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Abstract

Incorporating lexical knowledge from se-
mantic resources (e.g., WordNet ) has
been shown to improve the quality of dis-
tributed word representations. This knowl-
edge often comes in the form of rela-
tional triplets (x, r, y) where words x and
y are connected by a relation type r. Ex-
isting methods either ignore the relation
types, essentially treating the word pairs
as generic related words, or employ rather
restrictive assumptions to model the rela-
tional knowledge. We propose a novel
approach to model relational knowledge
based on low-rank subspace regulariza-
tion, and conduct experiments on standard
tasks to evaluate its effectiveness.

1 Introduction

Distributed word representations, also known as
word embeddings, are low-dimensional vector
representations for words that capture semantic as-
pects (Bengio et al., 2003; Pennington et al., 2014;
Mikolov et al., 2013a). The algorithms for learn-
ing the word embeddings rely on distributional
hypothesis (Harris, 1954) that words occurring in
similar contexts tend to have similar meanings.
Word embeddings have been shown to capture
interesting linguistic regularities by simple vec-
tor arithmetic (e.g., v(king)-v(man)+v(woman)≈
v(queen)) (Mikolov et al., 2013c). They have also
been used to derive downstream features for vari-
ous NLP tasks, such as named entity recognition,
chunking, dependency parsing, sentiment analy-
sis, paraphrase detection and machine translation
(Turian et al., 2010; Dhillon et al., 2011; Bansal et
al., 2014; Maas et al., 2011; Socher et al., 2011;
Zou et al., 2013). Their promise as semantic word

representations has led to increasing research ef-
forts on improving their quality.

To this end, researchers have attempted to incor-
porate lexical knowledge into word embeddings
by using additional regularization or loss terms in
the learning objective. This lexical knowledge is
often available in the form of triplets {(wi, r, wj)},
where the words wi and wj are connected by rela-
tion type r. These methods can be broadly classi-
fied into two categories. First family of methods
use a (over-)generalized notion of similarity be-
tween words and ignore the type of relations, es-
sentially treating the two words as generic similar
words (Yu and Dredze, 2014; Faruqui et al., 2015;
Liu et al., 2015). This places an implicit restric-
tion on the types of relations that can be used with
these methods. Second family of methods model
each relation type by a distinct operator. Bordes et
al. (2013) assumed a distinct relation vector r for
every relation and minimize the distance between
the translated first word and the second word, i.e.,
d(wi + r,wj) for every triplet (wi, r, wj). Socher
et al. (2013) proposed a neural tensor network
which uses a distinct tensor operator for every re-
lation. These methods were used to learn entity
and relation embeddings from a large collection
of relation triplets for the task of knowledge base
completion. Since these methods did not use any
co-occurrence information from a text corpus, all
entities were required to appear at least once in
the training data, ruling out generalization to un-
seen entities1. More recently, Xu et al. (2014)
combined the training objective of SKIP-GRAM
(Mikolov et al., 2013a) with the training objec-
tive of (Bordes et al., 2013) to incorporate lexical

1There exists work on relation extraction and knowledge-
base completion that combines structured relation triplets and
logical rules with unstructured text using various forms of
latent variable models (Riedel et al., 2013; Chang et al., 2014;
Toutanova et al., 2015; Rocktäschel et al., 2015).
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knowledge into word embeddings. Fried and Duh
(2014) combine the training objective of (Bordes
et al., 2013) with that of neural language model
(Collobert et al., 2011) using alternating direction
method of multipliers (Boyd et al., 2011).

Constant translation model (Bordes et al., 2013;
Xu et al., 2014; Fried and Duh, 2014) (referred
as CTM from now on), although an important
step in modeling relational knowledge, makes a
rather restrictive assumption requiring all triplets
(wi, r, wj) pertaining to a relation type r to sat-
isfy wi + r ≈ wj , ∀(i, j). This restriction can
be severe when learning from a large text corpus
since vector representation of a word also needs
to respect a huge set of co-occurrence instances
with other words. CTM is also not suitable for
(i) modeling symmetric relations (e.g., synonyms,
antonyms), and (ii) modeling transitive relations
(e.g., synonyms, hypernyms). In this paper, we
propose a novel formulation for modeling the rela-
tional knowledge which addresses these issues by
relaxing the constant translation assumption and
modeling each relation by a low-rank subspace,
i.e., all the word pairs pertaining to a relation are
assumed to lie in a low-rank subspace. We demon-
strate effectiveness of the learned word represen-
tations on the tasks of knowledge-base completion
and word analogy.

2 Subspace-regularized word embedding

Although our proposed framework for relational
modeling is general enough to use with any ex-
isting word embedding method, we work with
Word2Vec model (Mikolov et al., 2013a) in this
paper for illustrating our ideas and later for em-
pirical evaluations. Word2Vec is a neural network
model trained on sequence of words and its hid-
den layer activations can be read out as the word
representations. Two variants were proposed in
(Mikolov et al., 2013a) – SKIP-GRAM, which
maximizes the log likelihood of the local context
words given the target word, and CBOW, which
maximizes the log likelihood of the target word
given its local context. More specifically, CBOW
maximizes the objective

1
T

T∑
t=1

log p(wt|wt+ct−c) =
1
T

T∑
t=1

exp(w′>t vt)∑
w∈V exp(w′>vt)

(1)

where wt+ct−c represents the words (or tokens) in
the local context window around the t’th word

(or token) and vt =
∑
−c≤i≤c,i 6=0 wt+i can be

seen as the average context vector. The vectors
w,w′ ∈ Rd denote the input and output embed-
dings for word w, respectively. The input embed-
dings are taken as the final word representations.
Negative sampling was proposed to efficiently op-
timize Eq. 1 (Mikolov et al., 2013b). We report
empirical results with CBOW since it was compu-
tationally faster than SKIP-GRAM while giving
similar results in our early explorations.

We assume access to relational knowledge in
the form of triplets Rk = {(wi, rk, wj)} ∀1 ≤
k ≤ m, where words wi and wj are connected by
relation rk and Rk is the set of all triplets corre-
sponding to relation rk with |Rk| = nk. This form
of knowledge is commonly available from Knowl-
edge Bases like WordNet (Fellbaum, 1998). Our
framework is suitable for both symmetric relations
where words can be interchanged (e.g., synonyms)
and asymmetric relations which have a directional
nature (e.g., hypernyms).

Let dij = (wj − wi) ∈ Rd denote the dif-
ference vector for the triplet (wi, rk, wj) which
points from the vector of word wi to that of word
wj . Let us construct a matrix Dk ∈ Rd×nk by
stacking the difference vectors corresponding to
all the triplets in relation rk, i.e.,

Dk = [· · ·dij · · · ]∀{(i, j) : (wi, rk, wj) ∈ Rk}.
(2)

To incorporate this relational knowledge into word
embeddings, we enforce an approximate low-rank
constraint on Dk assuming

Dk ≈ UkA>k , (3)

where Uk ∈ Rd×p, p � d is the relation ba-
sis whose linear span contains all the difference
vectors pertaining to relation rk. For p = 2, this
assumption implies that all the difference vectors
pertaining to a relation lie in a 2-D plane. For
p = 1, it reduces to Dk ≈ ukαT

k , uk ∈ Rd,αk ∈
Rnk , implying that all the difference vectors for
a relation are collinear. In this paper, we mainly
study the rank-1 model (p=1) since it seems to
be a natural starting point for evaluating the idea
of subspace-regularized relational modeling. The
study of higher rank models will potentially re-
quire a careful exploration of various structural
regularizers for reconstruction matrix Ak as well
as a different evaluation scheme. We leave this
study for future work.
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Rank-1 subspace regularization can also be
motivated from the fact that word embeddings
are able to capture some linguistic regulari-
ties (Mikolov et al., 2013c) along certain direc-
tions in the vector space. For example, the dif-
ference vector for word pair (king, queen) is ap-
proximately aligned with the difference vector for
(man,woman), encoding the gender relation. The
direction of the difference vectors carries signifi-
cant information for these regularities which is ev-
ident from the success of cosine similarity metrics
in the word analogy problems (Levy et al., 2014).
CTM that assumes wi+uk = wj ∀(wi, rk, wj) ∈
R enforces an additional equal length constraint
on the difference vectors, which may be rather re-
strictive, especially when the word vectors are also
influenced by co-occurrence statistics (apart from
relational knowledge). Moreover, it may face fol-
lowing challenges in relational modeling:

• It does not have a natural interpretation
for modeling symmetric relations (e.g., syn-
onyms, antonyms) that allow interchangeabil-
ity of words in a given relation triplet (i.e.,
(wi, rk, wj) ⇐⇒ (wj , rk, wi)). Having a con-
stant translation of uk ∈ Rd from the first word
to the second word leads to contradiction.

• It is also not natural for modeling relations
with transitive property (i.e., (wi, rk, wj) ∧
(wj , rk, wl) =⇒ (wi, rk, wl)), again leading to
contradictions. Common examples of such re-
lations are synonyms and hypernyms.

The proposed rank-1 subspace relation model
naturally allows for modeling such relations by
doing away with the constant length restriction on
the difference vectors. Our empirical evaluations
verify that this relaxation indeed leads to improved
quality of word vectors with respect to capturing
linguistic regularities.

We incorporate the proposed relational model
into the learning objective for word vectors by reg-
ularizing the matrix of difference vectors towards
a rank-1 matrix. We impose a nonnegativity con-
straint on the reconstruction coefficients αk if re-
lation rk is asymmetric. This respects the unidi-
rectional nature of asymmetric relations. To en-
sure uniqueness of solution for uk and αk, we
constrain ‖uk‖2 = 1. Leaving αk completely free
can end up creating spurious relations between any
two words that are arbitrarily far but whose differ-
ence vector is directionally aligned with any of the

relation basis vectors {uk}mk=1. To avoid this, we
further impose a upper limit of c on the absolute
value of elements of αk. We minimize the follow-
ing joint objective for word vectors {wi}|V |i=1 and
relation parameters {uk,αk}mk=1:

− 1
T

T∑
t=1

log p(wt|wt+ct−c) +
λ

2 |R|
m∑
k=1

∥∥∥Dk − ukα>k
∥∥∥2

F

s.t. αk ≥ 0 ∀ asymmetric rk, ‖uk‖2 = 1, |(αk)l| ≤ c.
(4)

where Dk is the matrix of difference vectors as de-
fined earlier and λ is the regularization parameter.
The first term in the objective takes into account
the co-occurrence information text corpus while
the second term incorporates the relational knowl-
edge.

Optimizing for word vectors: We adopt parallel
asynchronous stochastic gradient descent (SGD)
with negative sampling approach of (Mikolov et
al., 2013b). The model parameters for optimiza-
tion are input embeddings (weights connecting
input and hidden layer) and output embeddings
(weights connecting hidden and output layer). In-
put embeddings are taken as the final word em-
beddings. Each computing thread works with a
predefined segment of the text corpus and updates
parameters that are stored in a shared memory. In
each gradient step of CBOW, a thread samples a tar-
get word and its local context window and updates
the parameters of the neural network. It can be
seen as sampling one of the ft(·), t = 1, 2, . . . , T
and taking a gradient step with it. A small num-
ber of random target words are also sampled for
the same context, treating them as negative ex-
amples for the gradient update. In the CBOW ar-
chitecture, representations for context words are
directly encoded as columns of the linear weight
matrix W ∈ Rd×|V | that maps input bag-of-words
layer to the hidden layer. The columns of W are
taken as the word embeddings for the correspond-
ing words in the vocabulary V . The reader is re-
ferred to (Mikolov et al., 2013b; Goldberg and
Levy, 2014) for more details on the optimization
procedure for CBOW. If a word appears in the set
of relation triplets R, our regularization term gets
activated. Since we place the regularizer only on
input embeddings, the following gradient updates
due to the regularization term act only on input
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embeddings.

wi ←− wi − η λ

|R|

 ∑
j:(wi,rk,wj)∈R

(
wi −wj + ukαkij

)

+
∑

j:(wj ,rk,wi)∈R

(
wi −wj − ukαkji

) ,
(5)

where η is the learning rate, and αkij
denotes

the element of αk corresponding to the column
of matrix Dk which contains difference vector
(wj − wi) (and similarly for αkji

). The modifi-
cations in the learning rate as the SGD progresses
are kept same as in the original implementation of
CBOW2.
Optimization for uk and αk: Instead of hav-
ing stochastic gradient updates, we adopt an
asynchronous batch update strategy for relation
basis {uk}mk=1 and reconstruction coefficients
{αk}mk=1. We launch one compute thread that
keeps solving the batch optimization problem for
{uk}mk=1 and {αk}mk=1 in an infinite loop until the
optimization for word embeddings finishes. The
batch optimization problem for a symmetric rela-
tion rk is:

min
uk,αk

∥∥∥Dk − ukα>k
∥∥∥2

F
, s.t. ‖uk‖2 = 1, |αk| ≤ c.

(6)

where Dk ∈ Rd×nk is the matrix of difference
vectors for all triplets corresponding to relation
rk as defined in Eq. 2. Without the absolute
value constraint on αk, this problem can be ex-
actly solved by SVD. We follow an alternating
optimization procedure for solving this problem.
We initialize uk to the top left singular vector of
Dk and then alternate between solving two least-
squares sub-problems for uk and αk respectively
with the corresponding constraints. For asymmet-
ric relations, there is an additional nonnegativ-
ity constraint on αk. We use projected gradient
descent to solve these constrained least-squares
problems.

3 Empirical Observations

We report preliminary evaluations of the proposed
model (termed as RELSUB) on the tasks of word
analogy and knowledge base completion. We use

2
https://code.google.com/p/word2vec/

Relation-type RELCONST RELSUB

capital-cities 48.15 59.26
currency 58.33 50.00

city-in-state 17.88 18.94
gender 44.44 50.00

similar-to 5.44 7.26
made-of 0 0

has-context 10.00 8.26
is-a 1.35 1.83

part-of 17.50 19.00
instance-of 8.40 12.98

derived-from 9.14 10.27
antonym 20.00 20.62
entails 0 4.35
causes 0 0

member-of 13.43 26.87
related-to 0 0
attribute 11.76 8.82

SEMANTIC 7.47 8.44
adjective-to-adverb 10.14 47.83

plural-verbs 61.25 71.77
plural-nouns 66.70 71.89
comparative 70.00 75.00
superlative 66.67 77.78
nationality 85.71 85.71
past-tense 42.20 66.84

present-participle 45.76 47.62
SYNTACTIC 54.88 65.38

TOTAL 24.61 29.03

Table 1: WordRep data: Accuracy on knowledge-
base completion

English Wikipedia for training which contains ap-
proximately 4.8 million articles and 2 billion to-
kens. We lowercase all the text and and tokenize
using Stanford NLP tokenizer.

We use two datasets for evaluating the proposed
method. Google word analogy data (Mikolov et
al., 2013a) contains 19544 analogy relations (14
relation types – 5 semantic, 9 syntactic) of the
form a:b::c:d constructed from 550 unique rela-
tion triplets. We use this data only for evaluation
(test phase). WordRep (Gao et al., 2014) contains
a large collection of relation triplets (44584 triplets
in total, 25 relation types – 18 semantic, 7 syntac-
tic) extracted from WordNet, Wikipedia and Dic-
tionary. For each relation type, we randomly split
the triplets in 4 : 1 ratio with larger split used for
training and smaller split used for test. We make
sure that there is no word overlap between train-
ing and test triplets. We also remove triplets con-
taining words from Google Analogy data from the
training set.

We compare the proposed RELSUB model with
two methods: (i) CBOW (Mikolov et al., 2013a),
and (ii) RELCONST which is based on constant
translation model for relations which was origi-
nally proposed in (Bordes et al., 2013) for embed-
ding knowledge-bases and was recently used by
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Relation-type CBOW RELCONST RELSUB
SEMANTIC 68.37 69.85 70.96
SYNTACTIC 66.69 65.42 65.96

TOTAL 67.48 67.43 68.22

Table 2: Google analogy data: Accuracy on word
analogy task

(Xu et al., 2014) for learning word embeddings.
Our objective for RELCONST is same as Eq. 4 ex-
cept that {αk}mk=1 are set equal to the vector of
all 1’s and norm constraint on uk are removed.
This enables us to directly test the merit of the pro-
posed rank-1 subspace relational model over that
of constant translational model in the same regu-
larization framework. Note that this objective is
similar in spirit to (Xu et al., 2014) in the sense
that it also uses a constant translation model for
relations. However, Xu et al. (Xu et al., 2014)
employ a maximum margin objective on the rela-
tion triplets as originally proposed in (Bordes et
al., 2013). It encourages the loss (measured in
terms of `2 distance) for true relation triplets to be
smaller than the loss for randomly corrupted re-
lation triplets. Instead of a maximum margin ob-
jective for relational knowledge, our model uses a
simpler regularization based objective. We could
not obtain the implementation of RC-NET (Xu et
al., 2014) due to copyright issues cited by its au-
thors. We also cannot compare with approaches
that use only knowledge-base for training (Faruqui
et al., 2015) since they do not learn or modify the
embeddings of unseen words and our evaluation
triplets do not overlap with training triplets.

We use the CBOW implementation in publicly
available Word2Vec code3 for our experiments.
Our vocabulary has 400k words and we use a
dimensionality of 300 for embeddings. For all
other parameters, we use default values that the
Word2Vec code comes with including a context
window size of 5 tokens to each side, 5 neg-
ative samples per positive sample for negative
sampling technique, etc. For both RELSUB and
RELCONST, we set the regularization parameter to
λ
|R| = 1e−4 in all our experiments. We set the up-
per limit c in Eq. 4 to 1. The parameters were not
fine tuned rigorously but these values seemed to
work reasonably well for us. We do total 5 epochs
of SGD over the text corpus for all methods.

In knowledge-base completion task, we want to
predict the missing word of a relation triplet. For a
triplet (x, r, y), we assume that x (first word) and

3
https://code.google.com/p/word2vec/

r (relation type) are observed and the task is to
predict the missing word y. We restrict the search
for the missing word to the most frequent 300k
words (75% of the vocabulary). The missing word
is predicted to be the closest word along the rank-1
subspace spanned by the relation vector (restricted
by c in Eq. 4). For RELCONST, the missing word
is predicted by translating the first word by the re-
lation vector and then searching for nearest word.
The accuracy results on WordRep data are shown
in Table 1. Relaxing the constant translation to
rank-1 subspace assumption results in significant
improvements on this task.

In the analogy task, we want to predict the miss-
ing word in an analogy tuple a:b::c:?. We use
the Google word-analogy data (Mikolov et al.,
2013a) for this evaluation. We observe consider-
able gains with RELSUB over CBOW for seman-
tic categories. The accuracy of knowledge reg-
ularized methods on syntactic categories is a lit-
tle worse than CBOW and only slightly better than
RELCONST, which is contrary to our observation
on the knowledge-base completion task. This is
due to the fact that analogy task uses the differ-
ence vector (b− a) instead of the learned relation
vector which is assumed to be unknown.

4 Concluding Remarks

We proposed a novel framework for modeling
relational knowledge in word embeddings using
rank-1 subspace regularization. Our model can
be seen as a generalization of the constant trans-
lational model for relations (Bordes et al., 2013;
Xu et al., 2014). In the future, we would like to
study the interplay between word frequencies and
the strength of regularization, and perform an ex-
haustive empirical evaluation. The study of higher
rank subspaces for relation modeling is also an im-
portant future direction.
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