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Abstract

This paper presents a novel approach to
automated sentence completion based on
pointwise mutual information (PMI). Fea-
ture sets are created by fusing the various
types of input provided to other classes
of language models, ultimately allowing
multiple sources of both local and dis-
tant information to be considered. Fur-
thermore, it is shown that additional preci-
sion gains may be achieved by incorporat-
ing feature sets of higher-order n-grams.
Experimental results demonstrate that the
PMI model outperforms all prior models
and establishes a new state-of-the-art re-
sult on the Microsoft Research Sentence
Completion Challenge.

1 Introduction

Skilled reading is a complex cognitive process that
requires constant interpretation and evaluation of
written content. To develop a coherent picture,
one must reason from the material encountered
to construct a mental representation of meaning.
As new information becomes available, this repre-
sentation is continually refined to produce a glob-
ally consistent understanding. Sentence comple-
tion questions, such as those previously featured
on the Scholastic Aptitude Test (SAT), were de-
signed to assess this type of verbal reasoning abil-
ity. Specifically, given a sentence containing 1-2
blanks, the test taker was asked to select the cor-
rect answer choice(s) from the provided list of op-
tions (College Board, 2014). A sample sentence
completion question is illustrated in Figure 1.

To date, relatively few publications have fo-
cused on automatic methods for solving sentence
completion questions. This scarcity is likely at-
tributable to the difficult nature of the task, which

Certain clear patterns in the metamorphosis
of a butterfly indicate that the process is
——-.
(A) systematic
(B) voluntary
(C) spontaneous
(D) experimental
(E) clinical

Figure 1: An example sentence completion ques-
tion (The Princeton Review, 2007).

occasionally involves logical reasoning in addition
to both general and semantic knowledge (Zweig
et al., 2012b). Fundamentally, text completion is
a challenging semantic modeling problem, and so-
lutions require models that can evaluate the global
coherence of sentences (Gubbins and Vlachos,
2013). Thus, in many ways, text completion epito-
mizes the goals of natural language understanding,
as superficial encodings of meaning will be insuf-
ficient to determine which responses are accurate.

In this paper, a model based on pointwise mu-
tual information (PMI) is proposed to measure the
degree of association between answer options and
other sentence tokens. The PMI model considers
multiple sources of information present in a sen-
tence prior to selecting the most likely alternative.

The remainder of this report is organized as fol-
lows. Section 2 describes the high-level character-
istics of existing models designed to perform auto-
mated sentence completion. This prior work pro-
vides direct motivation for the PMI model, intro-
duced in Section 3. In Section 4, the model’s per-
formance on the Microsoft Research (MSR) Sen-
tence Completion Challenge and a data set com-
prised of SAT questions are juxtaposed. Finally,
Section 5 offers concluding remarks on this topic.
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2 Background

Previous research expounds on various architec-
tures and techniques applied to sentence comple-
tion. Below, models are roughly categorized on
the basis of complexity and type of input analyzed.

2.1 N-gram Models

Advantages of n-gram models include their abil-
ity to estimate the likelihood of particular token
sequences and automatically encode word order-
ing. While relatively simple and efficient to train
on large, unlabeled text corpora, n-gram models
are nonetheless limited by their dependence on lo-
cal context. In fact, such models are likely to over-
value sentences that are locally coherent, yet im-
probable due to distant semantic dependencies.

2.2 Dependency Models

Dependency models circumvent the sequentiality
limitation of n-gram models by representing each
word as a node in a multi-child dependency tree.
Unlabeled dependency language models assume
that each word is (1) conditionally independent of
the words outside its ancestor sequence, and (2)
generated independently from the grammatical re-
lations. To account for valuable information ig-
nored by this model, e.g., two sentences that dif-
fer only in a reordering between a verb and its ar-
guments, the labeled dependency language model
instead treats each word as conditionally indepen-
dent of the words and labels outside its ancestor
path (Gubbins and Vlachos, 2013).

In addition to offering performance superior to
n-gram models, advantages of this representation
include relative ease of training and estimation, as
well as the ability to leverage standard smoothing
methods. However, the models’ reliance on out-
put from automatic dependency extraction meth-
ods and vulnerability to data sparsity detract from
their real-world practicality.

2.3 Continuous Space Models

Neural networks mitigate issues with data sparsity
by learning distributed representations of words,
which have been shown to excel at preserving lin-
ear regularities among tokens. Despite drawbacks
that include functional opacity, propensity toward
overfitting, and elevated computational demands,
neural language models are capable of outper-
forming n-gram and dependency models (Gub-
bins and Vlachos, 2013; Mikolov et al., 2013;

Mnih and Kavukcuoglu, 2013).
Log-linear model architectures have been pro-

posed to address the computational cost associated
with neural networks (Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013). The continuous bag-of-
words model attempts to predict the current word
using n future and n historical words as context.
In contrast, the continuous skip-gram model uses
the current word as input to predict surrounding
words. Utilizing an ensemble architecture com-
prised of the skip-gram model and recurrent neu-
ral networks, Mikolov et al. (2013) achieved prior
state-of-the-art performance on the MSR Sentence
Completion Challenge.

3 PMI Model

This section describes an approach to sentence
completion based on pointwise mutual informa-
tion. The PMI model was designed to account for
both local and distant sources of information when
evaluating overall sentence coherence.

Pointwise mutual information is an
information-theoretic measure used to dis-
cover collocations (Church and Hanks, 1990;
Turney and Pantel, 2010). Informally, PMI
represents the association between two words, i
and j, by comparing the probability of observing
them in the same context with the probabilities of
observing each independently.

The first step toward applying PMI to the sen-
tence completion task involved constructing a
word-context frequency matrix from the train-
ing corpus. The context was specified to in-
clude all words appearing in a single sentence,
which is consistent with the hypothesis that it
is necessary to examine word co-occurrences at
the sentence level to achieve appropriate granu-
larity. During development/test set processing, all
words were converted to lowercase and stop words
were removed based on their part-of-speech tags
(Toutanova et al., 2003). To determine whether a
particular part-of-speech tag type did, in fact, sig-
nal the presence of uninformative words, tokens
assigned a hypothetically irrelevant tag were re-
moved if their omission positively affected perfor-
mance on the development portion of the MSR
data set. This non-traditional approach, selected
to increase specificity and eliminate dependence
on a non-universal stop word list, led to the re-
moval of determiners, coordinating conjunctions,
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Figure 2: The dependency parse tree for Question 17 in the MSR data set. Words that share a grammati-
cal relationship with the missing word rising are underscored. Following stop word removal, the feature
set for this question is [darkness, was, hidden].

pronouns, and proper nouns.1 Next, feature sets
were defined to capture the various sources of in-
formation available in a sentence. While feature
set number and type is configurable, composition
varies, as sets are dynamically generated for each
sentence at run time. Enumerated below are the
three feature sets utilized by the PMI model.

1. Reduced Context. This feature set con-
sists of words that remain following the pre-
processing steps described above.

2. Dependencies. Sentence words that share
a semantic dependency with the candidate
word(s) are included in this set (Chen and
Manning, 2014). Absent from the set of
dependencies are words removed during the
pre-processing phase. Figure 2 depicts an ex-
ample dependency parse tree along with fea-
tures provided to the PMI model.

3. Keywords. Providing the model with a col-
lection of salient tokens effectively increases
the tokens’ associated weights. An analo-
gous approach to the one described for stop
word identification was applied to discover
that common nouns consistently hold greater
significance than other words assigned hypo-
thetically informative part-of-speech tags.

Let X represent a word-context matrix with n
rows and m columns. Row xi: corresponds to word
i and column x:j refers to context j. The term x(i,j)
indicates how many times word i occurs in context
j. Applying PMI to X results in the n x m matrix Y,
where term y(i,j) is defined by (1). To avoid overly
penalizing words that are unrelated to the context,

1Perhaps counterintuitively, most proper nouns are unin-
formative for sentence completion, since they refer to specific
named entities (e.g. people, locations, organizations, etc.).

the positive variant of PMI is considered, in which
negative scores are replaced with zero (4).

P (i, j) =
x(i, j)∑n

i=1

∑m
j=1 x(i, j)

(1)

P (i∗) =
∑m

j=1 x(i, j)∑n
i=1

∑m
j=1 x(i, j)

(2)

P (∗j) =
∑n

i=1 x(i, j)∑n
i=1

∑m
j=1 x(i, j)

(3)

pmi(i, j) = max

{
0, log

(
P (i, j)

P (i∗)P (∗j)
)}

(4)

In addition, the discounting factor described by
Pantel and Lin (2002) is applied to reduce bias to-
ward infrequent words (7).

mincontext = min(
n∑

k=1

x(k, j),
m∑

k=1

x(i, k))

(5)

δ(i, j) =
x(i, j)

x(i, j) + 1
· mincontext

mincontext+ 1
(6)

dpmi(i, j) = pmi(i, j) · δ(i, j) (7)

similarity(i, S) =
∑
j∈S

dpmi(i, j) · γ (8)

The PMI model evaluates each possible re-
sponse to a sentence completion question by sub-
stituting each candidate answer, i, in place of the
blank and scoring the option according to (8).
This equation measures the semantic similarity be-
tween each candidate answer and all other words
in the sentence, S. Prior to being summed, individ-
ual PMI values associated with a particular word i
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and context word j are multiplied by γ, which re-
flects the number of feature sets containing j. Ulti-
mately, the candidate option with the highest sim-
ilarity score is selected as the most likely answer.

Using the procedure described above, addi-
tional feature sets of bigrams and trigrams were
created and subsequently incorporated into the
semantic similarity assessment. This extended
model accounts for both word- and phrase-
level information by considering windowed co-
occurrence statistics.

4 Experimental Evaluation

4.1 Data Sets

Since its introduction, the Microsoft Research
Sentence Completion Challenge (Zweig and
Burges, 2012a) has become a commonly used
benchmark for evaluating semantic models. The
data is comprised of material from nineteenth-
century novels featured on Project Gutenberg.
Each of the 1,040 test sentences contains a single
blank that must be filled with one of five candidate
words. Associated candidates consist of the cor-
rect word and decoys with similar distributional
statistics.

To further validate the proposed method, 285
sentence completion problems were collected
from SAT practice examinations given from 2000-
2014 (College Board, 2014). While the MSR
data set includes a list of specified training texts,
there is no comparable material for SAT ques-
tions. Therefore, the requisite word-context ma-
trices were constructed by computing token co-
occurrence frequencies from the New York Times
portion of the English Gigaword corpus (Parker et
al., 2009).

4.2 Results

The overall accuracy achieved on the MSR and
SAT data sets reveals that the PMI model is able
to outperform prior models applied to sentence
completion. Table 1 provides a comparison of the
accuracy values attained by various architectures,
while Table 2 summarizes the PMI model’s per-
formance given feature sets of context words, de-
pendencies, and keywords. Recall that the n-gram
variant reflects how features are partitioned.

It appears that while introducing phrase-level
information obtained from higher-order n-grams
leads to gains in precision on the MSR data set,
the same cannot be stated for the set of SAT ques-

Language Model MSR
Random chance 20.00
N-gram [Zweig (2012b)] 39.00
Skip-gram [Mikolov (2013)] 48.00
LSA [Zweig (2012b)] 49.00
Labeled Dependency [Gubbins (2013)] 50.00
Dependency RNN [Mirowski (2015)] 53.50
RNNs [Mikolov (2013)] 55.40
Log-bilinear [Mnih (2013)] 55.50
Skip-gram + RNNs [Mikolov (2013)] 58.90
PMI 61.44

Table 1: Best performance of various models on
the MSR Sentence Completion Challenge. Values
reflect overall accuracy (%).

Features MSR SAT
Unigrams 58.46 58.95
Unigrams + Bigrams 60.87 58.95
Unigrams + Bigrams + Trigrams 61.44 58.95

Table 2: PMI model performance improvements
(% accurate) from incorporating feature sets of
higher-order n-grams.

tions. The most probable explanation for this
is twofold. First, informative context words are
much less likely to occur within 2-3 tokens of
the target word. Second, missing words, which
are selected to test knowledge of vocabulary, are
rarely found in the training corpus. Bigrams and
trigrams containing these infrequent terms are ex-
tremely uncommon. Regardless of sentence struc-
ture, the sparsity associated with higher-order n-
grams guarantees diminishing returns for larger
values of n. When deciding whether or not to in-
corporate this information, it is also important to
consider the significant trade-off with respect to
information storage requirements.

5 Conclusion

This paper described a novel approach to answer-
ing sentence completion questions based on point-
wise mutual information. To capture unique in-
formation stemming from multiple sources, sev-
eral features sets were defined to encode both lo-
cal and distant sentence tokens. It was shown that
while precision gains can be achieved by augment-
ing these feature sets with higher-order n-grams, a
significant cost is incurred as a result of the in-
creased data storage requirements. Finally, the su-
periority of the PMI model is demonstrated by its
performance on the Microsoft Research Sentence
Completion Challenge, during which a new state-
of-the-art result was established.
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