
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 387–392,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Word Embeddings with Limited Memory

Shaoshi Ling1 and Yangqiu Song2 and Dan Roth1

1Department of Computer Science, University of Illinois at Urbana-Champaign
2Department of Computer Science and Engineering, HKUST

1{sling3,danr}@illinois.edu, 2yqsong@gmail.com

Abstract

This paper studies the effect of limited pre-
cision data representation and computa-
tion on word embeddings. We present a
systematic evaluation of word embeddings
with limited memory and discuss method-
s that directly train the limited precision
representation with limited memory. Our
results show that it is possible to use and
train an 8-bit fixed-point value for word
embedding without loss of performance
in word/phrase similarity and dependency
parsing tasks.

1 Introduction

There is an accumulation of evidence that the
use of dense distributional lexical representations,
known as word embeddings, often supports bet-
ter performance on a range of NLP tasks (Ben-
gio et al., 2003; Turian et al., 2010; Collobert et
al., 2011; Mikolov et al., 2013a; Mikolov et al.,
2013b; Levy et al., 2015). Consequently, word
embeddings have been commonly used in the last
few years for lexical similarity tasks and as fea-
tures in multiple, syntactic and semantic, NLP ap-
plications.

However, keeping embedding vectors for hun-
dreds of thousands of words for repeated use could
take its toll both on storing the word vectors on
disk and, even more so, on loading them into
memory. For example, for 1 million words, load-
ing 200 dimensional vectors takes up to 1.6 GB
memory on a 64-bit system. Considering applica-
tions that make use of billions of tokens and mul-
tiple languages, size issues impose significant lim-
itations on the practical use of word embeddings.

This paper presents the question of whether it is
possible to significantly reduce the memory need-
s for the use and training of word embeddings.

Specifically, we ask “what is the impact of repre-
senting each dimension of a dense representation
with significantly fewer bits than the standard 64
bits?” Moreover, we investigate the possibility of
directly training dense embedding vectors using
significantly fewer bits than typically used.

The results we present are quite surprising. We
show that it is possible to reduce the memory con-
sumption by an order of magnitude both when
word embeddings are being used and in training.
In the first case, as we show, simply truncating
the resulting representations after training and us-
ing a smaller number of bits (as low as 4 bits
per dimension) results in comparable performance
to the use of 64 bits. Moreover, we provide t-
wo ways to train existing algorithms (Mikolov
et al., 2013a; Mikolov et al., 2013b) when the
memory is limited during training and show that,
here, too, an order of magnitude saving in mem-
ory is possible without degrading performance.
We conduct comprehensive experiments on ex-
isting word and phrase similarity and relatedness
datasets as well as on dependency parsing, to e-
valuate these results. Our experiments show that,
in all cases and without loss in performance, 8
bits can be used when the current standard is 64
and, in some cases, only 4 bits per dimension
are sufficient, reducing the amount of space re-
quired by a factor of 16. The truncated word
embeddings are available from the papers web
page at https://cogcomp.cs.illinois.
edu/page/publication_view/790.

2 Related Work

If we consider traditional cluster encoded word
representation, e.g., Brown clusters (Brown et al.,
1992), it only uses a small number of bits to track
the path on a hierarchical tree of word clusters
to represent each word. In fact, word embedding

387



generalized the idea of discrete clustering repre-
sentation to continuous vector representation in
language models, with the goal of improving the
continuous word analogy prediction and general-
ization ability (Bengio et al., 2003; Mikolov et al.,
2013a; Mikolov et al., 2013b). However, it has
been proven that Brown clusters as discrete fea-
tures are even better than continuous word em-
bedding as features for named entity recognition
tasks (Ratinov and Roth, 2009). Guo et al. (Guo
et al., 2014) further tried to binarize embeddings
using a threshold tuned for each dimension, and
essentially used less than two bits to represen-
t each dimension. They have shown that bina-
rization can be comparable to or even better than
the original word embeddings when used as fea-
tures for named entity recognition tasks. More-
over, Faruqui et al. (Faruqui et al., 2015) showed
that imposing sparsity constraints over the em-
bedding vectors can further improve the represen-
tation interpretability and performance on sever-
al word similarity and text classification bench-
mark datasets. These works indicate that, for some
tasks, we do not need all the information encoded
in “standard” word embeddings. Nonetheless, it is
clear that binarization loses a lot of information,
and this calls for a systematic comparison of how
many bits are needed to maintain the expressivity
needed from word embeddings for different tasks.

3 Value Truncation

In this section, we introduce approaches for word
embedding when the memory is limited. We trun-
cate any value x in the word embedding into an n
bit representation.

3.1 Post-processing Rounding

When the word embedding vectors are given, the
most intuitive and simple way is to round the num-
bers to their n-bit precision. Then we can use the
truncated values as features for any tasks that word
embedding can be used for. For example, if we
want to round x to be in the range of [−r, r], a
simple function can be applied as follows.

Rd(x, n) =
{
bxc if bxc ≤ x ≤ bxc+ ε

2bxc+ ε if bxc+ ε
2
< x ≤ bxc+ ε

(1)
where ε = 21−nr. For example, if we want to use
8 bits to represent any value in the vectors, then we
only have 256 numbers ranging from -128 to 127

for each value. In practice, we first scale all the
values and then round them to the 256 numbers.

3.2 Training with Limited Memory
When the memory for training word embedding
is also limited, we need to modify the training
algorithms by introducing new data structures to
reduce the bits used to encode the values. In
practice, we found that in the stochastic gradien-
t descent (SGD) iteration in word2vec algorithm-
s (Mikolov et al., 2013a; Mikolov et al., 2013b),
the updating vector’s values are often very small
numbers (e.g., < 10−5). In this case, if we direct-
ly apply the rounding method to certain precisions
(e.g., 8 bits), the update of word vectors will al-
ways be zero. For example, the 8-bit precision is
2−7 = 0.0078, so 10−5 is not significant enough
to update the vector with 8-bit values. Therefore,
we consider the following two ways to improve
this.

Stochastic Rounding. We first consider us-
ing stochastic rounding (Gupta et al., 2015) to
train word embedding. Stochastic rounding intro-
duces some randomness into the rounding mech-
anism, which has been proven to be helpful when
there are many parameters in the learning system,
such as deep learning systems (Gupta et al., 2015).
Here we also introduce this approach to update
word embedding vectors in SGD. The probability
of rounding x to bxc is proportional to the prox-
imity of x to bxc:

Rs(x, n) =
{
bxc w.p. 1− x−bxc

ε

bxc+ ε w.p. x−bxc
ε

. (2)

In this case, even though the update values are not
significant enough to update the word embedding
vectors, we randomly choose some of the values
being updated proportional to the value of how
close the update value is to the rounding precision.

Auxiliary Update Vectors. In addition to the
method of directly applying rounding to the val-
ues, we also provide a method using auxiliary
update vectors to trade precision for more space.
Suppose we know the range of update value in S-
GD as [−r′, r′], and we use additional m bits to
store all the values less than the limited numeri-
cal precision ε. Here r′ can be easily estimated
by running SGD for several examples. Then the
real precision is ε′ = 21−mr′. For example, if
r′ = 10−4 and m = 8, then the numerical pre-
cision is 7.8 ·10−7 which can capture much higher
precision than the SGD update values have. When

388



(a) CBOW model with 25 dimensions.

(b) Skipgram model with 25 dimensions.

(c) CBOW model with 200 dimensions.

(d) Skipgram model with 200 dimensions.

Figure 1: Comparing performance on multiple similarity tasks, with different values of truncation.
The y-axis represents the Spearman’s rank correlation coefficient for word similarity datasets, and the
cosine value for paraphrase (bigram) datasets (see Sec. 4.2).

the cumulated values in the auxiliary update vec-
tors are greater than the original numerical preci-
sion ε, e.g., ε = 2−7 for 8 bits, we update the o-
riginal vector and clear the value in the auxiliary
vector. In this case, we can have final n-bit values
in word embedding vectors as good as the method
presented in Section 3.1.

4 Experiments on Word/Phrase
Similarity

In this section, we describe a comprehensive study
on tasks that have been used for evaluating word
embeddings. We train the word embedding algo-
rithms, word2vec (Mikolov et al., 2013a; Mikolov
et al., 2013b), based on the Oct. 2013 Wikipedi-

a dump.1 We first compare levels of truncation
of word2vec embeddings, and then evaluate the s-
tochastic rounding and the auxiliary vectors based
methods for training word2vec vectors.

4.1 Datasets

We use multiple test datasets as follows.
Word Similarity. Word similarity datasets

have been widely used to evaluate word embed-
ding results. We use the datasets summarized
by Faruqui and Dyer (Faruqui and Dyer, 2014):
wordsim-353, wordsim-sim, wordsim-rel, MC-30,
RG-65, MTurk-287, MTurk-771, MEN 3000, YP-
130, Rare-Word, Verb-143, and SimLex-999.2 We
compute the similarities between pairs of words

1https://dumps.wikimedia.org/
2http://www.wordvectors.org/

389



Table 1: The detailed average results for word similarity and paraphrases of Fig. 1.
Average CBOW Skipgram

Original Binary 4-bits 6-bits 8-bits Original Binary 4-bits 6-bits 8-bits
wordsim (25) 0.5331 0.4534 0.5223 0.5235 0.5242 0.4894 0.4128 0.4333 0.4877 0.4906
wordsim (200) 0.5818 0.5598 0.4542 0.5805 0.5825 0.5642 0.5588 0.4681 0.5621 0.5637

bigram (25) 0.3023 0.2553 0.3164 0.3160 0.3153 0.3110 0.2146 0.2498 0.3050 0.3082
bigram (200) 0.3864 0.3614 0.2954 0.3802 0.3858 0.3565 0.3562 0.2868 0.3529 0.3548

and check the Spearman’s rank correlation coeffi-
cient (Myers and Well., 1995) between the com-
puter and the human labeled ranks.

Paraphrases (bigrams). We use the paraphrase
(bigram) datasets used in (Wieting et al., 2015),
ppdb all, bigrams vn, bigrams nn, and bigram-
s jnn, to test whether the truncation affects phrase
level embedding. Our phrase level embedding is
based on the average of the words inside each
phrase. Note that it is also easy to incorporate
our truncation methods into existing phrase em-
bedding algorithms. We follow (Wieting et al.,
2015) in using cosine similarity to evaluate the
correlation between the computed similarity and
annotated similarity between paraphrases.

4.2 Analysis of Bits Needed

We ran both CBOW and skipgram with negative
sampling (Mikolov et al., 2013a; Mikolov et al.,
2013b) on the Wikipedia dump data, and set the
window size of context to be five. Then we per-
formed value truncation with 4 bits, 6 bits, and 8
bits. The results are shown in Fig. 1, and the num-
bers of the averaged results are shown in Table 1.
We also used the binarization algorithm (Guo et
al., 2014) to truncate each dimension to three val-
ues; these experiments are is denoted using the
suffix “binary” in the figure. For both CBOW and
skipgram models, we train the vectors with 25 and
200 dimensions respectively.

The representations used in our experiments
were trained using the whole Wikipedia dump. A
first observation is that, in general, CBOW per-
forms better than the skipgram model. When us-
ing the truncation method, the memory required
to store the embedding is significantly reduced,
while the performance on the test datasets remains
almost the same until we truncate down to 4 bit-
s. When comparing CBOW and skipgram models,
we again see that the drop in performance with 4-
bit values for the skipgram model is greater than
the one for the CBOW model. For the CBOW
model, the drop in performance with 4-bit values
is greater when using 200 dimensions than it is

when using 25 dimensions. However, when using
skipgram, this drop is slightly greater when using
25 dimensions than 200.

We also evaluated the binarization ap-
proach (Guo et al., 2014). This model uses
three values, represented using two bits. We
observe that, when the dimension is 25, the bina-
rization is worse than truncation. One possible
explanation has to do merely with the size of
the space; while 325 is much larger than the size
of the word space, it does not provide enough
redundancy to exploit similarity as needed in the
tasks. Consequently, the binarization approach
results in worse performance. However, when
the dimension is 200, this approach works much
better, and outperforms the 4-bit truncation. In
particular, binarization works better for skipgram
than for CBOW with 200 dimensions. One
possible explanation is that the binarization
algorithm computes, for each dimension of the
word vectors, the positive and negative means of
the values and uses it to split the original values
in that dimension, thus behaving like a model that
clusters the values in each dimension. The success
of the binarization then indicates that skipgram
embeddings might be more discriminative than
CBOW embeddings.

4.3 Comparing Training Methods

We compare the training methods for the CBOW
model in Table 2. For stochastic rounding, we s-
cale the probability of rounding up to make sure
that small gradient values will still update the val-
ues. Both stochastic rounding and truncation with
auxiliary update vectors (shown in Sec. 3.2) re-
quire 16 bits for each value in the training phase.
Truncation with auxiliary update vectors finally
produces 8-bit-value based vectors while stochas-
tic rounding produces 16-bit-value based vectors.
Even though our auxiliary update algorithm uses
smaller memory/disk to store vectors, its perfor-
mance is still better than that of stochastic round-
ing. This is simply because the update values in
SGD are too small to allow the stochastic round-

390



Table 2: Comparing the training CBOW
models: We set the average value of the original
word2vec embeddings to be 1, and the values in
the table are relative to the original embeddings
baselines. “avg. (w.)” represents the average
values of all word similarity datasets. “avg. (b.)”
represents the average values of all bigram phrase
similarity datasets. “Stoch. (16 b.)” represents
the method using stochastic rounding applied
to 16-bit precision. “Trunc. (8 b.)” represents
the method using truncation with 8-bit auxiliary
update vectors applied to 8-bit precision.

Stoch. (16 b.) Trunc. (8 b.)
25 avg. (w.) 0.990 0.997

dim avg. (b.) 0.966 0.992
200 avg. (w.) 0.994 1.001
dim avg. (b.) 0.991 0.999

ing method to converge. Auxiliary update vectors
achieve very similar results to the original vectors,
and, in fact, result in almost the same vectors as
produced by the original truncation method.

5 Experiments on Dependency Parsing

We also incorporate word embedding results into
a downstream task, dependency parsing, to eval-
uate whether the truncated embedding results are
still good features compared to the original fea-
tures. We follow the setup of (Guo et al., 2015)
in a monolingual setting3. We train the parser
with 5,000 iterations using different truncation set-
tings for word2vec embedding. The data used to
train and evaluate the parser is the English data
in the CoNLL-X shared task (Buchholz and Mar-
si, 2006). We follow (Guo et al., 2015) in using
the labeled attachment score (LAS) to evaluate the
different parsing results. Here we only show the
word embedding results for 200 dimensions, since
empirically we found 25-dimension results were
not as stable as 200 dimensions.

The results shown in Table 3 for dependency
parsing are consistent with word similarity and
paraphrasing. First, we see that binarization for
CBOW and skipgram is again better than the trun-
cation approach. Second, for truncation results,
more bits leads to better results. With 8-bits, we
can again obtain results similar to those obtained

3https://github.com/jiangfeng1124/
acl15-clnndep

Table 3: Evaluation results for dependency
parsing (in LAS).

Bits CBOW Skipgram
Original 88.58% 88.15%
Binary 89.25% 88.41%
4-bits 87.56% 86.46%
6-bits 88.62% 87.98%
8-bits 88.63% 88.16%

from the original word2vec embedding.

6 Conclusion
We systematically evaluated how small can the
representation size of dense word embedding be
before it starts to impact the performance of NLP
tasks that use them. We considered both the final
size of the size we provide it while learning it. Our
study considers both the CBOW and the skipgram
models at 25 and 200 dimensions and showed that
8 bits per dimension (and sometimes even less) are
sufficient to represent each value and maintain per-
formance on a range of lexical tasks. We also pro-
vided two ways to train the embeddings with re-
duced memory use. The natural future step is to
extend these experiments and study the impact of
the representation size on more advanced tasks.

Acknowledgment

The authors thank Shyam Upadhyay for his help
with the dependency parser embeddings results,
and Eric Horn for his help with this write-up. This
work was supported by DARPA under agreemen-
t numbers HR0011-15-2-0025 and FA8750-13-2-
0008. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of any of the organizations that supported
the work.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
searc, 3:1137–1155.

Peter F. Brown, Vincent J. Della Pietra, Peter V.
de Souza, Jennifer C. Lai, and Robert L. Mercer.

391



1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
CoNLL, pages 149–164.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Manaal Faruqui and Chris Dyer. 2014. Improving
vector space word representations using multilingual
correlation. In EACL, pages 462–471.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In ACL, pages
1491–1500.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Li-
u. 2014. Revisiting embedding features for simple
semi-supervised learning. In EMNLP, pages 110–
120.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In ACL, pages 1234–1244.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrish-
nan, and Pritish Narayanan. 2015. Deep learning
with limited numerical precision. In ICML, pages
1737–1746.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL, 3:211–225.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In NAACL-HLT, pages 746–
751.

Jerome L. Myers and Arnold D. Well. 1995. Research
Design & Statistical Analysisn. Routledge.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of CoNLL-09, pages 147–155.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In ACL, pages
384–394.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to
compositional paraphrase model and back. TACL,
3:345–358.

392


