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Abstract

Sarcasm can radically alter or invert a
phrase’s meaning. Sarcasm detection can
therefore help improve natural language
processing (NLP) tasks. The majority of
prior research has modeled sarcasm detec-
tion as classification, with two important
limitations: 1. Balanced datasets, when
sarcasm is actually rather rare. 2. Us-
ing Twitter users’ self-declarations in the
form of hashtags to label data, when sar-
casm can take many forms. To address
these issues, we create an unbalanced cor-
pus of manually annotated Twitter conver-
sations. We compare human and machine
ability to recognize sarcasm on this data
under varying amounts of context. Our
results indicate that both class imbalance
and labelling method affect performance,
and should both be considered when de-
signing automatic sarcasm detection sys-
tems. We conclude that for progress to be
made in real-world sarcasm detection, we
will require a new class labelling scheme
that is able to access the ‘common ground’
held between conversational parties.

1 Introduction
Sarcasm, or verbal irony, is prevalent both in spo-
ken and written communication, and can radically
alter or invert a phrase’s meaning. Automatic sar-
casm detection can therefore help improve natural
language processing (NLP) tasks, such as senti-
ment analysis, where failure to take ironic intent
into account has been recognised as a major cause
of errors.

However, automatic sarcasm detection is a non-
trivial problem, and research into this subject is
in its infancy. The majority of prior research has

treated sarcasm detection as a classification task,
with two important limitations: 1. It focuses on
balanced datasets, when sarcasm is actually rather
rare. 2. In order to obtain labelled data for su-
pervised learning, many studies relied on Twitter
users’ supposed self-declarations of sarcasm in the
form of hashtags such as #sarcasm, but sarcasm
can take many forms.

Although reporting impressive results for sar-
casm detection, even state-of-the-art systems fail
to address the above issues. Research suggesting
that verbal irony occurs in less than a fifth of con-
versations (Gibbs, 2000) implies that, rather than
using balanced datasets, a more realistic approach
may be to view sarcasm recognition as a prob-
lem of anomaly detection, in which positive ex-
amples are scarce. While convenient, obtaining
labelled data from hashtags has been found to in-
troduce both noise, in the form of incorrectly la-
belled examples, and bias to the datasets used –
analysis suggests that only certain forms of sar-
casm are likely to be tagged in this way (Davidov
et al., 2010), and predominantly by certain types
of Twitter users (Bamman and Smith, 2015).

To address these issues, we create a novel
corpus of manually annotated Twitter conversa-
tions and, using the feature classes of Bamman
and Smith (2015), perform sarcasm classifica-
tion experiments on both balanced and unbalanced
datasets. We also compare model performance to
a dataset of conversations automatically retrieved
using hashtags.

Our contributions In this paper, we present a
novel corpus of manually annotated two-part Twit-
ter conversations for use in supervised classifi-
cation of sarcastic and non-sarcastic text. We
compare human vs. machine learning classifica-
tion performance under varying amounts of con-
textual information, and evaluate machine perfor-

107



mance on balanced and unbalanced, and manually
labelled and automatically retrieved datasets.

2 Data
Most prior research into sarcasm detection has
been conducted on Twitter. To make comparisons
with other research, and because use of sarcasm
seems to be prevalent on Twitter, we too make use
of Twitter data for this study.

However, the collection of data using explicit
markers of sarcasm (hashtags) has been shown
to introduce bias to the datasets used in prior re-
search (Davidov et al., 2010; González-Ibánez et
al., 2011; Maynard and Greenwood, 2014; Bam-
man and Smith, 2015). We therefore create a novel
hand-annotated corpus of contextualised sarcastic
and non-sarcastic Twitter conversations. For com-
parison, we also create an automatically collected
dataset using hashtags.

Corpus creation The data set is taken from a
Twitter corpus of 64 million tweets gathered in
2013. Matching tweet reply IDs to the status IDs
of other tweets, and filtering by language, pro-
duces 650,212 two-line English Twitter ‘conver-
sations.’ We manually annotate these, finding 448
positive examples, to which we add 1,792 neg-
atively labelled examples in which sarcasm was
found not to be present. The resulting corpus con-
tains 2,240 conversations in total. A second cor-
pus, which is automatically retrieved using hash-
tags, is created, producing 448 Twitter conversa-
tion where the second tweet contains #sarcasm,
and 1,792 without this feature. Following previous
work, we remove usernames and web addresses.
For the second corpus, we also remove the term
#sarcasm. We collect up to 3,200 historical
tweets written by each user ID in the datasets.

Annotation We annotated the conversations
manually with full access to the text of the con-
versations and user profile information and tweet
history of the users. Following prior work (Kreuz
and Caucci, 2007), and because people have been
found to conflate many forms of verbal irony un-
der the term sarcasm (Gibbs, 1986), positive labels
were not assigned according to any fixed criteria
or definition, but according to our intuitive un-
derstanding of whether or not examples contained
verbal irony1

1This was also necessary because prior sarcasm detec-
tion studies relied on self-annotation of sarcasm by Twit-
ter users applying their own judgements of sarcastic mean-

3 Human performance baseline study
This study was undertaken with the participation
of 60 native English speaking volunteers. We ran-
domly selected 300 Twitter conversations from the
corpus and assigned them each one of five condi-
tions: tweet only – the text of the reply tweet from
the conversation, tweet + author – including ac-
cess to the Twitter profile of the author, tweet +
audience – including the profile of the writer of
the original tweet in the conversation, tweet + en-
vironment – the texts of both tweets, and tweet +
author + audience + environment – access to all
the above information. Each participant rated 10
conversations.

Procedure We asked two participants to rate the
reply tweet of each conversation as either sarcas-
tic or non-sarcastic. Again, following Kreuz and
Caucci (2007), raters were not provided with a
definition of sarcasm, but were asked to judge the
tweets based on their intuitive understanding of
the term.

Inter-rater agreement We use inter-rater agree-
ment measures to assess both the difficulty of the
sarcasm recognition task under different condi-
tions and the reliability of the participants. We
report both raw percentage agreement and – as in
previous work on sarcasm annotation (Swanson et
al., 2014) – Krippendorffs α, which takes into ac-
count expected chance disagreement.

Contrary to expectations, annotators are not
more likely to agree if given access to more infor-
mation. Agreement is highest for the tweet only
condition (% = 70.49, α = 0.35). Krippendorffs
α scores for tweet + audience (0.08) and tweet
+ original + author + audience (0.18) are very
low, while tweet + audience produces a negative
score (-0.10) which indicates that agreement is be-
low chance levels.

Rater reliability Agreement scores are gener-
ally low. Only two pairs obtain ‘good’ agree-
ment scores.2 The majority (20 pairs) receive a
score between 0.0 and 0.67, while eight of the
pairs achieve negative scores, indicating less than
chance expected agreement. Two possible expla-
nations for low rater agreement are (1) that sar-
casm recognition is a difficult task for humans
(Kreuz and Caucci, 2007; González-Ibánez et al.,

ing e.g., Davidov et al. (2010) 2010, González-Ibánez et al.
(2011).

2Krippendorff (2012) considers 0.67 to be lowest accept-
able agreement score.
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2011), especially without access to the surround-
ing context (Filatova, 2012; Wallace et al., 2014),
and (2) that people undertaking such tasks re-
motely online are often guilty of ‘spamming,’ or
providing careless or random responses (Hovy et
al., 2013).

To mitigate the effects of unreliable raters and
get an upper bound for human performance, we
use two measures: (1) discard the results of the
worst performing rater in each pair (in terms of
F1) and use the vote of the higher scoring raters.
(2) identify the least trustworthy raters and down-
weight their votes using scores from an item-
response model, MACE (Hovy et al., 2013).

The first requires access to the original anno-
tated labels, the latter can be done with or without
access to the gold standard. We compare both F1
and Area Under the Curve (AUC) scores of both
raters in each pair, the better performing rater only,
and the MACE most competent rater in each pair
over all conditions.

For both measures, MACE competent rater
scores (F1: 0.547; AUC: 0.731) are marginally
higher than the mean of both raters (F1: 0.523;
AUC: 0.729), while the best rater scores (F1:
0.641; AUC: 0.817) are highest of all, as might
be expected.

3.1 Machine classification experiments

To compare human to machine performance, we
fit binary classification models on both balanced
and unbalanced splits of the two datasets.

Experimental setup We evaluate performance
using a standard logistic regression model with
`2 regularization, evaluated via five-fold cross-
validation.

Features For the five conditions, we use the fol-
lowing feature classes, as named and described by
Bamman and Smith (2015):
Tweet features: Unigrams, bigrams, Brown clus-
ter unigrams, Brown cluster bigrams, part-of-
speech features, pronunciation features, and inten-
sifier features.
Author features: Author historical salient terms,
profile information, profile unigrams.
Audience features: Audience historical salient
terms, profile unigrams, profile information, and
historical communication features.
Environment features: Pairwise Brown features
and unigram features of audience tweets.

Normalisation We convert all features to binary
or numeric values and normalize them to the range
between zero and one.

Procedure Following Bamman and Smith
(2015), we evaluate classification performance on
the above feature sets in the following combina-
tions: tweet features only, tweet + author features,
tweet + audience features, tweet + environment
features, and tweet + author + audience +
environment.

4 Results
Accuracy is commonly reported in classifica-
tion tasks, but unsuitable for unbalanced datasets
(López et al., 2013), so we report two other met-
rics frequently used with uneven class distribu-
tions: F1 score, and Area Under the ROC Curve
(AUC), which reflects the relationship between
the true positive rate (TPR) and false positive rate
(FPR). Unlike accuracy, these measures penalize
predicting only the majority class. AUC is consid-
ered to be more resistant to the skew of unbalanced
data than F1 (Fawcett, 2004).

Comparison with baselines Figure 1 compares
random performance, human raters,3 and the clas-
sifier’s AUC scores. The scores of both the human
raters and the machine classifier surpass random
performance in all conditions, with the classifier
attaining the lowest score of 0.615 on tweet + au-
thor features. Machine classification is not, how-
ever, able to match human performance. But there
are parallels between human and machine perfor-
mance: the classifier achieves its highest score us-
ing tweet + environment features (human: 0.802;
machine: 0.630). Interestingly, both humans and
the classifier appear to suffer from an ‘information
saturation’ effect, obtaining lowest scores when
trained on a combination of all the possible fea-
tures.

Machine classification performance across con-
ditions We have two data-related factors that
affect performance, namely (1) label prevalence
(i.e., balanced vs. unbalanced splits), and (2) the
labelling scheme (manual vs. automatically in-
duced from #sarcasm). Figure 2 shows the ef-
fects on F1 and AUC for each combination of
these two factors under all five conditions.

3Using the MACE most competent rater scores, which we
judge to be the fairest comparison.
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Figure 1: AUC scores of random performance, the
most competent human raters, and machine clas-
sification on an unbalanced split of the manually
annotated data.

Class label balance
AUC scores are largely unaffected by change in
label balance. We see broadly similar results on
both balanced and unbalanced data splits across
all the feature classes on both corpora. The small
changes in performance that do occur can be at-
tributed to the increase in size of the unbalanced
datasets, which have more negative training exam-
ples compared to the balanced sets.

However, for both corpora, and across all fea-
ture classes, F1 scores suffer large drops on the
unbalanced data compared to results on the bal-
anced datasets. These results indicate that F1,
known to be biased to the negative class and to
ignore the effect of true negatives (Powers, 2015),
may not be a suitable metric for this task, as it is
very sensitive to the changes in class balance of
the datasets. Nevertheless, even when measured
with AUC score, in the majority of feature config-
urations classifier performance drops on the unbal-
anced datasets. Results therefore suggest that class
balance (and dataset size) should be taken into ac-
count when designing sarcasm detection systems.
Labelling scheme
Overall, higher scores are achieved with the auto-
matically collected corpus. All feature combina-
tions obtain higher F1 and AUC scores on this data
using the balanced split, as do tweet + auth and
tweet + aud on the unbalanced data. This points
to greater homogeneity in the data in the automat-
ically collected corpus. This may be because it is
often certain types of users, such as those who do
not know their audience personally, who feel the
need to label their sarcastic statements with hash-

tags (Bamman and Smith, 2015). Manually anno-
tated data includes instances of sarcasm which the
author has not deemed necessary to explicitly label
as sarcastic. This may lead to greater variation in
the features of the positive examples in the manu-
ally annotated data, and hence lower classification
scores.

The only feature category in which F1 and
AUC scores for the manually annotated data are
higher than those for the automatically collected
data are on the unbalanced split for tweet features
(F1: +0.012, AUC: +0.08) and tweet + env (F1:
+0.037, AUC: +0.015), while tweet + auth + aud
+ env produces a higher F1 score (+0.275), but
a slightly lower AUC score (-0.023). These fig-
ures point to the fact that for the manually an-
notated data, performance is best when linguistic
features from both tweets in the conversations are
included. Indeed, on both balanced and unbal-
anced data splits of the manually annotated data,
better results are generally produced using these
textual features than using features related to the
writers of those texts. It would therefore seem
that the annotation process has introduced some
biases to the data. This process, in which sarcasm,
or the ambiguous possibility of sarcasm, is first
recognised in the dialogues and then confirmed
by scrutiny of users Twitter pages, heavily favours
textual features. Twitter conversations automati-
cally selected using hashtags on the other hand, are
likely to be highly ambiguous once those hashtags
are removed and, as discussed above, more likely
to be predictable from information in the conversa-
tional participants’ profile metadata than from lin-
guistic features.

5 Related Work
Research in both cognitive psychology (Utsumi,
2000; Gibbs and Colston, 2007) and NLP (Fi-
latova, 2012) has suggested that it may not be
possible to produce an overarching definition of
sarcasm. Kreuz (1996) noted that use of sar-
casm often depends on the ‘common ground’ peo-
ple share. Work on human sarcasm recognition
(Kreuz and Caucci, 2007) and automatic sarcasm
detection (Bamman and Smith, 2015) has relied on
people’s intuitive understanding of the term ‘sar-
casm’ for rating and data labelling purposes.

Following the insights of Kreuz and Caucci
(2007), Carvalho et al. (2009), González-Ibánez
et al. (2011) and Tsur et al. (2010), among others,
used textual cues for automatic sarcasm detection.
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Figure 2: Effects of labeling method (top vs. bottom row) and label prevalance (left vs. right column) on
F1 and AUC scores.

Addressing the wider context in which tweets are
written, Rajadesingan et al. (2015) mapped infor-
mation from the posting history of Twitter users
to research on why, when, and how sarcasm tends
to be used. They also tested their model on both
balanced and unbalanced datasets. Bamman and
Smith (2015) showed that a variety of contextual
features can improve classification performance
over use of textual features alone. However, like
González-Ibánez et al. (2011) and Maynard and
Greenwood (2014), they concluded that the use
of hashtags for data labelling introduced biases to
their dataset.

6 Conclusions
We evaluated the performance of human raters
and a machine learning algorithm on sarcasm
detection under different information conditions.
We find that humans generally benefit from con-
text more than machines, but that machine per-
formance is even more affected by the label-
ing scheme (automatically induced vs. hand-
annotated) and the prevalence of the target class.
Our results indicate that sarcasm detection is far
from solved, and that any results on the task need

to be viewed in the light of the two factors outlined
here.

In automatic sarcasm detection, use of unbal-
anced datasets led to large drops in F1 scores, due
to this metric not taking into account true nega-
tives. As the ratio of TNs is necessarily large for
effective sarcasm detection on data in which posi-
tive examples are rare, AUC seems a more appro-
priate performance metric.

Although more robust to class imbalance, AUC
scores also varied between the balanced and un-
balanced datasets. This indicates that label class
balance and dataset size should be taken into ac-
count when designing sarcasm detection systems.

Previous work suggests that the automatic se-
lection of positive examples using user-written
hashtags biases the data towards (1) particularly
ambiguous forms of sarcasm, and (2) ‘celebrity’
Twitter users who are anxious not to be misun-
derstood. Our labelling method avoids these pit-
falls, as well as eliminating noise in the form of
tweets that use sarcastic hashtags but are not in
fact ironic. However, in using the labels of an out-
side observer to the conversations, we may be in-
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troducing other forms of bias. It seems that a gold
standard sarcasm corpus would require labelling
by the annotators who are party to the ‘common
ground’ shared by the participants in the conversa-
tions. It would also need to include those instances
that they would not normally publicly mark as be-
ing sarcastic with hashtags.

Future work will focus on improving the qual-
ity and size of labelled corpora available for this
task. It will also explore the use of features from
the wider conversational context beyond the two-
sentence dialogues examined here, and investigate
the effects of data labelling method and class bal-
ance on media other than Twitter.
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