
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 103–108,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Jigg: A Framework for an Easy Natural Language Processing Pipeline

Hiroshi Noji
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, Japan
noji@is.naist.jp

Yusuke Miyao
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, Japan
yusuke@nii.ac.jp

Abstract

We present Jigg, a Scala (or JVM-
based) NLP annotation pipeline frame-
work, which is easy to use and is exten-
sible. Jigg supports a very simple in-
terface similar to Stanford CoreNLP, the
most successful NLP pipeline toolkit, but
has more flexibility to adapt to new types
of annotation. On this framework, system
developers can easily integrate their down-
stream system into a NLP pipeline from a
raw text by just preparing a wrapper of it.

1 Introduction

A common natural language processing system
works as a component in a pipeline. For example,
a syntactic parser typically requires that an input
sentence is correctly tokenized or assigned part-
of-speech (POS) tags. The syntactic trees given by
the parser may be required in further downstream
tasks such as coreference resolution and semantic
role labelling. While this pipeline-based approach
has been quite successful due to its modularity, it
suffers from several drawbacks from a viewpoint
of software use and development:
• For a user, building a pipeline connecting ex-

isting tools and aggregating the outputs are
painful, since often each system outputs the
results in a different format;

• For researchers or tool developers of down-
stream tasks, supporting the full pipeline
from an input text in their software is boring
and time consuming.

For example, two famous dependency parsing sys-
tems, MaltParser (Nivre et al., 2006) and MST-
Parser (McDonald et al., 2005), both assume that
an input sentence is already tokenized and as-
signed POS tags, and encoded in a specific format,
such as the CoNLL format.

POS$Tagging

Berkeley$Parser Stanford$CoreNLP

Parsing

Berkeley$Parser Stanford$CoreNLP

New$Tagger

Tokeniza:on Stanford$CoreNLP

Sentence$Spli=ng Stanford$CoreNLP

Down$stream$tasks
Coreference$Resolu:on,$
$Seman:c$Role$Labelling,$etc

ScalaXML
Object

Input:Rawtext

Output:$Annotated$XML$file

Figure 1: In a pipeline, annotations are performed
on a Scala XML object. A pipeline is built by
choosing annotator tools at each step, e.g., the bold
or dotted lines in the figure. Each component is
implemented as a wrapper, which manipulates the
XML object. If we prepare a new wrapper of some
component, one can integrate it in a pipeline (e.g.,
the POS tagger in the dotted lines).

In this paper, we present Jigg, which aims to
make it easy to incorporate an existing or new
tool (component) in an NLP pipeline. Figure 1
describes the overview. Using Jigg, a user can
easily construct a pipeline by choosing a tool at
each step on a command-line interface. Jigg is
written in Scala, and can easily be extended with
JVM languages including Java. A new tool can
be incorporated into this framework by writing a
wrapper of that to follow the common API of Jigg
(Scala XML object), which requires typically sev-
eral dozes of lines of code.

The software design of Jigg is highly inspired
by the success of Stanford CoreNLP (Manning et
al., 2014), which is now the most widely used NLP
toolkit supporting pipeline processing from raw
texts. One characteristic of Stanford CoreNLP is

103

its simplicity of API, which allows wider users to
easily get linguistic annotations for a text. Follow-
ing this strategy, Jigg is also quite simple to use;
all the basic components are included into one jar
file, so a user need not install the external depen-
dencies. The basic usage of Jigg is command-line
interface, and the behavior can be customized with
a Java properties file. On the other hand, it fo-
cuses just on processing of a single document on
a single machine, and does not provide the solu-
tion to more complex scenarios such as distributed
processing or visualization, which UIMA and re-
lated projects (Ferrucci and Lally, 2004; Kano et
al., 2011) may provide.

The largest difference between Jigg and Stan-
ford CoreNLP is the focused NLP components.
Stanford CoreNLP is basically a collection of NLP
tools developed by the Stanford NLP group, e.g.,
Stanford POS tagger (Toutanova et al., 2003) and
Stanford parser (Socher et al., 2013). Jigg, on the
other hand, is an integration framework of vari-
ous NLP tools developed by various groups. This
means that adding a new component in Jigg is
easier than Stanford CoreNLP. Also as indicated
in Figure 1, Jigg provides a wrapper to Stanford
CoreNLP itself, so a user can enjoy combination
of Stanford CoreNLP and other tools, e.g., Berke-
ley parser (Petrov and Klein, 2007) (see Section
2). This difference essentially comes from the un-
derlying object annotated on each step, which is
CoreMap object in Stanford CoreNLP, and Scala
XML object in Jigg, which gives more flexibility
as we describe later (Section 5). Before that, in
the following, we first describes the concrete us-
age (Section 2), the core software design (Section
3), and a way to add a new component (Section 4).

The code is open-source under the Apache Li-
cense Version 2.0. Followings are the pointers to
the related websites:

• Github: https://github.com/mynlp/jigg

• Maven: http://mvnrepository.com/

artifact/com.github.mynlp/jigg

Jigg is also available from Maven, so it can eas-
ily be incorporated into another JVM project. See
REAME on the project Github for this usage.

2 Basic Usages

As an example, let us consider the scenario to run
the Berkeley parser on a raw text. This parser is
state-of-the-art but it requires that the input is cor-

$ cat sample.txt
This is a cat. That is a dog.
$ echo sample.txt | java -cp "*" \
jigg.pipeline.Pipeline\
-annotators "corenlp[tokenize,ssplit],berkeleyparser"\
-berkeleyparser.grFileName ./eng_sm6.gr > sample.xml

Figure 2: A command-line usage to run the Berke-
ley parser on sentences tokenized and splitted by
Stanford CoreNLP.

Figure 3: The output of the command in Figure 2
(sample.xml).

rectly tokenized and splitted on sentences. Fig-
ure 2 shows a concrete command-line to build a
pipeline, on which tokenization and sentence split-
ting are performed using the components in Stan-
ford CoreNLP. This pipeline corresponds to the
bold lines in Figure 1. jigg.pipeline.Pipeline is
the path to the main class. −annotators argu-
ment is essential, and specifies which components
(tools) one wishes to apply. In the command-line,
corenlp[tokenize, ssplit] is an abbreviation of two
components, corenlp[tokenize] (tokenization) and
corenlp[ssplit] (sentence splitting by CoreNLP).1

The last argument −berkeleyparser.grFileName
is necessary and specifies the path to the parser
model (learned grammar).

XML output In the current implementation, the
output format of annotations is always XML. Fig-
ure 3 shows the output for this example. In
this output, parse element specifies a (constituent)
parse tree with a collection of spans, each of
which consists of a root symbol (e.g., S) and child
nodes (ids). This format is intended to be eas-
ily processed with a computer, and differs in sev-
eral points from the outputs of Stanford CoreNLP,
which we describe more in Section 5.

1Precisely, the two commands have different meanings
and the former abbreviated form is recommended. In the lat-
ter separated form, transformation between CoreMap object
and Scala XML is performed at each step (twice), while it
occurs once in the former one after ssplit.

104

import jigg.pipeline.Pipeline
import scala.xml.Node
import java.util.Properties

object ScalaExample {
def main(args: Array[String]): Unit = {
val props = new Properties()
props.setProperty("annotators",

"corenlp[tokenize,ssplit],berkeleyparser")
props.setProperty("berkeleyparser.grFileName",

"eng_sm6.gr")
val pipeline = new Pipeline(props)
val annotation: Node = pipeline.annotate(

"This is a cat. That is a dog")

// Find all sentence elements recursively,
// and get the first one.
val firstSentence = (annotation \\ "sentence")(0)

// All tokens on the sentence
val tokens = firstSentence \\ "token"

println("POS tags on the first sentence: " +
(tokens map (_ \@ "pos") mkString " "))

// Output "DT VBZ DT NN ."
}

}

Figure 4: A programmatic usage from Scala.

Properties As in Stanford CoreNLP, these argu-
ments can be customized through a Java properties
file. For example, the following properties file cus-
tomizes the behavior of corenlp besides the parser:
$ cat sample.properties
annotators: corenlp[tokenize,ssplit],berkeleyparser
berkeleyparser.grFileName: ./eng_sm6.gr
corenlp.tokenize.whitespace: true
corenlp.ssplit.eolonly: true

This file can be used as follows:
jigg.pipeline.Pipeline -props sample.properties

Each annotator-specific argument has the form
annotator name.key. In the case of corenlp, all
keys of the arguments prefixed with that are di-
rectly transferred to the CoreNLP object, so the
all arguments defined in Stanford CoreNLP can be
used to customize the behavior. The setting above
yields tokenization on white spaces, and sentence
splitting on new lines only (i.e., the input text is
assumed to be properly preprocessed beforehand).

Programmatic usage Jigg can also be used as
a Scala library, which can be called on JVM lan-
guages. Figure 4 shows an example on a Scala
code. The annotate method of Pipeline object
performs annotations on the given input, and re-
turns the annotated XML object (Node class). The
example also shows how we can manipulate the
Scala XML object, which can be searched with
methods similar to XPath, e.g., \\. \@ key returns
the attribute value for the key if exists. Figure 5
shows that Jigg can also be used via a Java code.

Another example Jigg is a growing project, and
the supported tools are now increasing. Histori-

Properties props = new Properties();
props.setProperty("annotators",

"corenlp[tokenize,ssplit],berkeleyparser");
props.setProperty("berkeleyparser.grFileName",

"eng_sm6.gr");
Pipeline pipeline = new Pipeline(props);
Node annotation = pipeline.annotate(

"This is a cat. That is a dog");

// Though the search methods such as \\ cannot be
// used on Java, we provide utilities to support
// Java programming.
List<Node> sentences = jigg.util.XMLUtil.findAllSub(

annotation, "sentence");
Node firstSentence = sentences.get(0);
List<Node> tokens = jigg.util.XMLUtil.findAllSub(

firstSentence, "token");
System.out.print("POS tags on the first sentence: ");
for (Node token: tokens) {

String pos = XMLUtil.find(token, "@pos").toString();
System.out.print(pos + " ");

}

Figure 5: Jigg also supports Java programming.

cally, Jigg has been started as a pipeline frame-
work focusing on Japanese language processing.
Jigg thus supports many Japanese processing tools
such as MeCab (Kudo et al., 2004), a famous mor-
phological analyzer, as well as a Japanese CCG
parser based on the Japanese CCGBank (Uematsu
et al., 2013). For English, currently the core tool
is Stanford CoreNLP. Here we present an inter-
esting application to integrate Berkeley parser into
the full pipeline of Stanford CoreNLP:
-annotators "corenlp[tokenize,ssplit],berkeleyparser,
corenlp[lemma,ner,dcoref]"

where dcoref is a coreference resolution system
relying on constituent parse trees (Recasens et
al., 2013). This performs annotation of corefer-
ence resolution based on the parse trees given by
the Berkeley parser instead of the Stanford parser.
Using Jigg, a user can enjoy these combinations
of existing tools quite intuitively. Also if a user
has her own (higher-performance) system on the
pipeline, one can replace the existing component
with that in a minimal effort, by writing a wrapper
of that tool in JVM languages (see Section 4).

3 Design

We now describe the internal mechanisms of Jigg,
which comprise of two steps: the first is a check
for correctness of the given pipeline, and the sec-
ond is annotations on a raw text with the con-
structed pipeline. We describe the second anno-
tation step first (Section 3.1), and then discuss the
first pipeline check phase (Section 3.2).

3.1 Annotation on Scala XML
As shown in Figure 1, each annotator (e.g., the to-
kenizer in Stanford CoreNLP) communicates with

105

the Scala XML object. Basically, each annotator
only adds new elements or attributes into the re-
ceived XML.2 For example, the Berkeley parser
receives an XML, on which each sentence element
is annotated with tokens elements lacking pos at-
tribute on each token. Then, the parser (i.e., the
wrapper of the parser) adds the predicted syntactic
tree and POS tags on each sentence XML (see Fig-
ure 3). Scala XML (Node object) is an immutable
data structure, but it is implemented as an im-
mutable tree, so a modification can be performed
efficiently (in terms of memory and speed).

3.2 Requirement-based Pipeline Check

On this process, the essential point for the pipeline
to correctly work is to guarantee that all the re-
quired annotations for an annotator are provided at
each step. For example, the berkeleyparser anno-
tator assumes each sentence element in the XML
has the following structure:
<sentence id="...">

sentence text
<tokens>
<token form="..." id="..."/>
<token form="..." id="..."/>
...

</tokens>
</sentence>

where form means the surface form of a token.
How do we guarantee that the XML given to
berkeleyparser satisfies this form?

Currently, Jigg manages these dependen-
cies between annotators using the concept of
Requirement, which we also borrowed from Stan-
ford CoreNLP. Each annotator has a field called
requires, which specifies the type of necessary an-
notations that must be given before running it. In
berkeleyparser it is defined as follows:
override def requires:Set[Requirement] =

Set(Tokenize, Ssplit)

where Ssplit is an object (of Requirement type),
which guarantees that sentences element (a col-
lection of sentence elements) exists on the current
annotation, while Tokenize guarantees that each
sentence element has tokens element (a collec-
tion of token elements), and each token has four
attributes: id, form, characterOffsetBegin, and
characterOffsetEnd.

Each annotator also has requirementsSatisfied
field, which declares which Requirements will be
satisfied (annotated). In the above requirements,

2One exception in the current implementation is ssplit in
corenlp, which breaks the result of tokenize (one very long
tokenized sentence) into several sentences.

Ssplit is given by corenlp[ssplit] while Tokenize is
given by corenlp[tokenize]. In berkeleyparser, it is
POS and Parse; POS guarantees that each token
element has pos attribute. Before running annota-
tion, Jigg checks whether the constructed pipeline
correctly works by checking that all elements in
requires for each annotator are satisfied by (in-
cluded in) the requirementsSatisfied elements of
the previous annotators. For example, if we run
the pipeline with −annotators berkeleyparser ar-
gument, the program fails with an error message
suggesting missing Requirements.

Note that currently Requirement is something
just like a contract on the structure of annotated
XML, and it is the author’s responsibility to im-
plement each annotator to output the correct XML
structure. Currently the correspondence between
each Requirement and the satisfied XML structure
is managed with a documentation on the wiki of
the project Github. We are seeking a more sophis-
ticated (safe) mechanism to guarantee these corre-
spondences in a code; one possible solution might
be to define the skeletal XML structure for each
Requirement, and test in each annotator whether
the annotated object follows the defined structure.

4 Adding New Annotator

Here we describe how to implement a new annota-
tor and integrate it into the Jigg pipeline. We also
discuss a way to distribute a new system in Jigg.

Implementing new annotator We focus on im-
plementation of Berkeley parser as an example to
get intuition into what we should do. Annotator is
the base trait3 of all annotator classes, which de-
fines the following basic methods:

• def annotate(annotation : Node) : Node

• def requires : Set[Requirement]

• def requirementsSatisfied : Set[Requirement]

We have already seen the roles of requires and
requirementsSatisfied in Section 3.2. Note that
in many cases including the Berkeley parser, an-
notation is performed on each sentence indepen-
dently. For this type of annotation, we provide
a useful trait SentenceAnnotator, which replaces
the method to be implemented from annotate to
newSentenceAnnotation, which has the same sig-
nature as annotate.4

3Trait is similar to interface in Java.
4This trait implements annotate to traverse all sentences

and replace them using newSentenceAnnotation method.

106

package jigg.pipeline
import ...

// By supporting a constructor with signature
// (String, Properties), the annotator can be
// instantiated dynamically using reflection.
class BerkeleyParserAnnotator(
override val name: String,
override val props: Properties) extends SentenceAnnotator {

// Instantiate a parser by reading the gramar file.
val parser: CoarseToFineMaxRuleParser = ...

override def newSentenceAnnotation(sentence: Node): Node = {

val tokens: Node = (sentence \ "tokens").head
val tokenSeq: Seq[Node] = tokens \ "token"

// (1) Get a list of surface forms.
val formSeq: Seq[String] = tokenSeq.map(_ \@ "form")

// (2) Parse the sentence by calling the API.
val binaryTree: Tree[String] = parser.
getBestConstrainedParse(formSeq.asJava, null, null)

val tree =
TreeAnnotations.unAnnotateTree(binaryTree, true)

// (3) Convert the output tree into annotation.
val taggedTokens = addPOSToTokens(tree, tokens)
val parse = treeToNode(tree, tokenSeq)

// (4) Return a new sentence node with updated
// child elements.
XMLUtil.addOrOverrideChild(
sentence, Seq(newTokens, parseNode))

}
// Return the new tokens element on which each element has
// pos attributes.
def addPOSToTokens(tree: Tree[String], tokens: Node): Node
= { ... }

// Convert the Tree object in Berkeley parser into XML.
def treeToNode(
tree: Tree[String], tokenSeq: Seq[Node]): Node = { ... }

override def requires = Set(Tokenize)
override def requirementsSatisfied = Set(POS, Parse)

}

Figure 6: Core parts in BekeleyParserAnnotator.

Figure 6 shows an excerpt of essential parts
in BerkeleyParserAnnotator. It creates a parser
object in the constructor, and then in each
newSentenceAnnotation, it first extracts a se-
quence of (yet annotated) tokens (1), gets a tree
object from the parser (2), converts the tree into
Scala XML object (3), and returns the updated
sentence XML object (4). This workflow to en-
code to and decode from the API-specific objects
is typical when implementing new annotators.

Calling with reflection The class in Fig-
ure 6 has a constructor with the signature
(String, Properties), which allows us to instanti-
ate the class dynamically using reflection. To do
this, a user has to add a new property prefixed
with customAnnotatorClass (the same as Stanford
CoreNLP). In the case above, the property

customAnnotatorClass.berkeleyparser : jigg.pipeline.BerkeleyParser

Another advantage of this trait is that annotations are auto-
matically performed in parallel if the code is thread-safe. One
can also prohibit this behavior by overriding nThreads vari-
able by 1 in the annotator class.

makes it possible to load the implemented annota-
tor with the name berkeleyparser.

Distributing new annotators An ultimate goal
of Jigg is that the developers of a new tool in
a pipeline distribute their system along with the
wrapper (Jigg annotator) when releasing the soft-
ware. If the system is JVM-based, the most stable
way to integrate it is releasing the annotator (along
with the software) into Maven repositories. Then,
a user can build an extended Jigg by adding the
dependency to it. For example, now the annotator
for the MST parser is implemented, but is not in-
cluded in Jigg, as it is a relatively old system. One
way to extend Jigg with this tool is to prepare an-
other project, on which its build.sbt may contain
the following lines:5

libraryDependencies ++= Seq(
"com.github.mynlp" % "jigg" % "VVV",
"com.github.mynlp" % "jigg-mstparser" % "0.1-SNAPSHOT")

Jigg itself focuses more on the central NLP tools
for wider users, but one can obtain the customized
Jigg in this way.

Tools beyond JVM So far we have only dealt
with JVM softwares such as Stanford CoreNLP,
but Jigg can also wraps the softwares written in
other languages such as C++ and python. In fact,
many existing tools for Japanese are implemented
in C or C++, and Jigg provides wrappers for those
softwares. One problem of these languages is that
installation is sometimes hard due to complex de-
pendencies to other libraries. We thus put a pri-
ority on supporting the tool written in JVM lan-
guages in particular on Maven first, which can be
safely incorporated in general.

5 Comparison to Stanford CoreNLP

As we have seen so far, Jigg follows the software
design of Stanford CoreNLP in many respects. Fi-
nally, in this section, we highlight the important
differences between two approaches.

Annotated objects Conceptually this is the
most crucial difference as we mentioned in Sec-
tion 1. In Stanford CoreNLP, each annotator ma-
nipulates an object called CoreMap. A clear ad-
vantage of this data structure is that one can take
out a typed data structure, such as a well imple-
mented Sentence or Graph object, which is easy

5To call a new annotator, a user have to give a class path
to the annotator with the property. Note that the mappings for
the built-in annotators such as berkeleyparser are preserved
in the Jigg package, so they can be used without any settings.

107

to use. In Jigg’s XML, on the other hand, one ac-
cesses the fields through literals (e.g., \@ ′′pos′′ to
get the POS attribute of a token). This may sug-
gests Jigg needs more careful implementation for
each annotator. However, we note that the prob-
lem can be alleviated by adding a simple unit test,
which we argue is important as well in other plat-
forms.

The main advantage of using Scala XML as a
primary object is its flexibility for adapting to new
types of annotations. It is just an XML object,
so there is no restriction on the allowed structure.
This is not the case in Stanford CoreNLP, where
each element in CoreMap must be a proper data
structure defined in the library, which means that
the annotation that goes beyond the assumption of
Stanford CoreNLP is difficult to support. Even if
we define a new data structure in CoreMap, an-
other problem occurs when outputting the annota-
tion into other formats such as XML. In Stanford
CoreNLP, this output component is hard-coded in
the outputter class, which is difficult to extend.
This is the problem that we encountered when we
explored an extension to Stanford CoreNLP for
Japanese processing pipeline as our initial attempt.
Historically in Japanese NLP, the basic analyzing
unit is called bunsetsu, which is a kind of chunk; a
syntactic tree is often represented as a dependency
tree on bunsetsu. Jigg is preferable to handle these
new data structures, which go beyond the assump-
tion on typical NLP focusing primarily on English,
and we believe this flexibility make Jigg suitable
for an integration framework, which has no restric-
tions on the applicable softwares and languages.

Output format Another small improvement is
that our XML output format (Figure 3) is (we be-
lieve) more machine-friendly. For example, in
Stanford CoreNLP, the parse element is just a
Lisp-style tree like (S (NP (DT This)) ((VBZ is)
(NP (DT a) (NN cat))) (. .)), which is parsable el-
ements in Jigg. For some attribute names we em-
ploy different names, e.g., surface form is called
form in Jigg instead of word in Stanford CoreNLP.
We decide these names basically following the
naming convention found in Universal Dependen-
cies6, which we expect becomes the standard in fu-
ture NLP. Finally, now we implement each wrap-
per so that each id attribute is unique across the
XML, which is not the case in Stanford CoreNLP.
This makes search of elements more easier.

6http://universaldependencies.org/docs/

6 Conclusion

We presented Jigg, an open source framework for
an easy natural language processing pipeline both
for system developers and users. We hope that this
platform facilitates distribution of a new high qual-
ity system on the pipeline to wider users.

Acknowledgments

This work was supported by CREST, JST.

References
David A. Ferrucci and Adam Lally. 2004. Uima: an archi-

tectural approach to unstructured information processing
in the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Y. Kano, M. Miwa, K. B. Cohen, L. E. Hunter, S. Ananiadou,
and J. Tsujii. 2011. U-compare: A modular nlp work-
flow construction and evaluation system. IBM Journal of
Research and Development, 55(3):11:1–11:10, May.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004.
Applying conditional random fields to japanese morpho-
logical analysis. In Dekang Lin and Dekai Wu, editors,
EMNLP, pages 230–237, Barcelona, Spain, July.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny
Finkel, Steven Bethard, and David McClosky. 2014. The
stanford corenlp natural language processing toolkit. In
ACL: System Demonstrations, pages 55–60, Baltimore,
Maryland, June.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
Hajic. 2005. Non-projective dependency parsing using
spanning tree algorithms. In HLT-EMNLP, October.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: a data-driven parser-generator for dependency
parsing. In LREC.

Slav Petrov and Dan Klein. 2007. Improved inference for
unlexicalized parsing. In HLT-NAACL, pages 404–411,
Rochester, New York, April.

Marta Recasens, Marie-Catherine de Marneffe, and Christo-
pher Potts. 2013. The life and death of discourse entities:
Identifying singleton mentions. In NAACL: HLT, pages
627–633, Atlanta, Georgia, June.

Richard Socher, John Bauer, Christopher D. Manning, and
Ng Andrew Y. 2013. Parsing with compositional vector
grammars. In ACL, pages 455–465, Sofia, Bulgaria, Au-
gust.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In NAACL: HLT,
pages 173–180, Morristown, NJ, USA.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Integrating
multiple dependency corpora for inducing wide-coverage
japanese ccg resources. In ACL, pages 1042–1051, Sofia,
Bulgaria, August.

108

