
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics – Student Research Workshop, pages 37–42,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Significance of an Accurate Sandhi-Splitter in Shallow Parsing of
Dravidian Languages

Devadath V V Dipti Misra Sharma
Language Technology Research Centre

International Institute of Information Technology - Hyderabad, India.
devadathv.v@research.iiit.ac.in

dipti@iiit.ac.in

Abstract

This paper evaluates the challenges in-
volved in shallow parsing of Dravidian
languages which are highly agglutinative
and morphologically rich. Text processing
tasks in these languages are not trivial be-
cause multiple words concatenate to form
a single string with morpho-phonemic
changes at the point of concatenation. This
phenomenon known as Sandhi, in turn
complicates the individual word identifi-
cation. Shallow parsing is the task of
identification of correlated group of words
given a raw sentence. The current work is
an attempt to study the effect of Sandhi in
building shallow parsers for Dravidian lan-
guages by evaluating its effect on Malay-
alam, one of the main languages from Dra-
vidian family. We provide an in-depth
analysis of effect of Sandhi in developing a
robust shallow parser pipeline with exper-
imental results emphasizing on how sen-
sitive the individual components of shal-
low parser are, towards the accuracy of a
sandhi splitter. Our work can serve as a
guiding light for building robust text pro-
cessing systems in Dravidian languages.

1 Introduction

Identification of individual words is crucial for the
computational processing of a text. In Dravid-
ian languages, word identification becomes com-
plex because of Sandhi. Sandhi is a phenomenon
of concatenation of multiple words or characters
to form a single complex string, with morpho-
phonemic changes at the points of concatena-
tion (VV et al., 2014). The morphological units
that can be concatenated in a Sandhi operation can
belong to any linguistic class: a noun joins with

a verb or a postposition or particle, a verb joins
with other verbs, auxiliaries, connectives, adverbs
combining with verbs and so on. The phenomenon
is different from a noun compound multi-word
expression in that the noun-compound concate-
nations are semantics-driven. Whereas Sandhi is
not semantically driven but phonologically driven.
This leads to misclassification of classes of words
by pos-tagger which eventually affects parsing.
Hence making shallow parsers for Dravidian lan-
guages is a challenging task.

Shallow parsing (Abney, 1992) is a task of au-
tomatic identification of correlated group of words
(chunks) which reduces the computational effort
at the level of full parsing by assigning partial
structure to a sentence. To be precise, chunks
are correlated group of words which contain only
the head or content word and its modifiers. Shal-
low parser is not a single module but is a set of
modules (Hammerton et al., 2002) with tokeniser,
parts-of-speech tagger (pos-tagger) and chunker
put in a pipeline. It has been experimentally
proved that shallow parsers are useful in both text
(Collins, 1996), (Buchholz and Daelemans, 2001)
and speech processing domains (Wahlster, 2013).

The current work aims to give an in-depth anal-
ysis on the effect of Sandhi in shallow parsing
of Dravidian languages with a focus on Malay-
alam, the most agglutinative language (Sankaran
and Jawahar, 2013) in the Dravidian family. For
the purpose of analysis, we chose to create our
own pos-tagger and chunker trained on a new
70k words annotated corpus with word internal
features of morpho-phonological nature partic-
ularly because Sandhi evolved out of morpho-
phonological reasons.

In this paper, for the first time in the literature,
we evaluate the impact of Sandhi and the resul-
tant error propagation in shallow parser for Dra-
vidian languages. In this work, we compare the

37



performances of pos-tagger, and chunker on a gold
standard sandhi-split test data and how the error
of a sandhi-splitting tool propagates to other com-
ponents of shallow parsing pipeline. We have re-
leased the 70k annotated data and the trained mod-
els of pos-agger, chunker and shallow parser de-
scribed in this paper1.

2 Sandhi in Dravidian languages

Sandhi is a very common phenomenon in Sanskrit
and Dravidian languages. Even though many
languages exhibit agglutinative properties in
morphemes, in these languages, this goes beyond
the morphemes and agglutinates words with
morpho-phonemic change. For example,

(1) avanaareyaaN snEhikkunnath ?
‘avan aare aaN snEhikkunnath ?
‘he whom is loving ?
‘whom he is loving?

Example 1 is a valid sentence from Malayalam.
There are two strings, avanaareyaaN and snE-
hikkunnath. Here second string is a single word
but first string, avanaareyaaN is a combination of
3 sub-strings or words; avan , aare and aaN. The
last character “n ” of avan is a pure consonant
which can stand alone without the help of a vowel.
When this word joins with the next word aare,
“n ” of avan becomes a normal consonant by
joining with the first character “aa” of aare. When
aare joins with the word aaN, an insertion of an
additional character “y” happens, and together
they form avanaareyaaN.

avan + aare + aaN → avanaareyaaN

Sandhi happens in Dravidian languages at
two levels. One is at morpheme level and other is
at word level. In morpheme level, stem or root(s)
join with the affixes to create a word along with
morpho-phonemic changes as explained above.
This is considered as Internal Sandhi. Sandhi
between words as in example (1) is known as
External Sandhi. For this work, External Sandhi
is the matter of concern because this makes the
individual word identification difficult.

1Data and Models created during this project can be
found in this link https://github.com/Devadath/
Malayalam-Shallow-Parser

3 Sandhi-Splitter

Sandhi-splitter is a tool which splits a string of
conjoined words into a sequence of individual
words, where each word in the sequence has the
capacity to stand alone as a single word. To be
precise, sandhi-splitter facilitates the task of indi-
vidual word identification within such a string of
conjoined words.

To the best of our knowledge, only 2 works have
been published on Malayalam sandhi-splitter with
proper empirical results (VV et al., 2014), (Kun-
cham et al., 2015). For all the experiments, we
used the former sandhi splitter since the accuracy
is better than the latter one. This method applies
Bayesian methods at character level to find out the
precise split points and used hand-crafted rules to
induce morpho-phonemic changes. The remaining
sections of this paper focus on an in-depth analy-
sis of effect of Sandhi in shallow parsing in the
language of Malayalam.

4 Effect of Sandhi in Shallow Parsing

4.1 An overview of Shallow Parser pipeline
A typical architecture of a shallow parser has three
main modules namely sandhi-splitter, pos-tagger
and chunker. Input to the shallow parser is a raw
sentence and the output is a chunked text with its
pos and chunk information of every word present
in it. The diagram of the architecture is given in
Figure 1.

Figure 1: Pipeline Architecture

4.2 Effect of Sandhi in POS-Tagging
As mentioned in Section 1, Sandhi happens be-
tween words from different grammatical cate-
gories.

(2) addEhamoraddhyaapakanaaN
‘addEhaM oru addhyaapakan aaN
‘He one teacher(male) is
‘He is a teacher

Example 2 is a sentence in Malayalam with 4
words in it. Here first word addEhaM is a pro-
noun, second word oru is quantifier, third word
addhyaapakan is a noun and fourth word aaN
is a copula. But these words are agglutinated

38



to become a string of words addEhamoraddhyaa-
pakanaaN, making the system incapable of identi-
fying individual words, consequently resulting in
an erroneous POS tagging.

(3) varumen kil
‘varuM en kil ’
‘come.FUT if’
‘if comes’

In example 3, there are 2 different words from
different grammatical classes. varuM is a finite
verb whereas en kil is a conjunction and they are
agglutinated together to form varumen kil which
should not be tagged by a single pos-tag.

Because of the morphological richness, mor-
phological features like root, prefix and suffix in-
formation are helpful features in identifying the
grammatical category of a word. In order to eval-
uate the effect of Sandhi we decided to create a
pos-tagger which uses both word-external (con-
text) and word-internal features (morphological
features) because a word is a result of Sandhi be-
tween morphemes like prefix, suffix, root, stem
etc. For incorporating these features we used
CRF (Lafferty et al., 2001) for building pos-tagger.
We created a pos-annotated news corpus of 70k
words by manual efforts along with bootstrapping.
The pos information is incorporated after splitting
and validating the Sandhi. The Tag-set we used
to annotate is BIS tag-set2, specially designed for
Indian languages. Since morph analyzers are not
available for Malayalam, in order to capture the
prefix and suffix information, certain number of
characters from the beginning and end of a word
are used as features for POS Tagging. Table 1
shows the features used for pos-tagging.

Features
W-1, W0, W1,

W[0], W[0:2], .., W[0:5],
W[-5], W[-5:-3], .., W[-5:EOW]

Table 1: Features for our POS Tagger. W is Word
and W[l:m] refers to character at indexes. Wx

refers to word at relative position of x with respect
to current position. ’EOW’ refers to End Of Word.

4.3 Effect of Sandhi in Chunking
Chunks are identified based on the pos-tags of
words. Since a chunk is a group of a head word

2http://tinyurl.com/hhllsky

and its modifiers, they are meaningful subsets of
a sentence. But if the individual words are not
correctly identified, inappropriate pos-tags will be
assigned and meaningless chunks will be created.
There are 4 words and 3 chunks in example 2. [ad-
dEhaM PRP]NP, [oru QT addhyaapakan NN]NP,
and [aaN VM]VP. If the Sandhi is not identified
and individual words are not extracted, system
will fail to identify the meaningful sub-parts of
a sentence like chunk/phrase/constituents. Sim-
ilarly in example 3, the string varumen kil has
two words and two chunks [varuM VM]VP and
[en kil CC]CCP. Hence processing Sandhi in the
first stage is extremely important in any NLP task
for Dravidian languages.

For evaluating the effect of Sandhi in chun-
ker, we decided to create a chunker. We incorpo-
rated chunk information using IIIT-tagset (Bharati,
2006) in the data annotated for pos-tagging, which
is a corpus of 70k words. Table 2 shows the fea-
tures we used for the chunker. Each feature is
composed of a word and its corresponding POS
tag.

Features
W-2/POS-2,..,W0/POS0,..,W2/POS2

Table 2: Features for our Chunker. W is Word and
POS refers to POS tag.

5 End to End Shallow parser

Shallow parser is a set of modules comprising of
sandhi-splitter, pos-tagger and chunker in order. A
raw text will be given as the input and the sandhi-
splitter identifies individual words, pos-tagger as-
signs pos-tags to each word and chunker groups
them to chunks and outputs the chunked sentence
as shown in Figure 2.

Figure 2: Example of a raw input and the subse-
quent chunked output

5.1 Data
We have used the manually created 70k pos and
chunk annotated corpus which we have already

39



mentioned in 4.2 and 4.3. Out of 70k data, 8k data
has been taken as test data and remaining 62k as
training data for pos-tagging and chunking. Since
creating training data for sandhi-splitter is a labo-
rious task, we used the sandhi-annotated training
data of size 2k words used by (VV et al., 2014).
Whereas test data will be the same 8k data which
were employed for pos tagging and chunking.

5.2 Experiments

Two types of experiments have been conducted to
evaluate the error propagation of the Malayalam
shallow parser pipeline. In the first type of experi-
ments, individual modules in the pipeline are con-
sidered as independent of the output of previous
modules. In the second type of experiment indi-
vidual modules are considered as dependent on the
output of previous modules.

5.2.1 Experiment Type - 1
In this experiment, input to each module will not
be affected by the performance of its previous
modules. This experiment evaluates the perfor-
mance of all the individual modules with respect
to the current train and test data. Table 3 presents
the results.

Module P R F-1 A
Sandhi Splitter 91.77 62.95 74.68 88.46

POS tagger 90.45 90.49 90.47 90.45
Chunker 88.47 91.55 89.98 92.92

Table 3: Results of Experiment Type- 1 : Re-
sults of individual modules where each module
will not be affected by the performance of its pre-
vious modules. Here, ‘P’ refers to Precision, ‘R’
to Recall, ‘F-1’ to F-Measure and ‘A’ to Accuracy

5.2.2 Experiment Type - 2
In these experiments, output of one module will be
given as input to the next module, hence the per-
formance of the previous module affects the next
module. These experiments are to evaluate the er-
ror propagation from each module which eventu-
ally affects the final output. Here the evaluation
of the pos-tagger is done based on the number of
words which got correctly identified by the sandhi-
splitter and then got the correct pos-tags by the
pos-tagger. A chunk can be a word or a group
of words. Hence a chunk is considered as correct
only when there are exact number of words in the

chunk where all the words in it should meet the
criteria for the evaluation of pos-tagger. Shallow
Parser pipeline evaluation scores are given in Ta-
ble 4.

S S+P P+C S+P+C
88.46 79.87 81.88 71.38

Table 4: Results of Experiment Type- 2: Pipeline
accuracies where the performance of previous
modules affect the subsequent modules. Here ‘S’
refers to sandhi splitter, ‘P’ to pos-tagger and ‘C’
to chunker. “+” indicates that the output of the
previous module is given as the input to the next
module.

Figure 3: Comparison of accuracies of POS tagger
and Chunker with and without Sandhi splitter

Error propagation due to the performance of
sandhi-splitter is very high when compared to
other modules. Accuracy of the pos-tagger, came
down to 79% from 90% due to the errors caused
by sandhi-splitter and further this brought down
the accuracy of chunker to 71% from 92%.

6 Analysis of Experiment Type-2 Results
In Various Modules

6.1 Sandhi-Splitter
We have 2 types of errors created by the sandhi
splitter.

1. Not splitting a token which has to be split into
words.

2. Splitting a token which should not have been
split.

In this experiment, error 1 is more prevalent than
error 2. For example, aRivilla (no knowledge)

40



should have been split into aRiv (knowledge) and
illa (no). But the system failed to do so. The
mentioned problem is due to the lack of diverse
patterns in training data. When it comes to error 2,
split occurs either between a root and its suffix or
just splits in common sandhi split points like ya,
va or ma. The word aTiccamaRtti (suppressed)
got split into aTiccaM and aRtti where both the
words are meaningless. This problem is also due
to the lack of diverse patterns in training data.
Another cause of errors are rules employed in
Sandhi Splitter for inducing morpho-phonemic
changes after split. Though the system correctly
identified “n” as split point for kaalinuLLa (which
is for leg), but when the rules got applied, this
became kaalin +uLLa, where it should have been
simply “n” which represents a dative case suffix.
Whereas kaalin which is meaningless in that
context.

6.2 POS-Tagger
The errors in sandhi splitting will eventually
affect the performance of pos-tagger in two
ways along with sole errors created by pos
tagger. Precisely the errors from sandhi splitter
has been propagated to pos-tagger, along with
errors from pos-tagger. Since it is in a pipeline,
wrongly split tokens given to the pos-tagger
will have unknown patterns which make the
system unable to predict the tag accurately since
the pos-tagger uses the morphological features
defined based on characters. Subsequently, this
will have an impact at the word level context
as well. One such instance is where the string
raajaavaaN (is king) got split into raajaa and
aaN, where it should have been raajaav and aaN.
Here raajaa (king) got tagged as adjective and
aaN (is) ideally a verb but got tagged as a noun,
since the previous word got tagged as an adjective.

6.3 Chunker
Errors from both sandhi-splitter and pos-tagger
affect the performance of chunker. Errors to-
gether from sandhi-splitter and pos-tagger have
been propagated to chunker. A chunk is tagged
as incorrect when the words and number of words
along with their respective pos-tags are not cor-
rect. Many instances have 2 or more words per
chunk and the chunk-tag is decided based on pos-
tags of words. Since it is in a pipeline, two types

of errors can propagate,

• Errors due to unidentified or wrongly identi-
fied words from sandhi-splitter.

• Errors from pos-tagger, which was affected
or unaffected by the errors from sandhi-
splitter.

There are many instances where sandhi-splitter
could not identify individual words from a token
like aRivilla (no knowledge). Ideally aRiv and
illa, where the first word is a noun and the other is
a verb. Hence there should be a noun chunk (NP)
and a verb chunk (VP). Since individual words
are not available, pos-tags and chunk-tags will be
wrongly identified. Similar would be the case of
wrongly identified words.

7 Conclusion and Future Works

In this work we have discussed about experiments
conducted to evaluate the significance of an accu-
rate sandhi-splitter in shallow parsing of Dravid-
ian languages, with a focus on Malayalam. We
evaluated the performance of individual modules
and pipeline with gold standard sandhi-split test
data and how the error of a sandhi-splitting tool
propagates to other components of shallow pars-
ing pipeline. From the evaluation we found that
Sandhi severely affects the performance of in-
dividual modules and hence the performance of
shallow parser. This study validates the the need
of a highly accurate sandhi-splitter for all Dravid-
ian languages. As a future work, we propose to
work in three main directions.

1. In order to reduce the error propagation in
pipelined Shallow parser, joint modeling of
a shallow parser is proposed.

2. Investigating further improvements in
sandhi-splitting by formulating sandhi-
splitting as a statistical machine translation
task, where the raw text will be given as
the source language and the target language
will be the sentences with individual words
identified.

3. Since manual creation of annotated data in
huge amount is tedious, we plan to apply
cross-lingual projection techniques to create
Sandhi splitter for all Dravidian languages by
exploiting their morphological similarity.

41



Acknowledgments

The authors are grateful to Pruthwik Mishra for
the invaluable help and support during the work.
We also would like to thank our colleagues for
their critical and invaluable comments while writ-
ing the paper. This work has been done as the part
of Taruviithi, a treebank creation project for Indian
languages which is supported by the Department
of Electronics and Information Technology (DE-
ITY), India.

References
StevenP. Abney. 1992. Parsing by chunks. In RobertC.

Berwick, StevenP. Abney, and Carol Tenny, edi-
tors, Principle-Based Parsing, volume 44 of Stud-
ies in Linguistics and Philosophy, pages 257–278.
Springer Netherlands.

Akshar Bharati. 2006. Anncorra: Annotating corpora
guidelines for pos and chunk annotation for indian
languages.

S. Buchholz and W. Daelemans. 2001. Complex an-
swers: A case study using a www question answer-
ing system. Nat. Lang. Eng., 7(4):301–323, Decem-
ber.

Michael John Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In Proceed-
ings of the 34th annual meeting on Association for
Computational Linguistics, pages 184–191. Associ-
ation for Computational Linguistics.

James Hammerton, Miles Osborne, Susan Armstrong,
and Walter Daelemans. 2002. Introduction to spe-
cial issue on machine learning approaches to shal-
low parsing. The Journal of Machine Learning Re-
search, 2:551–558.

Prathyusha Kuncham, Kovida Nelakuditi, Sneha Nal-
lani, and Radhika Mamidi. 2015. Statistical sandhi
splitter for agglutinative languages. In Computa-
tional Linguistics and Intelligent Text Processing,
pages 164–172. Springer.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Naveen Sankaran and CV Jawahar. 2013. Error detec-
tion in highly inflectional languages. In Document
Analysis and Recognition (ICDAR), 2013 12th Inter-
national Conference on, pages 1135–1139. IEEE.

Devadath VV, Litton J Kurisinkel, Dipti M Sarma, and
Vasudeva Varma. 2014. Sandhi splitter for malay-
alam. In Proceedings of International Conference
On Natural Language Processing(ICON).

W. Wahlster. 2013. Verbmobil: Foundations of
Speech-to-Speech Translation. Artificial Intelli-
gence. Springer Berlin Heidelberg.

42


