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Abstract

In this paper, we present a novel
framework for semi-automatically cre-
ating linguistically challenging micro-
planning data-to-text corpora from ex-
isting Knowledge Bases. Because our
method pairs data of varying size and
shape with texts ranging from simple
clauses to short texts, a dataset created us-
ing this framework provides a challenging
benchmark for microplanning. Another
feature of this framework is that it can be
applied to any large scale knowledge base
and can therefore be used to train and learn
KB verbalisers. We apply our framework
to DBpedia data and compare the resulting
dataset with Wen et al. (2016)’s. We show
that while Wen et al.’s dataset is more than
twice larger than ours, it is less diverse
both in terms of input and in terms of text.
We thus propose our corpus generation
framework as a novel method for creat-
ing challenging data sets from which NLG
models can be learned which are capable
of handling the complex interactions oc-
curring during in micro-planning between
lexicalisation, aggregation, surface reali-
sation, referring expression generation and
sentence segmentation. To encourage re-
searchers to take up this challenge, we re-
cently made available a dataset created us-
ing this framework in the context of the
WEBNLG shared task.

1 Introduction

To train Natural Language Generation (NLG) sys-
tems, various input-text corpora have been devel-
oped which associate (numerical, formal, linguis-
tic) input with text. As discussed in detail in Sec-

tion 2, these corpora can be classified into three
main types namely, (i) domain specific corpora,
(ii) benchmarks constructed from “Expert” Lin-
guistic Annotations and (iii) crowdsourced bench-
marks.1

In this paper, we focus on how to create data-
to-text corpora which can support the learning of
micro-planners i.e., data-to-text generation sys-
tems that can handle the complex interactions
occurring between lexicalisation (mapping data
to words), aggregation (exploiting linguistic con-
structs such as ellipsis and coordination to avoid
repetition), surface realisation (using the appropri-
ate syntactic constructs to build sentences), sen-
tence segmentation and referring expression gen-
eration.

We start by reviewing the main existing types of
NLG benchmarks and we argue for a crowdsourc-
ing approach in which (i) data units are automati-
cally built from an existing Knowledge Base (KB)
and (ii) text is crowdsourced from the data (Sec-
tion 2). We then propose a generic framework for
semi-automatically creating training corpora for
NLG (Section 3) from existing knowledge bases.
In Section 4, we apply this framework to DBpedia
data and we compare the resulting dataset with the
dataset of Wen et al. (2016) using various metrics
to evaluate the linguistic and computational ade-
quacy of both datasets. By applying these metrics,
we show that while Wen et al.’s dataset is more
than twice larger than ours, it is less diverse both in
terms of input and in terms of text. We also com-

1We ignore here (Lebret et al., 2016)’s dataset which was
created fully automatically from Wikipedia by associating
infoboxes with text because this dataset fails to ensure an
adequate match between data and text. We manually ex-
amined 50 input/output pairs randomly extracted from this
dataset and did not find a single example where data and text
matched. As such, this dataset is ill-suited for training micro-
planners. Moreover, since its texts contain both missing and
additional information, it cannot be used to train joint models
for content selection and micro-planning either.
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pare the performance of a sequence-to-sequence
model (Vinyals et al., 2015) on both datasets to es-
timate the complexity of the learning task induced
by each dataset. We show that the performance of
this neural model is much lower on the new data
set than on the existing ones. We thus propose our
corpus generation framework as a novel method
for creating challenging data sets from which NLG
models can be learned which are capable of gen-
erating complex texts from KB data.

2 NLG Benchmarks

Domain specific benchmarks. Several domain
specific data-text corpora have been built by re-
searchers to train and evaluate NLG systems. In
the sports domain, Chen and Mooney (2008) con-
structed a dataset mapping soccer games events to
text which consists of 1,539 data-text pairs and a
vocabulary of 214 words. For weather forecast
generation, the dataset of Liang et al. (2009) in-
cludes 29,528 data-text pairs with a vocabulary of
345 words. For the air travel domain, Ratnaparkhi
(2000) created a dataset consisting of 5,426 data-
text pairs with a richer vocabulary (927 words)
and in the biology domain, the KBGen shared task
(Banik et al., 2013) made available 284 data-text
pairs where the data was extracted from an exist-
ing knowledge base and the text was authored by
biology experts.

An important limitation of these datasets is that,
because they are domain specific, systems learned
from them are restricted to generating domain spe-
cific, often strongly stereotyped text (e.g., weather
forecast or soccer game commentator reports). Ar-
guably, training corpora for NLG should support
the learning of more generic systems capable of
handling a much wider range of linguistic interac-
tions than is present in stereotyped texts. By na-
ture however, domain specific corpora restrict the
lexical and often the syntactic coverage of the texts
to be produced and thereby indirectly limit the ex-
pressivity of the generators trained on them.

Benchmarks constructed from “expert” lin-
guistic annotations. NLG benchmarks have
also been proposed where the input data is either
derived from dependency parse trees (SR’11 task,
Belz et al. 2011) or constructed through manual
annotation (AMR Corpus, Banarescu et al. 2012).
Contrary to the domain-specific data sets just men-
tioned, these corpora have a wider coverage and

are large enough for training systems that can gen-
erate linguistically sophisticated text.

One main drawback of these benchmarks how-
ever is that their construction required massive
manual annotation of text with complex linguis-
tic structures (parse trees for the SR task and Ab-
stract Meaning Representation for the AMR cor-
pus). Moreover because these structures are com-
plex, the annotation must be done by experts. It
cannot be delegated to the crowd. In short, the
creation of such benchmark is costly both in terms
of time and in terms of expertise.

Another drawback is that, because the input rep-
resentation derived from a text is relatively close
to its surface form2, the NLG task is mostly re-
stricted to surface realisation (mapping input to
sentences). That is, these benchmarks give very
limited support for learning models that can han-
dle the interactions between micro-planning sub-
tasks.

Crowdsourced benchmarks. More recently,
data-to-text benchmarks have also been created by
associating data units with text using crowdsourc-
ing.

Wen et al. (2016) first created data by enumer-
ating all possible combinations of 14 dialog act
types (e.g., request, inform) and attribute-value
pairs present in four small-size, hand-written on-
tologies about TVs, laptops, restaurants and ho-
tels. They then use crowdsourcing to associate
each data unit with a text. The resulting dataset
is both large and varied (4 domains) and was
successfully exploited to train neural and imita-
tion learning data-to-text generator (Wen et al.,
2016; Lampouras and Vlachos, 2016). Similarly,
Novikova and Rieser (2016) described a frame-
work for collecting data-text pairs using automatic
quality control measures and evaluating how the
type of the input representations (text vs pictures)
impacts the quality of crowdsourced text.

The crowdsourcing approach to creating input-
text corpora has several advantages.

First, it is low cost in that the data is produced
automatically and the text is authored by a crowd-
worker. This is in stark contrast with the previ-
ous approach where expert linguists are required
to align text with data.

2For instance, the input structures made available by the
shallow track of the SR task contain all the lemmas present
in the corresponding text. In this case, the generation task is
limited to determining (i) the linear ordering and (ii) the full
form of the word in the input.
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Second, because the text is crowd-sourced from
the data (rather than the other way round), there is
an adequate match between text and data both se-
mantically (the text expresses the information con-
tained in the data) and computationally (the data
is sufficiently different from the text to require the
learning of complex generation operations such as
sentence segmentation, aggregation and referring
expression generation).

Third, by exploiting small hand-written ontolo-
gies to quickly construct meaningful artificial data,
the crowdsourcing approach allows for the easy
creation of a large dataset with data units of var-
ious size and bearing on different domains. This,
in turn, allows for better linguistic coverage and
for NLG tasks of various complexity since typi-
cally, inputs of larger size increases the need for
complex microplanning operations.

3 The WebNLG Framework for
Creating Data-to-Text, Micro-Planning
Benchmarks

While as just noted, the crowdsourcing approach
presented by Wen et al. (2016) has several advan-
tages, it also has a number of shortcomings.

One important drawback is that it builds on arti-
ficial rather than “real” data i.e., data that would be
extracted from an existing knowledge base. As a
result, the training corpora built using this method
cannot be used to train KB verbalisers i.e., gener-
ation systems that can verbalise KB fragments.

Another limitation concerns the shape of the in-
put data. Wen et al.’s data can be viewed as trees of
depth one (a set of attributes-value pairs describing
a single entity e.g., a restaurant or a laptop). As
illustrated in Figure 1 however, there is a strong
correlation between the shape of the input and the
syntactic structure of the corresponding sentence.
The path structure T1 where B is shared by two
predicates (mission and operator) will favour the
use of a participial or a passive subject relative
clause. In contrast, the branching structure T2 will
favour the use of a new clause with a pronomi-
nal subject or a coordinated VP. More generally,
allowing for trees of deeper depth is necessary to
indirectly promote the introduction in the bench-
mark of a more varied set of syntactic constructs
to be learned by generators.

To address these issues, we introduce a novel
method for creating data-to-text corpora from
large knowledge bases such as DBPedia. Our

T1
A B Cmission operator

S1.1 A participated in mission B operated by C.
S1.2 A participated in mission B which was

operated by C.

T2

A

D

E

occupation

birthPlace

S2.1 A was born in E. She worked as an engineer.
S2.2 A was born in E and worked as an engineer.

Figure 1: Input shape and linguistic structures (A
= Susan Helms, B = STS 78, C = NASA, D = en-
gineer, E = Charlotte, North Carolina).

method combines (i) a content selection module
designed to extract varied, relevant and coherent
data units from DBPedia with (ii) a crowdsourc-
ing process for associating data units with human
authored texts that correctly capture their mean-
ing. Example 1 shows a data/text unit created by
our method using DBPedia as input KB.

(1) a. (John E Blaha birthDate 1942 08 26)
(John E Blaha birthPlace San Antonio)
(John E Blaha occupation Fighter pilot)

b. John E Blaha, born in San Antonio on 1942-08-26,
worked as a fighter pilot

Our method has the following features.
First, it can be used to create a data-to-text cor-

pus from any knowledge base where entities are
categorised and there is a large number of entities
belonging to the same category. As noted above,
this means that the resulting corpus can be used to
train KB verbalisers i.e., generators that are able to
verbalise fragments of existing knowledge bases.
It could be used for instance, to verbalise frag-
ments of e.g., MusicBrainz3, FOAF4 or Linked-
GeoData.5

Second, as crowdworkers are required to enter
text that matches the data and a majority vote val-
idation process is used to eliminate mis-matched
pairs, there is a direct match between text and
data. This allows for a clear focus on the non con-
tent selection part of generation known as micro-
planning.

Third, because data of increasing size is
matched with texts ranging from simple clauses to

3https://musicbrainz.org/
4http://www.foaf-project.org/
5http://linkedgeodata.org/
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Figure 2: Extracting data units from DBPedia.

short texts consisting of several sentences, the re-
sulting benchmark is appropriate for exercising the
main subtasks of microplanning. For instance, in
Example (1) above, given the input shown in (1a),
generating (1b) involves lexicalising the occupa-
tion property as the phrase worked as (lexicalisa-
tion); using PP coordination (born in San Antonio
on 1942-08-26) to avoid repeating the word born
(aggregation); and verbalising the three triples us-
ing a single complex sentence including an appo-
sition, a PP coordination and a transitive verb con-
struction (sentence segmentation and surface real-
isation).

3.1 DBPedia

To illustrate the functioning of our benchmark cre-
ation framework, we apply it to DBPedia. DBPe-
dia is a multilingual knowledge base that was built
from various kinds of structured information con-
tained in Wikipedia (Mendes et al., 2012). This
data is stored as RDF (Resource Description For-
mat) triples of the form (subject, property, object)
where the subject is a URI (Uniform Resource
Identifier), the property is a binary relation and
the object is either a URI or a literal value such
as a string, a date or a number. We use an English
version of the DBPedia knowledge base which en-
compasses 6.2M entities, 739 classes, 1,099 prop-
erties with reference values and 1,596 properties

with typed literal values.6

3.2 Selecting Content

To create data units, we adapted the procedure
outlined by Perez-Beltrachini et al. (2016) and
sketched in Figure 2. This method can be sum-
marised as follows.

First, DBPedia category graphs are extracted
from DBPedia by retrieving up to 500 entity
graphs for entities of the same category.7 For ex-
ample, we build a category graph for the Astronaut
category by collecting, graphs of depth five for 500
entities of types astronaut.

Next, category graphs are used to learn bi-gram
models of DBPedia properties which specify the
probability of two properties co-occuring together.
Three types of bi-gram models are extracted from
category graphs using the SRILM toolkit (Stolcke,
2002): one model (S-Model) for bigrams occur-
ring in sibling triples (triples with a shared sub-
ject); one model (C-Model) for bigrams occurring
in chained triples (the object of one triple is the
subject of the other); and one model (M-Model)
which is a linear interpolation of the sibling and
the chain model. The intuition is that these sib-

6http://wiki.dbpedia.org/
dbpedia-dataset-version-2015-10

7An entity graph for some entity e is a graph obtained by
traversing the DBPedia graph starting in e and stopping at
depth five.
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ling and chain models capture different types of
coherence, namely, topic-based coherence for the
S-Model and discourse-based coherence for the C-
Model.

Finally, the content selection task is formulated
as an Integer Linear Programming (ILP) problem
to select, for a given entity of category C and its
entity graph Ge, subtrees of Ge with maximal bi-
gram probability and varying size (between 1 and
7 RDF triples).

Category A B M U S W
#Inputs 663 1220 333 508 1137 1207
#I. Patterns 546 369 300 432 184 277
#Properties 38 46 30 41 32 50
#Entities 74 278 47 75 264 224

Table 1: Data statistics from content selec-
tion (A:Astronaut, B:Building, M:Monument,
U:University, W:Written work, S:Sports team).

We applied this content selection procedure to
the DBPedia categories Astronaut (A), Building
(B), Monument (M), University (U), Sports team
(S) and Written work (W), using the three bi-gram
models (S-Model, C-Model, M-Model) and mak-
ing the number of triples required by the ILP con-
straint to occur in the output solutions vary be-
tween 1 and 7. The results are shown in Table 1.
An input is a set of triples produced by the content
selection module. The number of input (#Inputs)
is thus the number of distinct sets of triples pro-
duced by this module. In contrast, input patterns
are inputs where subject and object have been ab-
stracted over. That is, the number of input patterns
(#I. Patterns) is the number of distinct sets of prop-
erties present in the set of inputs. The number of
properties (#Properties) is the number of distinct
RDF properties occurring in the dataset. Similarly,
the number of entities (#Entities) is the number
of distinct RDF subjects and objects occurring in
each given dataset.

3.3 Associating Content with Text

We associate data with text using the Crowdflower
platform.8 We do this in four main steps as fol-
lows.

1. Clarifying properties. One difficulty when
collecting texts verbalising sets of DBPedia triples
is that the meaning of DBPedia properties may
be unclear. We therefore first manually clarified

8http://www.crowdflower.com

for each category being worked on, those prop-
erties which have no obvious lexicalisations (e.g.,
crew1up was replaced by commander).

2. Getting verbalisations for single triples.
Next, we collected three verbalisations for data
units of size one, i.e. single triples consisting
of a subject, a property and an object. For each
such input, crowdworkers were asked to produce
a sentence verbalising its content. We used both
a priori automatic checks to prevent spamming
and a posteriori manual checks to remove incor-
rect verbalisations. We also monitored crowd-
workers as they entered their input and banned
those who tried to circumvent our instructions and
validators. The automatic checks comprise 12
custom javascript validators implemented in the
CrowdFlower platform to block contributor an-
swers which fail to meet requirements such as the
minimal time a contributor should stay on page,
the minimal length of the text produced, the min-
imal match of tokens between a triple and its ver-
balisation and various format restrictions used to
detect invalid input. The exact match between a
triple and its verbalisation was also prohibited. In
addition, after data collection was completed, we
manually checked each data-text pair and elimi-
nated from the data set any pair where the text ei-
ther did not match the information conveyed by the
triple or was not a well-formed English sentence.

3. Getting verbalisations for input containing
more than one triple. The verbalisations col-
lected for single triples were used to construct in-
put with bigger size. Thus, for input with a number
of triples more than one, the crowd was asked to
merge the sentences corresponding to each triple
(obtained in step 2) into a natural sounding text.
In such a way, we diminish the risk of having
misinterpretations of the original semantics of a
data unit. Contributors were also encouraged to
change the order, and the wording of sentences,
while writing their texts. For each data unit, we
collected three verbalisations.

4. Verifying the quality of the collected texts.
The verbalisations obtained in Step 3 were veri-
fied through crowdsourcing. Each verbalisation
collected in Step 3 was displayed to CrowdFlower
contributors together with the corresponding set
of triples. Then the crowd was asked to assess its
fluency, semantic adequacy, and grammaticality.
Those criteria were checked by asking the follow-
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# Triples 1 2 3 4 5 6 7
# Tokens 4/30/10.48 11/45/22.97 7/37/16.96 17/60/36.38 14/53/29.61 29/80/49.14 24/73/42.95
# Sentences 1/2/1.00 1/4/1.23 1/3/1.02 1/5/2.05 1/4/1.64 1/6/2.85 1/5/2.42

Table 2: Text statistics from crowdsourcing for triple sets of varying sizes (min/max/avg).

ing three questions:

Does the text sound fluent and natural?
Does the text contain all and only the information
from the data?
Is the text good English (no spelling or grammati-
cal mistakes)?

We collected five answers per verbalisation. A
verbalisation was considered bad, if it received
three negative answers in at least one criterion. Af-
ter the verification step, the total corpus loss was
of 8.7%. An example of rejected verbalisation can
be found in Example (2). The verbalisation was
dropped due to the lack of fluency (awkward lexi-
calisation of the property club).
(2) (AEK Athens F.C. manager Gus Poyet)

(Gus Poyet club Chelsea F.C.)
AEK Athens F.C. are managed by Gus Poyet, who is in
Chelsea F.C.

Table 2 shows some statistics about the texts
obtained using our crowdsourcing procedure for
triple sets of size one to seven.

4 Comparing Benchmarks

We now compare a dataset created using
our dataset creation framework (henceforth
WEBNLG) with the dataset of Wen et al. (2016)9

(henceforth, RNNLG). Example 3 shows a
sample data-text pair taken from the RNNLG
dataset.
(3) Dialog Moves

recommend(name=caerus 33;type=television;
screensizerange=medium;family=t5;hasusbport=true)
The caerus 33 is a medium television in the T5 family
that’s USB-enabled.

As should be clear from the discussion in Sec-
tion 2 and 3, both datasets are similar in that, in
both cases, data is built from ontological infor-
mation and text is crowdsourced from the data.
An important difference between the two datasets
is that, while the RNNLG data was constructed
by enumerating possible combinations of dialog
act types and attribute-value pairs, the WEBNLG
data is created using a sophisticated content se-
lection procedure geared at producing sets of data

9https://github.com/shawnwun/RNNLG

units that are relevant for a given ontological cat-
egory and that are varied in terms of size, shape
and content. We now investigate the impact of
this difference on the two datasets (WEBNLG and
RNNLG). To assess the degree to which both
datasets support the generation of linguistically
varied text requiring complex micro-planning op-
erations, we examine a number of data and text
related metrics. We also compare the results of
an out-of-the-box sequence-to-sequence model as
a way to estimate the complexity of the learning
task induced by each dataset.

WEBNLG RNNLG
Nb. Input 5068 22225
Nb. Data-Text Pairs 13339 30842
Nb. Domains 6 4
Nb. Attributes 172 108
Nb. Input Patterns 2108 2155
Nb. Input / Nb Input Pattern 2.40 10.31
Nb. Input Shapes 58 6

Table 3: Comparing WEBNLG and RNNLG
datasets. Attributes are properties in RDF triples
or slots in dialog acts.

4.1 Data Comparison

Terminology. The attributes in the RNNLG
dataset can be viewed as binary relations between
the object talked about (a restaurant, a laptop, a
TV or a hotel) and a value. Similarly, in the
WEBNLGdataset, DBpedia RDF properties relate
a subject entity to an object which can be either
an entity or a datatype value. In what follows, we
refer to both as attributes.

Table 3 shows several statistics which indicate
that, while the RNNLG dataset is larger than
WEBNLG, WEBNLG is much more diverse in
terms of attributes, input patterns and input shapes.

Number of attributes. As illustrated in Exam-
ple (4) below, different attributes can be lexi-
calised using different parts of speech. A dataset
with a larger number of attributes is therefore more
likely to induce texts with greater syntactic variety.

(4) Verb: X title Y / X served as Y
Relational noun: X nationality Y / X’s nationality is Y
Preposition: X country Y / X is in Y
Adjective: X nationality USA / X is American
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As shown in Table 3, WEBNLG has a more
diverse attribute set than RNNLG both in abso-
lute (172 attributes in WEBNLG against 108 in
RNNLG) and in relative terms (RNNLG is a lit-
tle more than twice as large as WEBNLG).

Number of input patterns. Since attributes
may give rise to lexicalisation with different parts
of speech, the sets of attributes present in an input
(input pattern)10 indirectly determine the syntac-
tic realisation of the corresponding text. Hence
a higher number of input patterns will favour a
higher number of syntactic realisations. This is ex-
emplified in Example (5) where two inputs with
the same number of attributes give rise to texts
with different syntactic forms. While in Exam-
ple (5a), the attribute set {country, location, start-
Date} is realised by a passive (is located), an ap-
position (Australia) and a deverbal nominal (its
construction), in Example (5b), the attribute set
{almaMater, birthPlace, selection} induced a pas-
sive (was born) and two VP coordinations (gradu-
ated and joined).

(5) a. (‘108 St Georges Terrace location Perth’, ‘Perth
country Australia’, ‘108 St Georges Terrace start-
Date 1981’)
country, location, startDate
108 St. Georges Terrace is located in Perth, Aus-
tralia. Its construction began in 1981.
passive, apposition, deverbal nominal

b. (‘William Anders selection 1963’,
‘William Anders birthPlace British Hong Kong’,
‘William Anders almaMater ”AFIT, M.S. 1962”’)
almaMater, birthPlace, selection
William Anders was born in British Hong Kong,
graduated from AFIT in 1962, and joined NASA in
1963.
passive, VP coordination, VP coordination

Again, despite the much larger size of the
RNNLG dataset, the number of input patterns
in both datasets is almost the same. That is,
the relative variety in input patterns is higher in
WEBNLG.

Number of input / Number of input patterns.
The ratio between number of inputs and the num-
ber of input patterns has an important impact both
in terms of linguistic diversity and in terms of
learning complexity. A large ratio indicates a
“repetitive dataset” where the same pattern is in-
stantiated a high number of times. While this

10Recall from section 3 that input patterns are inputs where
subjects and objects have been remove thus, in essence, an
input pattern is the set of all the attributes occurring in a given
input.

facilitates learning, this also reduces linguistic
coverage (less combinations of structures can be
learned) and may induce over-fitting. Note that
because datasets are typically delexicalised when
training NLG models (cf. e.g., Wen et al. 2015 and
Lampouras and Vlachos 2016), at training time,
different instantiations of the same input pattern
reduce to identical input.

The two datasets markedly differ on this ratio
which is five times lower in WEBNLG. While
in WEBNLG, the same pattern is instantiated in
average 2.40 times, it is instantiated 10.31 times
in average in RNNLG. From a learning perspec-
tive, this means that the RNNLG dataset facili-
tates learning but also makes it harder to assess
how well systems trained on it can generalise to
handle unseen input.

Input shape. As mentioned in Section 3, in the
RNNLG dataset, all inputs can be viewed as trees
of depth one while in the WEBNLG dataset, input
may have various shapes. As a result, RNNLG
texts will be restricted to syntactic forms which
permit expressing such multiple predications of
the same entity e.g., subject relative clause, VP
and sentence coordination etc. In contrast, the
trees extracted by the WEBNLG content selection
procedure may be of depth five and therefore allow
for further syntactic constructs such as object rel-
ative clause and passive participles (cf. Figure 1).

We can show this empirically as well that
WEBNLG is far more diverse than RNNLG in
terms of input shapes. The RNNLG dataset has
only 6 distinct shapes and all of them are of depth
1, i.e., all (attribute, value) pairs in an input are
siblings to each other. In contrast, the WEBNLG
dataset has 58 distinct shapes, out of which only
7 shapes are with depth 1, all others have depth
more than 1 and they cover 49.6% of all inputs.

4.2 Text Comparison

Table 4 gives some statistics about the texts con-
tained in each dataset.

(6) (Alan Bean birthDate “1932-03-15”)
Alan Bean was born on March 15, 1932.

(7) (‘Alan Bean nationality United States’, ‘Alan Bean
birthDate “1932-03-15”’, ‘Alan Bean almaMater
“UT Austin, B.S. 1955”’, ‘Alan Bean birthPlace
Wheeler, Texas’, ‘Alan Bean selection 1963’)
Alan Bean was an American astronaut, born on March
15, 1932 in Wheeler, Texas. He received a Bachelor of
Science degree at the University of Texas at Austin in
1955 and was chosen by NASA in 1963.
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As illustrated by the contrast between Exam-
ples (6) and (7) above, text length (number of to-
kens per text) and the number of sentences per text
are strong indicators of the complexity of the gen-
eration task. We use the Stanford Part-Of-Speech
Tagger and Parser version 3.5.2 (dated 2015-04-
20, Manning et al. 2014) to tokenize and to per-
form sentence segmentation on text. As shown in
Table 4, WEBNLG’s texts are longer both in terms
of tokens and in terms of number of sentences per
text. Another difference between the two datasets
is that WEBNLG contains a higher number of text
per input thereby providing a better basis for learn-
ing paraphrases.

WEBNLG RNNLG
Nb. Text / Input 2.63 1.38
Text Length 24.36/23/4/80 18.37/19/1/76
(avg/median/min/max)
Nb. Sentence / Text 1.45/1/1/6 1.25/1/1/6
(avg/median/min/max)
Nb. Tokens 290479 531871
Nb. Types 2992 3524
Lexical Sophistication 0.69 0.54
CTTR 3.93 3.42

Table 4: Text statistics from WEBNLG and
RNNLG.

The size and the content of the vocabulary is an-
other important factor in ensuring the learning of
wide coverage generators. While a large vocab-
ulary makes the learning problem harder, it also
allows for larger coverage. WEBNLG exhibits a
higher corrected type-token ratio (CTTR), which
indicates greater lexical variety, and higher lexical
sophistication (LS). Lexical sophistication mea-
sures the proportion of relatively unusual or ad-
vanced word types in the text. In practice, LS
is the proportion of lexical word types (lemma)
which are not in the list of 2,000 most frequent
words generated from the British National Cor-
pus11. Type-token ratio (TTR) is a measure of di-
versity defined as the ratio of the number of word
types to the number of words in a text. To address
the fact that this ratio tends to decrease with the
size of the corpus, corrected TTR can be used to
control for corpus size. It is defined as T/

√
2N ,

where T is the number of types and N the number
of tokens.

Overall, the results shown in Table 4 indicate
that WEBNLG texts are both lexically more di-
verse (higher corrected type/token ratio) and more

11We compute LS and CTTR using the Lexical Complexity
Analyzer developed by Lu (2012).

sophisticated (higher proportion of unfrequent
words) than RNNLG’s. They also show a propor-
tionately larger vocabulary for WEBNLG (2,992
types for 290,479 tokens in WEBNLG against
3,524 types for 531,871 tokens in RNNLG).

4.3 Neural Generation

Richer and more varied datasets are harder to learn
from. As a proof-of-concept study of the compar-
ative difficulty of the two datasets with respect to
machine learning, we compare the performance of
a sequence-to-sequence model for generation on
both datasets.

We use the multi-layered sequence-to-sequence
model with attention mechanism described in
(Vinyals et al., 2015).12 The model was trained
with 3-layer LSTMs with 512 units each with a
batch size of 64 and a learning rate of 0.5.

To allow for a fair comparison, we use a simi-
lar amount of data (13K data-text pairs) for both
datasets. As RNNLG is bigger in size than
WEBNLG, we constructed a balanced sample of
RNNLG which included equal number of in-
stances per category (tv, laptop, etc). We use a
3:1:1 ratio for training, developement and test-
ing. The training was done in two delexicalisa-
tion modes: fully and name only. In case of fully
delexicalisation, all entities were replaced by their
generic terms, whereas in name only mode only
subjects were modified in that way. For instance,
the triple (FC Köln manager Peter Stöger) was
delexicalised as (SportsTeam manager Manager)
in the first mode, and as (SportsTeam manager Pe-
ter Stöger) in the second mode. The delexicalisa-
tion in sentences was done using the exact match
between entities and tokens. For training, we use
all the available vocabulary. Input and output vo-
cabulary sizes are reported in Table 5.

Table 5 shows the perplexity results. In
both modes, RNNLG yielded lower scores than
WEBNLG. This is inline with the observations
made above concerning the higher data diver-
sity, larger vocabulary and more complex texts of

12We used the TensorFlow code available at
https://github.com/tensorflow/models/
tree/master/tutorials/rnn/translate. Alter-
natively, we could have used the implementation of Wen
et al. (2016) which is optimised for generation. However
the code is geared toward dialog acts and modifying it to
handle RDF triples is non trivial. Since the comparison
aims at examining the relative performance of the same
neural network on the two datasets, we used the tensor flow
implementation instead.
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WEBNLG. Similary, the BLEU score of the gen-
erated sentences (Papineni et al., 2002) is lower for
WEBNLG suggesting again a dataset that is more
complex and therefore more difficult to learn from.

Delexicalisation
Mode

WEBNLG RNNLG

Vocab size Fully 520, 2430 140, 1530
Name only 1130, 2940 570, 1680

Perplexity Fully 27.41 17.42
Name only 25.39 23.93

BLEU Fully 0.19 0.26
Name only 0.10 0.27

Table 5: Vocabulary sizes of input, output (number
of tokens). Perplexity and BLEU scores.

5 Conclusion

We presented a framework for building NLG data-
to-text training corpora from existing knowledge
bases.

One feature of our framework is that datasets
created using this framework can be used for train-
ing and testing KB verbalisers an in particular,
verbalisers for RDF knowledge bases. Following
the development of the semantic web, many large
scale datasets are encoded in the RDF language
(e.g., MusicBrainz, FOAF, LinkedGeoData) and
official institutions13 increasingly publish their
data in this format. In this context, our frame-
work is useful both for creating training data from
RDF KB verbalisers and to increase the number of
datasets available for training and testing NLG.

Another important feature of our framework is
that it permits creating semantically and linguis-
tically diverse datasets which should support the
learning of lexically and syntactically, wide cov-
erage micro-planners. We applied our framework
to DBpedia data and showed that although twice
smaller than the largest corpora currently available
for training data-to-text microplanners, the result-
ing dataset is more semantically and linguistically
diverse. Despite the disparity in size, the num-
ber of attributes is comparable in the two datasets.
The ratio between input and input patterns is five
times lower in our dataset thereby making learning
harder but also diminishing the risk of overfitting
and providing for wider linguistic coverage. Con-
versely, the ratio of text per input is twice higher
thereby providing better support for learning para-
phrases.

13See http://museum-api.pbworks.com for ex-
amples.

We have recently released a first version of
the WebNLG dataset in the context of a shared
task on micro-planning14. This new dataset
consists of 21,855 data/text pairs with a to-
tal of 8,372 distinct data input. The input
describes entities belonging to 9 distinct DB-
pedia categories namely, Astronaut, University,
Monument, Building, ComicsCharacter, Food,
Airport, SportsTeam and WrittenWork. The
WebNLG data is licensed under the follow-
ing license: CC Attribution-Noncommercial-
Share Alike 4.0 International and can be
downloaded at http://talc1.loria.fr/
webnlg/stories/challenge.html.

Recently, several sequence-to-sequence models
have been proposed for generation. Our exper-
iments suggest that these are not optimal when
it comes to generate linguistically complex texts
from rich data. More generally, they indicate that
the data-to-text corpora built by our framework are
challenging for such models. We hope that the
WEBNLG dataset which we have made available
for the WEBNLG shared task will drive the deep
learning community to take up this new challenge
and work on the development of neural generators
that can handle the generation of KB verbalisers
and of linguistically rich texts.
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