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Abstract

Increasing amounts of digital data in his-
torical linguistics necessitate the develop-
ment of automatic methods for the detec-
tion of cognate words across languages.
Recently developed methods work well
on language families with moderate time
depths, but they are not capable of identi-
fying cognate morphemes in words which
are only partially related. Partial cog-
nacy, however, is a frequently recurring
phenomenon, especially in language fami-
lies with productive derivational morpho-
logy. This paper presents a pilot approach
for partial cognate detection in which net-
works are used to represent similarities be-
tween word parts and cognate morphemes
are identified with help of state-of-the-
art algorithms for network partitioning.
The approach is tested on a newly created
benchmark dataset with data from three
sub-branches of Sino-Tibetan and yields
very promising results, outperforming all
algorithms which are not sensible to par-
tial cognacy.

1 Introduction

In a very general notion, cognacy is similar to the
concept of homology in biology (Haggerty et al.
2014), denoting a relation between words which
share a common history (List 2014b). In clas-
sical linguistics, borrowings are often excluded
from this notion (Trask 2000). Quantitative ap-
proaches additionally distinguish cognates which
have retained, and cognates which have shifted
their meaning (Starostin 2013b). Further aspects
of cognacy are rarely distinguished, although they
are obvious and common. Words which go back to
the same ancestor form can for example have been

morphologically modified, such as French soleil
which does not go directly back to Latin sōl `sun'
but to sōliculus `small sun' which is itself a deriva-
tion of sōl (Meyer-Lübke 1911).

Variety Form Character Cognacy
Fúzhōu ŋuoʔ⁵ 月 1
Měixiàn ŋiat⁵ kuoŋ⁴⁴ 月光 1 2
Wēnzhōu ȵy²¹ kuɔ³⁵ vai¹³ 月光佛 1 2 3
Běijīng yɛ⁵¹ liɑŋ¹ 月亮 1 4

Table 1: Partial cognacy in Chinese dialects.

Another problem are words which have
been created from two or more morphemes via
processes of compounding. While these cases
are rather rare in the core vocabulary of Indo-
European languages, they are very frequent in
South-East Asian language families like Sino-
Tibetan or Austro-Asiatic. In 200 basic words
across 23 Chinese dialects (Ben Hamed and Wang
2006), for example, almost 50% of the nouns and
more than 30% of all words consist of two or more
morphemes (see the Sup. Material for details).

The presence of words consisting of more
than one morpheme challenges the notion that
words can either be cognate or not. It poses
problems for phylogenetic approaches which re-
quire binary presence-absence matrices as input
and model language evolution as cognate gain and
cognate loss (Atkinson and Gray 2006). This is il-
lustrated in Table 1 where words for `moon' in four
Chinese dialects (Hóu 2004) are compared, with
cognate elements being given the same color. If
we assign cognacy strictly, only matching those
words which are identical in all their elements
(Ben Hamed and Wang 2006), we would have to
label all words as being not cognate. If we assign
cognacy loosely (Satterthwaite-Phillips 2011), la-
beling all words as cognate when only they share
a common morpheme, we would have to label all
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words as cognate. No matter how we code in phy-
logenetic analyses, as long as we use binary states,
we will loose information (List 2016).

Partial cognacy is also a problem for cur-
rent cognate detection algorithms which compare
words in their entirety (List 2014b, Turchin et al.
2010). Given the frequency of compound words
in South-East Asian languages, it is not surprising
that the algorithms performmuch worse on diverse
South-East Asian language families, than they per-
form on other language families where compound-
ing is less frequent (List 2014b:197f).

This paper presents a new algorithm for cog-
nate detection which does not identify cognate
words but instead searches for cognate elements
in words. The algorithm takes multilingual word
lists as input and outputs statements regarding the
cognacy of morphemes, just as the ones shown in
the last column of Table 1, where identical numer-
ical IDs are given for all morphemes identified as
cognate.

Dataset Bai Chinese Tujia
Languages 9 18 5
Words 1028 3653 513
Concepts 110 180 109
Strict Cogn. 285 1231 247
Partial Cogn. 309 1408 348
Sounds 94 122 57
Source Wang, 2006 Běijīng

Dàxué,
1964

Starostin,
2013b

Table 2: Partial cognate detection gold standard

2 Materials

Three gold standard datasets from different
branches of Sino-Tibetan with different degrees
of diversity were prepared, including Bai dialects,
Chinese dialects, and Tujia dialects. All datasets
were taken from existing datasets with cognate
codings provided independently. To facilitate fur-
ther use of the data, all languages were linked to
Glottolog (Hammarström et al. 2015) and all con-
cepts were linked to the Concepticon (List et al.
2016a). Furthermore, phonetic transcriptions were
cleaned by segmenting phonetic entries into mean-
ingful sound units and unifying phonetic variants
representing the same pronunciation. Morpho-
logical segmentation was not required, since all
languages in our sample (and the majority of all
South-East Asian languages) have a morpheme-
syllabic structure in which each syllable denotes

one morpheme. Partial cognate judgments are
displayed with help of multiple integer IDs as-
signed to a word in the order of its morphemes,
as displayed above in Table 1. For the Chinese
dataset, partial cognate information was provided
in the source itself, for Bai and Tujia, it was
manually derived from the cognate judgments in
the sources. Detailed information regarding the
datasets is given in Table 2, and the full dataset
along with further information is given in the Sup.
Material.

3 Methods

The workflow for partial cognate detection con-
sists of three major steps. (1) In a first step, pair-
wise sequence similarities are determined between
all morphemes of all words in the same mean-
ing slot in a word list. (2) These similarities are
then used to create a similarity network in which
nodes represent morphemes and edges between
the nodes represent similarities between the mor-
phemes. (3) In a third step, an algorithm for net-
work partitioning is used to cluster the nodes of the
network into groups of cognate morphemes.

3.1 Sequence Similarity

There are various ways to determine the similar-
ity or distance between words and morphemes.
A general distinction can be made between
language-independent and language-specific ap-
proaches. The former determine the word simi-
larity independently of the languages to which the
words belong. As a result, the scores only depend
on the substantial and structural differences be-
tween words. Examples for language-independent
similarity measures are SCA distances, as pro-
duced by the Sound-Class-Based Phonetic Align-
ment algorithm (List 2012b), or PMI similarities
as produced by the Weighted String Alignment
algorithm (Jäger 2013). Language-specific ap-
proaches, on the other hand, are based on pre-
viously identified recurring correspondences be-
tween the languages from which the words are
taken (List 2014b: 48-50) and may differ across
languages.1 An example for language-specific
similarity measures is the LexStat algorithm, first
proposed in List (2012a) and later refined in List

1Comparing, for example, German Kuckuck with French
coucou and English cuckoo may yield quite different scores,
although the English and the French words are almost identi-
cal in pronunciation.
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Figure 1: Similarity networks for partial cognate detection. A shows pairwise SCA distances computed
between all morphemes of Chinese dialect words for `moon'. Values shaded in gray are excluded follow-
ing filtering rules 1 and 2 (see text). B shows the initial similarity network with all nodes connected. C
shows the network after filtering, and D shows the network after applying the partitioning algorithm.

(2014b). As a general rule, language-specific ap-
proaches outperform language-independent ones,
provided the sample size is large enough (List
2014a).

Two similarity measures are used in this pa-
per, one language-independent, and one language-
specific one. The above-mentioned SCA method
for phonetic alignments (List 2012b, 2014b) re-
duces the phonetic space of sound sequences to
28 sound classes. Based on a scoring function
which defines transition scores between the sound
classes, phonetic sequences are aligned and simi-
larity and distance scores can be determined. The
LexStat approach List (2012a, 2014b) also uses
sound classes, but instead of using a pre-defined
scoring function, transition scores between sound
classes are determined with help of a permutation
test. In this test, words drawn from a random-
ized sample are repeatedly aligned with each other
in order to create a distribution of sound transi-
tions for unrelated languages. This distribution
is then compared with the actual distribution re-
trieved from aligned words in the word list, and a
language-specific scoring function is created List
(2014b). SCA is very fast in computation, but Lex-
Stat has a much higher accuracy. Both approaches
are freely available as part of the LingPy software
package (List and Forkel 2016).

3.2 Sequence Similarity Networks
Sequence similarity networks are tools for ex-
ploratory data analysis. In evolutionary biology
they are used to study complex evolutionary pro-
cesses (Méheust et al. 2016, Corel et al. 2016).
They represent sequences as nodes and connec-

tions between nodes represent similarities which
are usually determined from similarity scores ex-
ceeding a certain threshold (Alvarez-Ponce et al.
2013). Since evolutionary processes leave specific
traces in the network topology, they can be iden-
tified by applying techniques for network analy-
sis. In linguistics, sequence similarity networks
have been rarely applied (Lopez et al. 2013), al-
though they are applicable, provided that one uses
informed measures for phonetic similarity.

For the application of sequence similarity net-
works it is essential to decide when to draw an edge
between two nodes and when not. For the new ap-
proach to partial cognate detection, three filtering
criteria are applied. (1) No edges are drawn be-
tween morphemes which occur in the same word.
(2) Nomorpheme in oneword is linked to twomor-
phemes in another word, with the preference given
to morpheme pairs with the lowest phonetic dis-
tance applying a greedy strategy. (3) Edges are
only drawn when the phonetic distance between
the morphemes is beyond a certain threshold. The
application of the filtering criteria is illustrated in
Fig. 1 for the exemplary words shown in Table 1.

3.3 Network Partitioning
Cognate morphemes in a similarity network can
be found by partitioning the network into groups.
Many algorithms are available for this purpose, as
can be seen from evolutionary biology, where ho-
mology detection is frequently approached from a
network perspective (Vlasblom andWodak 2009).
Three different algorithms were tested for this
purpose. A flat version of the UPGMA algo-
rithm for hierarchical clustering (Sokal and Mich-
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ener 1958), which terminates when a certain user-
defined threshold is reached is originally underly-
ing the LexStat algorithm and was therefore also
included in this study. Markov Clustering (van
Dongen 2000) uses techniques for matrix multi-
plication to inflate and expand the edge weights
in a given network until weak edges have disap-
peared and a few clusters of connected nodes re-
main. Markov Clustering is very popular in bi-
ology and was shown to outperform the popular
Affinity Propagation algorithm (Frey and Dueck
2007) in the task of homolog detection in biology
(Vlasblom and Wodak 2009). As a third method,
we follow List et al. (2016b) in testing Infomap
(Rosvall and Bergstrom 2008), a method that was
originally designed to detect communities in com-
plex networks. Communities are groups that share
more links with each other than outside the group
(Newman and Girvan 2004). Infomap uses ran-
dom walks to find the best partition of a network
into communities. Infomap is not a classical par-
titioning algorithm, and we do not know of any
studies which tested its suitability for the task of
homolog detection in evolutionary biology, but ac-
cording to List et al. (2016b), Infomap shows a bet-
ter performance than UPGMA in automatic cog-
nate detection.

3.4 Analyses and Evaluation
All methods, be it classical or partial cognate de-
tection, require a user-defined threshold. Since our
gold standard data was too small to split it into
training and tests sets, we carried out an exhaus-
tive comparison of all methods on different thresh-
olds varying between 0.05 and 0.95 in steps of
0.05. B-cubed scores were chosen as an evaluation
measure for cognate detection (Bagga andBaldwin
1998), since they have been shown to yield sensi-
ble results (Hauer and Kondrak 2011).

With SCA and LexStat, two classical meth-
ods for cognate detection were tested List (2014b),
and their underlying models for phonetic similar-
ity (see Sec. 3.1) were used as basis for the par-
tial cognate detection algorithm. All in all, this
yielded four different methods: LexStat, LexStat-
Partial, SCA, and SCA-Partial. Since our new
algorithms yield partial cognates, while LexStat
and SCA yield ``complete" cognates, it is not pos-
sible to compare them directly. In order to al-
low for a direct comparison, partial cognate sets
were converted into ``complete" cognate sets us-
ing the above-mentioned strict coding approach

proposed by Ben Hamed and Wang (2006): only
those words in which all morphemes are cognate
were assigned to the cognate same set. With a total
of three different clustering algorithms (UPGMA,
Markov Clustering, and Infomap), we thus carried
out twelve tests on complete cognacy (three for
each of our four approaches), and six additional
tests on pure partial cognate detection, in which
we compared the suitability of SCA and LexStat
as string similarity measures.

LexStat
Cluster-Method T P R FS
UPGMA 0.60 0.9030 0.8743 0.8878
Markov 0.50 0.9123 0.8752 0.8933
Infomap 0.50 0.9131 0.8866 0.8995

SCA
Cluster-Method T P R FS
UPGMA 0.45 0.8595 0.8707 0.8648
Markov 0.45 0.8049 0.8097 0.8031
Infomap 0.35 0.8901 0.8573 0.8734

LexStat-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.90 0.9193 0.9638 0.9399
Markov 0.70 0.9275 0.9342 0.9298
Infomap 0.65 0.9453 0.9363 0.9404

SCA-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.60 0.9304 0.9045 0.9172
Markov 0.95 0.8153 0.8949 0.8446
Infomap 0.55 0.9104 0.9366 0.9223

LexStat-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.75 0.8920 0.8820 0.8867
Markov 0.60 0.8858 0.8724 0.8782
Infomap 0.60 0.8876 0.8844 0.8856

SCA-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.50 0.8597 0.8509 0.8552
Markov 0.50 0.8074 0.7621 0.7755
Infomap 0.35 0.8676 0.8439 0.8553

Table 3: General performance of the algorithms
on all datasets. The table shows for each of the 18
different methods the threshold (T) for which the
best B-Cubed F-Score was determined, as well as
the B-Cubed precision (P), recall (R), and F-score
(FS). The best result in each block is shaded in
gray.
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Figure 2: Comparing the results for the LexStat sequences similarities

3.5 Implementation
The code was implemented in Python, as part of
the LingPy library (Version 2.5, List and Forkel
(2016), http://lingpy.org). The Igraph soft-
ware package (Csárdi and Nepusz 2006) is needed
to apply the Infomap algorithm.

4 Results

The aggregated results of the test (thresholds, pre-
cision, recall, and F-scores) are given in Table
3, specific results for the comparison of LexStat
with LexStat-Partial are given in Table 3. In
general, one can clearly see that the partial cog-
nate detection algorithms outperform their non-
partial counterparts when applying the complete
cognacy measure. The differences are very strik-
ing, with LexStat-Partial outperforming its non-
partial counterpart by up to four points, and SCA-
Partial outperforming the classical SCA variant by
almost five points.2 In contrast, we do not find
strong differences in the performance of the cluster
algorithms. Infomap outperforms the other cluster
algorithms in almost all tests (all other aspects be-
ing equal), but the differences are not high enough
to make any further conclusions at this point.

When comparing the aggregated results for
the true evaluation of partial cognate detection (the
last two blocks in Figure 2), the scores are less high
than in the complete cognate analyses. Given that
we cannot detect any striking tendency, like a dras-
tic drop of precision or recall, this suggests that
the algorithms generally loose accuracy in the task
of ``true" partial cognate detection. This is surely
not surprising, since the task of detecting exactly
which morphemes in the data are historically re-
lated is much more complex than the task of de-
tecting which words are completely cognate.
2By one point, we mean 0.01 on the B-Cube scale.

In Figure 2, detailed analyses for the LexStat
analyses with complete cognate evaluation (the
first and the third block in Table 3) are shown for
each of the datasets, and throughout all thresholds
we tested. The superior performance of the par-
tial cognate detection variants is reflected in all
datasets. That the internal diversity of the Chi-
nese languages largely exceeds Bai and Tujia can
be seen from the generally lower scores which all
algorithms achieve for the datasets.

5 Discussion

This paper has presented a pilot approach for the
detection of partial cognates in multilingual word
lists. Although the results are very promising at
this stage, we can think of many points where
improvement is needed, and further studies are
needed to fully assess the potential of the cur-
rent approach. First, it should be tested on addi-
tional datasets, and ideally also on language fami-
lies other than Sino-Tibetan. Second, since our ap-
proach is very general, it can easily be adjusted to
employ different string similarity measures or dif-
ferent partitioning algorithms, and it would be in-
teresting to see whether alternative measures can
improve upon our current version.
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