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Abstract

Computational Argumentation has two
main goals - the detection and analysis of
arguments on the one hand, and the syn-
thesis of arguments on the other. Much at-
tention has been given to the former, but
considerably less to the latter.
A key component in synthesizing argu-
ments is the synthesis of claims. One way
to do so is by employing argumentation
mining to detect claims within an appro-
priate corpus. In general, this appears to
be a hard problem. Thus, it is interesting to
explore if - for the sake of synthesis - there
may be other ways to generate claims.
Here we explore such a method: we ex-
tract the predicate of simple, manually-
detected, claims, and attempt to generate
novel claims from them. Surprisingly, this
simple method yields fairly good results.

1 Introduction

When people argue, how do they come up with the
arguments they present, and can a machine emu-
late this? The motivation for this work comes from
this second question, for which the relevant field of
study is Computational Argumentation, an emerg-
ing field with roots in Computer Science, Mathe-
matics, Philosophy and Rhetorics. However, while
much attention is given in the field to the modeling
and analysis of arguments, automatic synthesis of
arguments receives considerably less.

So, how do people come up with arguments?
One way is to read-up on the topic and present
the arguments you find in the literature. Another
- if the topic at hand is within your field of ex-
pertise - is to communicate your opinion. Yet a
third way is to “recycle” arguments you are famil-
iar with and apply them to new domains. For ex-
ample, someone who’s concerned about the free

speech might use an argument like “it’s a viola-
tion of free speech” when discussing any one of
these topics: whether violent video games should
be banned, whether some Internet content should
be censored, or whether certain types of advertise-
ment should be restricted.

Argumentation Mining (Mochales Palau and
Moens, 2011) is analogous to the first option:
Given a corpus, it aims to detect arguments therein
(and the relations among them). Thus, it can be
used to suggest claims when a relevant corpus is
available. The second option is analogous to Natu-
ral Language Generation (NLG; (Reiter and Dale,
2000)), where applications such as recommender
systems synthesize arguments to explain their rec-
ommendations, as done for example in (Carenini
and Moore, 2006) .

These approaches yield good results when ap-
plied to specific domains. In an NLG applica-
tion, there is commonly a specific knowledge base
which the system communicates. The form and
content of arguments are derived and determined
by it and are thus limited to the knowledge therein.
Similarly, argument mining works well when an
argument-rich and topic-related corpus is available
- e.g. (Wyner et al., 2010) - but in general seems
to be hard (Levy et al., 2014). Thus, it is interest-
ing and challenging to synthesize arguments in an
open domain. To the best of our knowledge, this is
the first work that directly attempts to address this
task.

Modeling of arguments goes back to the an-
cient Greeks and Aristotle, and more modern work
starting perhaps most famously with the Toulmin
argument model (Toulmin, 1958). A common el-
ement in all such models is the claim (or conclu-
sion) being forwarded by the argument. Thus, a
natural first step in synthesizing arguments in a
general setting is being able to synthesize claims
in such a setting.

We suggest here a simple way for doing so,
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based on the aforementioned notion of argument
“recycling”. Specifically, that the predicate of a
claim - what it says on the topic at hand - may
be applicable to other topics as well. For exam-
ple, if we are familiar with the claim “banning vi-
olent video games is a violation of free speech”
in the context of the topic “banning violent video
games”, we could synthesize the claim “Internet
censorship is a violation of free speech” when pre-
sented with the topic “Internet Censorship”. The
challenge is then to determine whether the synthe-
sized claim is actually coherent and relevant to the
new topic, which we do using statistical Machine
Learning techniques, as described in Section 2.1.

This two-stages framework - generating text
and then selecting whether or not it is appropriate -
is reminiscent of Statistical NLG (SNLG; (Langk-
lide and Knight, 1998)). In an SNLG system, af-
ter the macro-planning and micro-planning stages
(see (Reiter and Dale, 2000)) are executed, and the
message to be communicated is determined, mul-
tiple candidate realizations are produced, and then
statistical methods are used to determine which of
these realizations is the best (based on a reference
corpus).

Our work differs from SNLG in that there are no
pre-determined messages. The generation stage
produces candidate content. Each candidate claim
is a different message, and the selection stage at-
tempts to identify those which are coherent and
relevant, rather than best realized. In other words,
while the classical NLG paradigm is to first se-
lect the content and then realize it in a natural lan-
guage, here our building blocks from the onset are
natural language elements, and statistical methods
are used to determine which content selections -
implied by combining them - are valid.

Finally, the notion that predicates of claims re-
garding one topic may be applicable to another
is reminiscent of the motivation for the work of
(Card et al., 2015), who observe that there are
commonalities (so called “framing dimensions”)
among the way different topics are framed in news
articles.

2 Algorithm

The claim synthesis algorithm is composed of
three components. The first is a pre-processing
component, in which the Predicate Lexicon is con-
structed. The second is the Generation Compo-
nent - the input to this component is a topic (and

the Predicate Lexicon), and the output is a list of
candidate claims. The final component is the Se-
lection Component, in which a classifier is used to
determine which (if any) of the candidate claims
are coherent and relevant for the topic. In what
follows we describe these three steps in greater de-
tail.

The Predicate Lexicon (PL) was constructed by
parsing manually-detected claims (Aharoni et al.,
2014) using the Watson ESG parser (McCord et
al., 2012), and considering those which have ex-
actly one verb. Then the verb and a concatena-
tion of its right-modifiers, termed here the pred-
icate, were extracted from each claim and added
to the PL if they contained at least one sentiment
word from the sentiment lexicon of (Hu and Liu,
2004). The sentiment criterion was added to se-
lect for predicates which have a clear stance with
respect to the topic. All in all, there are 1203 en-
tries in the PL used here.1

A key feature in filtering and selecting can-
didate claims is text similarity. The similarity
between text segments was defined based on
the constituent words’ word2vec embedding
(Mikolov et al., 2013): Consider two list of words,
l = w1, . . . , wn and l′ = w′1, . . . , w′n′ . Denote
by w2v(w,w′) the word2vec similarity between
w and w′ - the cosine of the angle between the
embeddings of w and w′. Then the similar-
ity between l and l′ is defined : sim(l, l′) =
1
n

∑
i=1,...,n maxj=1,...,n′ w2v(wi, w

′
j) +

1
n′

∑
j=1,...,n′ maxi=1,...,nw2v(w′j , wi) (words

without embeddings are ignored). Addition-
ally, if S is a set of text segments, define:
sim(l, S) = maxl′∈Ssim(l, l′).

Given a new topic t, the Generation Compo-
nent sorts the predicates p in the PL according to
sim(t, p), and takes the top k. It then constructs
k claim candidate sentences by setting the subject
of the sentence to be the topic t, and the predicate
to be one of these k. This may require some ma-
nipulation, as the plurality of the topic determines
the appropriate surface realization of the predicate
verb. We determine the topic’s plurality using the
Watson parser (McCord et al., 2012), and do the
surface realization with SimpleNLG (Gatt and Re-
iter, 2009) and the NIH lexicon2.

1data is avaiable at https://www.research.ibm.
com/haifa/dept/vst/mlta_data.shtml.

2UMLS Reference Manual [Internet]. Bethesda (MD):
National Library of Medicine (US); 2009 Sep-. 6, SPE-
CIALIST Lexicon and Lexical Tools. Available from:
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The Selection Component uses a logistic regres-
sion classifier to first predict which of the candi-
date claims generated by the Generation Compo-
nent are valid, and then to rank the valid candi-
dates according to the classifier’s score. It receives
two parameters, κ and τ . If the fraction of valid
candidates (according to the classifier) is less than
τ , then it selects none of them. This is designed
to allow the algorithm not to synthesize claims for
topics where the PL does not seem to yield a sub-
stantial number of valid claims. If the number of
valid candidates is at least τ , the top κ valid candi-
dates are returned (or all of them, if there are less
than κ).

2.1 Classification Features

To describe the classification features used, we
need to define - given a topic - the topic’s n-gram
Lexicon (n-TL). This is a list of n-grams which
are presumably related to the topic. Specifically,
given an n-gram, we assume its appearance in
Wikipedia articles follows a hyper-geometric dis-
tribution, and estimate the distribution’s parame-
ters by counting the n-gram’s appearance in a large
set of Wikipedia articles. With these parameters,
the p-value for its appearances in topic-related ar-
ticles is calculated. The n-TL is the list of n-grams
with Bonferroni-corrected p-value at most 0.05.
The topic-related articles were identified manually
(see (Aharoni et al., 2014)).

For a candidate claim c, denote its words by
w1, . . . , wm. Recall that c is composed of the
given topic, t, and a predicate p ∈ PL. Recall
also that pwas extracted from a manually-detected
claim cp. Denote by tp the topic for which cp was
detected, and by sp the subject of the claim sen-
tence cp. Denote by mt the number of words in
t.

For example, consider the second candidate
claim in Table 1, c = Truth and reconciliation
commissions are a source of conflict. There t =
truth and reconciliation commissions and p = are
a source of conflict. pwas extracted from the claim
cp = religion is a source of conflict in the labeled
data, which is associated with the topic atheism
(and the debatabase motion atheism is the only
way). Hence, tp = atheism and sp = religion.

The classification features we used are of three
types: One aims to identify predicates which are
inherently amenable to generation of claims, that

http://www.ncbi.nlm.nih.gov/books/NBK9680/

is, which state something fairly general about their
subject, and which are not very specific to the
topic in which the predicate was originally found
(e.g., low sim(p, tp)). The second aims to find
predicates which are relevant for the new topic for
which claims are synthesized (e.g., high sim(p,n-
TL)). Finally, we’d like the claim to be a valid and
plausible sentence, and so look for the frequency
of its words, and sub-phrases of it, in Wikipedia.

All in all 15 features were defined: m, the
number of words in c; Number of Lucene hits
for w1, . . . , wm (as a bag of words); Number of
Wikipedia sentences containing all w1, . . . , wm;
Largest k, such that the k-gram w1 . . . wk ap-
pears in Wikipedia; Number of times the 3-gram
wmtwmt+1wmt+2 appears in Wikipedia; Number
of times p appears in a claim candidate labeled
positive, and the number of times in one labeled
negative (claim candidates generated for t are ex-
cluded, see Section 3 for labeling details); Inclu-
sion of p’s verb in a manually-crafted list of “cau-
sation verbs”; sim(p,n-TL) , for n = 1, 2, 3;
sim(p, t); sim(p, tp); sim(sp, tp); sim(sp, t).

3 Experimental Setup

We generated claims for 67 topics, extracted from
debatabase motions (http://idebate.org)
for which we have previously annotated relevant
Wikipedia articles (for the benefit of the n-TLs
construction; see Section 2.1). Importantly, when
generating candidate claims for a topic, predicates
which originated from this topic were not used.

For each topic 28 candidate claims were gener-
ated, and in addition one manually-detected claim
(as per (Aharoni et al., 2014)) and one mock claim
were included for control. The mock claim was
constructed by setting the topic as the subject of
a sentence, and selecting a mock predicate at ran-
dom from a hand-crafted list.

These 67× 30 candidate claims were annotated
using Amazon’s Mechanical Turk (AMT). In each
HIT (Human Intelligence Task) we presented the
annotators with a debatabase motion and 10 can-
didate claims, and asked which of the claims is ap-
propriate for the motion (10 annotators per HIT).

After filtering out the less reliable annotators
based on mutual agreement and control questions,
a reasonable agreement was apparent (average
κ = 0.73). After this filtering 45 of the ini-
tial 82 annotators remained, as well as 955 of the
initial 2010 annotated candidate claims (discard-
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Claim Original
Subject

Label

Democratization con-
tributes to stability.

Nuclear
weapons

1

Truth and reconciliation
commissions are a source
of conflict.

Religion 1

Graduated response lacks
moral legitimacy.

The State 1

Nuclear weapons cause
lung cancer.

Smoking 0

A global language leads
to great exhaustion.

Great anar-
chy

0

Table 1: Examples of candidate claims (top-
ics in italics, predicates in bold), the subject
of the claim sentence which originated their
predicate, and their label.

ing claims with less than 5 valid annotators, those
without a clear majority decision, as well as the
control claims). See Table 1 for some examples.

We note that annotation tasks like this are in-
herently subjective ((Aharoni et al., 2014) report
κ = 0.4), so discarding candidates without a
clear majority decision can be seen as discarding
those for which the true label is not well defined.
Nonetheless, the reason for discarding most of the
candidate claims was annotator’s (lack of) reliabil-
ity, not ambiguity of the true label.

4 Experimental Results

Initially we thought to label a candidate claim as
either positive or negative examples, based on the
majority vote of the annotators. This lead to a
seemingly 52% of the candidates being “good”.
However, anecdotal examination of this majority
labeling suggested that the many annotators were
biased toward answering “good” - even on some of
the control questions which contained nonsensical
sentences. This, along side relatively low mean
agreement, raised the need for filtering mentioned
above. After filtering, 40% of the candidate claims
were taken to be positive examples. The accuracy
of the Selection Component was assessed using a
leave-one-out methodology, leaving out one topic
at each iteration. The overall accuracy achieved by
the classifier was 0.75 (Table 2 depicts the confu-
sion matrix).

We also examined the trade-off between the
number of selected candidate claims and the frac-
tion of them which are valid. Figure 1 depicts the

Predict /Label Pos Neg
Pos 288 (30%) 145 (15%)
Neg 96 (10%) 426 (45%)

Table 2: Confusion Matrix: Number of
claim candidates according to AMT annota-
tion (x-axis) and predicted label (y-axis).

average precision when varying the two Selection
Component parameters, κ and τ . For example,
at the most conservative setting, where the com-
ponent outputs at most one claim per topic, and
only for a topic for which at least half the candi-
date claims were predicted to be valid (31 of the
67 topics), the precision is 0.94. Recall that in the
entire dataset, 40% of the examples are positive.

Figure 1: Mean Precision (micro average):
Colors indicate different values of τ . In
parenthesis is the number of topics for which
claims were selected.

We note that this precision is significantly
higher than reported for claim detection (Levy et
al., 2014), where, for example, mean precision at
5 is 0.28 (in our case it is 0.7 − 0.8). One should
note, however, that this is not a fair comparison.
First, we permit the algorithm to discard some top-
ics. Second, here the definition of a valid claim is
less strict than in (Levy et al., 2014).

Examining the impact of individual features, we
first looked which of them, on their own, are most
correlated with the labels. These turned out to be
the number of times p appears in a claim candi-
date labeled positive and negative (Pearson’s cor-
relation 0.33 and -0.34 resp.). We then examined
which features received the most weight in the lo-
gistic regression classifier (trained over all data;
features were scaled to a [0, 1]). The top feature
was the number of sentences in which all words
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appear, and following it were the aforementioned
appearance counts in negative and positive exam-
ples.

5 Discussion and Work in Progress

The Generation Component can be thought of
as constructing sentences by using pre-defined
templates, of the form “<topic-slot> <extracted
predicate>”. These “generation templates” are
created by “mining” a corpus of manually-
detected claims and extracting the predicate from
them. They are then filled in during run-time, by
inserting a new topic in that slot. There are sev-
eral ways which we have started exploring to ex-
tend this paradigm - automatically identifying the
grammatical position of a“topic slot” in a corpus
claim rather than assuming it is the subject; using
unsupervised methods for mining the predicates
directly from Wikipedia; and generating candidate
claims by using several variants for the subject and
object, rather than just the topic and the PL entry.
Initial results are promising, but more work is re-
quired to achieve reasonable accuracy.

Another interesting alternative is to construct
the PL manually, rather than automatically. This
can be seen as analogous to Argumentation
Schemes (Walton et. al, 2008). Argumentation
Schemes can be thought of as templates for model-
ing arguments - defining a slot for a premise or two
(which may be implicit), a slot for a conclusion or
claim, and some fixed connecting text. While Ar-
gumentation Schemes are used for detecting (Wal-
ton, 2012) and analyzing argumentative structures,
in principle they can also be used to synthesize
them. In this sense, our work here can be seen
as applying the same concept at finer granularity -
at the claim level instead of the argument.

While at the onset we presented claim synthe-
sis as an alternative to argumentation mining for
the purpose of generating arguments, it is interest-
ing how the two augment each other. Specifically,
we have started looking at whether claim synthe-
sis can generate claims which do not appear in our
corpus (Aharoni et al., 2014), and whether match-
ing Evidence to claims (Rinott et. al, 2015) can
improve claim synthesis. Regarding the novelty
of synthesized claims, we looked at 18 synthesized
claims, labeled as valid for 3 topics - criminaliza-
tion of blasphemy, building high-rise for housing
and making physical education compulsory - and
compared them to the 94 manually detected claims

for these topics (each topic separately). Of the 18
claims, 5 appear to be novel.

A more circumvent method to assess novelty is
as follows - for each candidate claim we looked
for the most similar claim (for the same topic) in
our annotated data. We then computed Pearson’s
correlation between these similarity scores and the
labels of the candidate claim, getting a coefficient
of 0.29 (p-value=10−27). This is similar to the
correlation between for the strongest classification
features, suggesting again that many of the gener-
ated claims are not novel, yet similarity to anno-
tated claims on its own is not enough to determine
a candidate-claim’s validity.

Similarly, we examined whether having a
matching evidence in the annotated corpus
(matches were determined using the algorithm of
(Rinott et. al, 2015)), is indicative of a candidate-
claim’s validity. Computing correlation (over the
51 topic for which annotated evidence was avail-
able) gave a Pearson’s coefficient of 0.23. This
suggests that matching Evidence can be a power-
ful feature in improving our current classification
model.
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