-
form in-depth analysis of the model behaviors, and
show our adversarial framework successfully en-
ables the implicit relation model to imitate and
learn discriminative features.

4.1 Experiment Setup

We use PDTB 2.01, one of the largest manually
annotated discourse relation corpus. The dataset
contains 16,224 implicit relation instances in total,
with three levels of senses: Level-1 Class, Level-2
Type, and Level-3 Subtypes. The 1st level con-
sists of four major relation Classes: COMPARI-
SON, CONTINGENCY, EXPANSION and TEMPO-
RAL. The 2nd level contains 16 Types.

To make extensive comparison with prior work
of implicit discourse relation classification, we
evaluate on two popular experimental settings: 1)
multi-class classification for 2nd-level types (Lin
et al., 2009; Ji and Eisenstein, 2015), and 2) one-
versus-others binary classifications for 1st-level
classes (Pitler et al., 2009). We describe the de-
tailed configurations in the following respective
sections. We will focus our analysis on the multi-
class classification setting, which is most realis-
tic in practice and serves as a building block for
a complete discourse parser such as that for the
shared tasks of CoNLL-2015 and 2016 (Xue et al.,
2015, 2016).

Model Training Here we provide the detailed
architecture configurations of each component we
used in the experiments.

• Throughout the experiments i-CNN and a-
CNN contain 3 sets of convolutional filters
with the filter sizes selected on the dev set.
Table 1 lists the filter configurations of the
convolutional layer in i-CNN and a-CNN in
different tasks. As described in section 3.3,
following the convolutional layer is a max
pooling layer in i-CNN, and an average k-
max pooling layer with k = 2 in a-CNN.

• The final single-layer classifier C contains
512 neurons with tanh activation function.

• The discriminator D consists of 4 fully-
connected layers, with 2 gated pathways from
layer 1 to layer 3 and layer 4 (see Figure 3).

1http://www.seas.upenn.edu/∼pdtb/
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Task Filter sizes Filter number

PDTB-Lin 2, 4, 8 3×256

PDTB-Ji 2, 5, 10 3×256

One-vs-all 2, 5, 10 3×1024

Table 1: The convolutional architectures of i-CNN
and a-CNN in different tasks (section 4). For ex-
ample, in PDTB-Lin, we use 3 sets of filters, each
of which is of size 2, 4, and 8, respectively; and
each set has 256 filters.

The size of each layer is set to 1024 and is
fixed in all the experiments.

• We set the dimension of the input word vec-
tors to 300 and initialize with pre-trained
word2vec (Mikolov et al., 2013). The max-
imum length of sentence argument is set to
80. Truncation and zero-padding are applied
when necessary.

All experiments were performed on a TITAN-X
GPU and 128GB RAM, with neural implementa-
tion based on Tensorflow2.

For adversarial model training, it is critical to
keep balance between the progress of the two play-
ers. We use a simple strategy which at each itera-
tion optimizes the discriminator and the implicit
relation network on a randomly-sampled mini-
batch. We found this is enough to stabilize the
training. The neural parameters are trained using
AdaGrad (Duchi et al., 2011) with an initial learn-
ing rate of 0.001. For the balancing parameters
in Eq.(5), we set λ1 = 0.1, while λ2 = 0. That
is, after the initialization stage the weights of the
connective-augmented network a-CNN are fixed.
This has been shown capable of giving stable and
good predictive performance for our system.

4.2 Implicit Relation Classification

We will mainly focus on the general multi-class
classification problem in two alternative settings
adopted in prior work, showing the superiority of
our model over previous state of the arts. We
perform in-depth comparison with carefully de-
signed baselines, providing empirical insights into
the working mechanism of the proposed frame-
work. For broader comparisons we also report the
performance in the one-versus-all setting.

2https://www.tensorflow.org

Model PDTB-Lin PDTB-Ji

1 Word-vector 34.07 36.86
2 CNN 43.12 44.51
3 Ensemble 42.17 44.27
4 Multi-task 43.73 44.75
5 `2-reg 44.12 45.33

6 Lin et al. (2009) 40.20 -
7 Lin et al. (2009) - 40.66

+Brown clusters
8 Ji and Eisenstein

(2015)
- 44.59

9 Qin et al. (2016a) 43.81 45.04

10 Ours 44.65 46.23

Table 2: Accuracy (%) on the test sets of the
PDTB-Lin and PDTB-Ji settings for multi-class
classification. Please see the text for more details.

Multi-class Classifications
We first adopt the standard PDTB splitting con-
vention following (Lin et al., 2009), denoted as
PDTB-Lin, where sections 2-21, 22, and 23 are
used as training, dev, and test sets, respectively.
The most frequent 11 types of relations are se-
lected in the task. During training, instances with
more than one annotated relation types are con-
sidered as multiple instances, each of which has
one of the annotations. At test time, a prediction
that matches one of the gold types is considered as
correct. The test set contains 766 examples. More
details are in (Lin et al., 2009). An alternative,
slightly different multi-class setting is used in (Ji
and Eisenstein, 2015), denoted as PDTB-Ji, where
sections 2-20, 0-1, and 21-22 are used as training,
dev, and test sets, respectively. The resulting test
set contains 1039 examples. We also evaluate in
this setting for thorough comparisons.

Table 2 shows the classification accuracy in
both of the settings. We see that our model
(Row 10) achieves state-of-the-art performance,
greatly outperforming previous methods (Rows 6-
9) with various modeling paradigms, including the
linguistic feature-based model (Lin et al., 2009),
pure neural methods (Qin et al., 2016c), and com-
bined approach (Ji and Eisenstein, 2015).

To obtain better insights into the working mech-
anism of our method, we further compare with
a set of carefully selected baselines as shown
in Rows 1-5. 1) “Word-vector” sums over the
word vectors for sentence representation, show-
ing the base effect of word embeddings. 2)
“CNN” is a standalone convolutional net having
the exact same architecture with our implicit rela-
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tion network. Our model trained within the pro-
posed framework provides significant improve-
ment, showing the benefits of utilizing implicit
connectives at training time. 3) “Ensemble” has
the same neural architecture with the proposed
framework except that the input of a-CNN is not
augmented with implicit connectives. This essen-
tially is an ensemble of two implicit recognition
networks. We see that the method performs even
inferior to the single CNN model. This further
confirms the necessity of exploiting connective in-
formation. 4) “Multi-task” is the convolutional net
augmented with an additional task of simultane-
ously predicting the implicit connectives based on
the network features. As a straightforward way of
incorporating connectives, we see that the method
slightly improves over the stand-alone CNN, while
falling behind our approach with a large margin.
This indicates that our proposed feature imitation
is a more effective scheme for making use of im-
plicit connectives. 5) At last, “`2-reg” also imple-
ments feature mimicking by imposing an `2 dis-
tance penalty between the implicit relation fea-
tures and connective-augmented features. We see
that the simple model has obtained improvement
over previous best-performing systems in both
settings, further validating the idea of imitation.
However, in contrast to the fixed `2 regularization,
our adversarial framework provides an adaptive
mechanism, which is more flexible and performs
better as shown in the table.

Model COMP. CONT. EXP. TEMP.

Pitler et al. (2009) 21.96 47.13 - 16.76
Qin et al. (2016c) 41.55 57.32 71.50 35.43
Zhang et al. (2016a) 35.88 50.56 71.48 29.54
Zhou et al. (2010) 31.79 47.16 70.11 20.30
Liu and Li (2016) 36.70 54.48 70.43 38.84
Chen et al. (2016a) 40.17 54.76 - 31.32

Ours 40.87 54.56 72.38 36.20

Table 3: Comparisons of F1 scores (%) for binary
classification.

One-versus-all Classifications
We also report the results of four one-versus-all
binary classifications for more comparisons with
prior work. We follow the conventional experi-
mental setting (Pitler et al., 2009) by selecting sec-
tions 2-20, 21-22, and 0-1 as training, dev, and test
sets. Table 4 lists the statistics of the data.

Following previous work, Table 3 reports the F1

Relation Train Dev Test
Comparison 1942/1942 197/986 152/894
Contigency 3342/3342 295/888 279/767
Expansion 7004/7004 671/512 574/472
Temporal 760/760 64/1119 85/961

Table 4: Distributions of positive and negative in-
stances from the train/dev/test sets in four binary
relation classification tasks.

scores. Our method outperforms most of the prior
systems in all the tasks. We achieve state-of-the-
art performance in recognition of the Expansion
relation, and obtain comparable scores with the
best-performing methods in each of the other rela-
tions, respectively. Notably, our feature imitation
scheme greatly improves over (Zhou et al., 2010)
which leverages implicit connectives as an inter-
mediate prediction task. This provides additional
evidence for the effectiveness of our approach.

4.3 Qualitative Analysis

We now take a closer look into the modeling be-
havior of our framework, by investigating the pro-
cess of the adversarial game during training, as
well as the feature imitation effects.

Figure 4 demonstrates the training progress of
different components. The a-CNN network keeps
high predictive accuracy as implicit connectives
are given, showing the importance of connective
cues. The rise-and-fall patterns in the accuracy
of the discriminator clearly show its competition
with the implicit relation network i-CNN as train-
ing goes. At first few iterations the accuracy of the
discriminator increases quickly to over 0.9, while
at late stage the accuracy drops to around 0.6,
showing that the discriminator is getting confused
by i-CNN (an accuracy of 0.5 indicates full con-
fusion). The i-CNN network keeps improving in
terms of implicit relation classification accuracy,
as it is gradually fitting to the data and simultane-
ously learning increasingly discriminative features
by mimicking a-CNN. The system exhibits simi-
lar learning patterns in the two different settings,
showing the stability of the training strategy.

We finally visualize the output feature vec-
tors of i-CNN and a-CNN using the t-SNE
method (Maaten and Hinton, 2008) in Figure 5.
Without feature imitation, the extracted features
by the two networks are clearly separated (Fig-
ure 5(a)). In contrast, as shown in Figures 5(b)-
(c), the feature vectors are increasingly mixed as
training proceeds. Thus our framework has suc-
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Figure 4: (Best viewed in colors.) Test-set performance of three components over training epochs.
Relation networks a-CNN and i-CNN are measured with multi-class classification accuracy (with or
without implicit connectives, respectively), while the discriminator is evaluated with binary classification
accuracy. Top: the PDTB-Lin setting (Lin et al., 2009), where first 8 epochs are for initialization stage
(thus the discriminator is fixed and not shown); Bottom: the PDTB-Ji setting (Ji and Eisenstein, 2015),
where first 3 epochs are for initialization.

(a) (b) (c)

Figure 5: (Best viewed in colors.) Visualizations of the extracted hidden features by the implicit relation
network i-CNN (blue) and connective-augmented relation network a-CNN (orange), in the multi-class
classification setting (Lin et al., 2009). (a) Two networks are trained without adversary (with shared
classifier); (b) Two networks are trained within our framework at epoch 10; (c) at epoch 20. The implicit
relation network successfully imitates the connective-augmented features through the adversarial game.
Visualization is conducted with the t-SNE algorithm (Maaten and Hinton, 2008).

cessfully driven i-CNN to induce similar represen-
tations with a-CNN, even though connectives are
not present.

5 Discussions

We have developed an adversarial neural frame-
work that facilitates an implicit relation network to
extract highly discriminative features by mimick-
ing a connective-augmented network. Our method
achieved state-of-the-art performance for implicit
discourse relation classification. Besides implicit
connective examples, our model can naturally ex-
ploit enormous explicit connective data to further
improve discourse parsing.

The proposed adversarial feature imitation
scheme is also generally applicable to other con-
text to incorporate indicative side information

available at training time for enhanced infer-
ence. Our framework shares a similar spirit of
the iterative knowledge distillation method (Hu
et al., 2016a,b) which train a “student” network to
mimic the classification behavior of a knowledge-
informed “teacher” network. Our approach en-
courages imitation on the feature level instead of
the final prediction level. This allows our ap-
proach to apply to regression tasks, and more in-
terestingly, the context in which the student and
teacher networks have different prediction out-
puts, e.g., performing different tasks, while trans-
ferring knowledge between each other can be ben-
eficial. Besides, our adversarial mechanism pro-
vides an adaptive metric to measure and drive the
imitation procedure.
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