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Abstract

Access to data is critical to any machine
learning component aimed at training an
accurate predictive model. In reality, data
is often a subject of technical and legal
constraints. Data may contain sensitive
topics and data owners are often reluc-
tant to share them. Instead of access to
data, they make available decision mak-
ing procedures to enable predictions on
new data. Under the black box classifier
constraint, we build an effective domain
adaptation technique which adapts classi-
fier predictions in a transductive setting.
We run experiments on text categorization
datasets and show that significant gains
can be achieved, especially in the unsuper-
vised case where no labels are available in
the target domain.

1 Introduction

While huge volumes of unlabeled data are gener-
ated and made available in various domains, the
cost of acquiring data labels remains high. Do-
main Adaptation problems arise each time when
one leverage labeled data in one or more related
source domains, to learn a classifier for unseen
data in a target domain which is related, but not
identical. The majority of domain adaptation
methods makes an assumption of largely avail-
able source collections; this allows to measure
the discrepancy between distributions and either
build representations common to both target and
sources, or directly reuse source instances for a
better target classification (Xu and Sun, 2012).

Numerous approaches have been proposed to
address domain adaptation for statistical machine
translation (Koehn and Schroeder, 2007), opin-
ion mining, part of speech tagging and document

ranking (Daumé, 2009), (Pan and Yang, 2010),
(Zhou and Chang, 2014). Most effective tech-
niques include feature replication (Daumé, 2009),
pivot features (Blitzer et al., 2006), (Pan et al.,
2010) and finding topic models shared by source
and target collections (Chen and Liu, 2014). Do-
main adaptation has equally received a lot of at-
tention in computer vision (Gopalan et al., 2015)
where domain shift is a consequence of changing
conditions, such as background, location and pose,
etc.

More recently, domain adaptation has been
tackled with word embedding techniques or deep
learning. (Bollegala et al., 2015) proposed an un-
supervised method for learning domain-specific
word embedding while (Yang and Eisenstein,
2014) relied on word2vec models (Mikolov et
al., 2013) to compute feature embedding. Deep
learning has been considered as a generic solu-
tion to domain adaptation (Vincent et al., 2008;
Glorot et al., 2011), (Chopra et al., 2013) and
transfer learning problems (Long et al., 2015).
For instance, denoising autoencoders are success-
ful models which find common features between
source and target collection. They are trained to
reconstruct input data from partial random corrup-
tion and can be stacked into a multi-layered net-
work where the weights are fine-tuned with back-
propagation (Vincent et al., 2008) or marginalized
out (Chen et al., 2012).

Domain adaptation is also very attractive for
service companies operating customer business
processes as it can reduce annotation costs. For
instance, opinion mining components deployed in
a service solution can be customized to a new cus-
tomer and adapted with few annotations in order
to achieve a contractual performance.

But, in reality, the simplifying assumption of
having access to source data rarely holds and lim-
its therefore the application of existing domain
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adaptation methods. Source data are often a sub-
ject of legal, technical and contractual constraints
between data owners and data customers. Often,
customers are reluctant to share their data. In-
stead, they often put in place decision making pro-
cedures. This allows to obtain predictions for new
data under a black box scenario. Note that this
scenario is different from the differential privacy
setting (Dwork and Roth, 2014) in the sense that
no queries to the raw source database are allowed
whereas, in our case, only requests for predict-
ing labels of target documents are permitted. This
makes privacy preserving machine learning meth-
ods inapplicable here (Chaudhuri and Monteleoni,
2008), (Agrawal and Srikant, 2000).

In addition, black boxes systems are frequent in
natural language processing applications. For in-
stance, Statistical Machine Translation (SMT) sys-
tems are often used as black box to extract fea-
tures (Specia et al., 2009). Similarly, the prob-
lem of adapting SMT systems for cross lingual
retrieval has been addressed in (Nikoulina et al.,
2012) where target document collections cannot
be accessed and the retrieval engine works as a
black box.

In this paper we address the problem of adapt-
ing classifiers trained on the source data and avail-
able as black boxes. The case of available source
classifiers has been studied by (Duan et al., 2009)
to regularize supervised target classifiers, but we
consider here a transductive setting, where the
source classifiers are used to predict class scores
for a set of available target instances.

We then apply the denoising principle (Vin-
cent et al., 2008) and consider these predictions
on target instances as corrupted by the domain
shift from the source to target. More precisely,
we use the stacked Marginalized Denoising Au-
toencoders (Chen et al., 2012) to reconstruct the
predictions by exploiting the correlation between
the target features and the predicted scores. This
method has the advantage of coping with unsuper-
vised cases where no labels in the target domain is
available. We test the prediction denoising method
on two benchmark text classification datasets and
demonstrate its capacity to significantly improve
the classification accuracy.

2 Transductive Prediction Adaptation

The domain adaptation problem consists of lever-
aging the source labeled and target unlabeled data

to derive a hypothesis performing well on the
target domain. To achieve this goal, most DA
methods compute correlation between features in
source and target domains. With no access to
source data, we argue that the above principle can
be extended to the correlation between target fea-
tures and the source class decisions. We tune
an adaptation trick by considering predicted class
scores as augmented features for target data. In
other words, we use the source classifiers as a
pivot to transfer knowledge from source to target.
In addition, one can exploit relations between the
predictions scores and the target feature distribu-
tion to provide adapted predictions.

2.1 Marginalized Denoising Autoencoder

The stacked Marginalized Denoising Autoencoder
(sMDA) is a version of the multi-layer neural net-
work trained to reconstruct input data from partial
random corruption (Vincent et al., 2008) proposed
by (Chen et al., 2012), where the random corrup-
tion is marginalized out yielding the optimal re-
construction weights in the closed form.

The basic building block of the method is a one-
layer linear denoising autoencoder where a set of
N input documents xn are corrupted M times
by random feature dropout with the probability
p. It is then reconstructed with a linear mapping
W : Rd → Rd by minimizing the squared recon-
struction loss1:

L(W) =
N∑

n=1

M∑
m=1

||xn −Wx̃nm||2. (1)

Let X̄ be the concatenation of M replicated ver-
sion of the original data and X̃ be the matrix rep-
resentation of the M corrupted versions.

Then, the solution of (1) can be expressed as
the closed-form solution for ordinary least squares
W = PQ−1 with Q = X̃X̃> and P = X̄X̃>,
where the solution depends on the re-sampling of
x1, . . . ,xN and which features are randomly cor-
rupted.

It is preferable to consider all possible corrup-
tions of all possible inputs when the denoising
transformation W is computed, i.e. letting m →
∞. By the weak law of large numbers, the ma-
trices P and Q converge to their expected values
E[Q], E[P] as more copies of the corrupted data

1A constant is added to the input, xn = [xn; 1], and an
appropriate bias, never corrupted, is incorporated within W.
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are created. In the limit, one can derive their ex-
pectations and express the corresponding mapping
for W in a closed form as W = E[P] E[Q]−1,
where:

E[Q]ij =
[

Sijqiqj , if i 6= j,
Sijqi, if i = j,

and E[P]ij = Sijqj where q = [1 − p, . . . , 1 −
p, 1] ∈ Rd+1 and S = XX> is the covariance ma-
trix of the uncorrupted data. This closed form de-
noising layer with a unique noise p is referred in
the following as marginalized denoising autoen-
coder (MDA).

It was shown by (Chen et al., 2012) that MDA
can be applied with success to domain adaptation
where the source set Xs and target set Xt are con-
catenated to form X and the mapping W can ex-
ploit the correlation between source and target fea-
tures. The case of fully available source and target
data is referred as a dream case in the evaluation
section.

2.2 Prediction Adaptation

Without access to Xs, MDA cannot be directly ap-
plied to [Xs; Xt]. Instead, we augment the fea-
ture set Xt with the class predictions represented
as vector fs(xt) of class predictions Ps(Y =
y|xt

n), n = 1, . . . , N . Let ut
n = [xt

n; fs(xt
n)]

be the target instance augmented with the source
classifier predictions and U = [ut

1u
t
2 . . .ut

N ] be
the input to the MDA. Then we compute the op-
timal mapping W∗ = minW ||U −WŨ||2 that
takes into account the correlation between the tar-
get features xt and class predictions f s(xt). The
reconstructed class predictions can be obtained as
W∗

[1:N,d+1:d+C] · fs(xt), where C is the number
of classes, and used to label the target data. Al-
gorithm 1 summarizes all steps of the transductive
prediction adaptation for a single source domain;
the generalization to multiple sources is straight-
forward2.

3 Experimental results

We test our approach on two standard domain
adaptation datasets: the Amazon reviews (AMT)
and the 20Newsgroups (NG). The AMT dataset
consists of products reviews with 2 classes (posi-
tive and negative) represented by tf-idf normalized

2It requires concatenating the class predictions from dif-
ferent sources at step 1 and averaging the reconstructed pre-
dictions per class at step 3.

Algorithm 1 Transductive prediction adaptation.
Require: Unlabeled target dataset Xt ∈ RN×d.
Require: Class predictions fs(xt) = [Ps(Y =

1|xt
i), . . . , Ps(Y = C|xt

n)] ∈ RC .
1: Compose U ∈ RN×(d+C) with ut

n =
[xt

n; fs(xt
n)].

2: Use MDA with noise level p to estimate
W∗ = minW ||U−WŨ||2.

3: Get the denoised class predictions for xt as
yt = W∗

[1:N,d+1:d+C] · fs(xt).
4: Label xt with c∗ = argmaxc{yt

c|yt}.
5: return Labels for Xt.

bag-of-words, used in previous studies on domain
adaptation (Blitzer et al., 2011). We consider the
10,000 most frequent features and four domains
used in the studies: kitchen (k), dvd (d), books (b)
and electronics (e) with roughly 5,000 documents
per domain. We use all the source dataset as train-
ing and test on the whole target dataset. We set
the MDA noise level p to high values (e.g. 0.9),
as document representations are sparse and adding
low noise have no effect on the features already
equal to zero.

In Table 1, we show the performance of the
Transductive Prediction Adaptation (TPA) on 12
adaptation tasks in the AMT dataset. The first
column shows the accuracies for the dream case
where the standard MDA is applied to both source
and target data. The second column shows the
baseline results (fs(Xt)) obtained directly as class
predictions by the source classifier. The classifica-
tion model is an l2 regularized Logistic Regres-
sion3 cross-validated with regularized parameter
C ∈ [0.0001, 0.001, 0.1, 1, 10, 50, 100].

The two last columns show the results obtained
with two versions of TPA (results are underlined
when improving over the baseline and in bold
when yielding the highest values). In the first ver-
sion, target instances xt

n contains only features
(words and bigrams) appearing in the source docu-
ments and used to make the predictions f(xt

n). In
the second version, denoted as TPAe, we extend
TPA with words unseen in the source documents.
If the extension part is denoted vt

n, we obtain an
augmented representation ut

n = [xt
n; vt

n; f(xt
n)]

as input to MDA.

3We also experimented with other classifiers, such as
SVM , Multinomial Naive Bayes, and obtained similar im-
provement after applying TPA. Results are not shown due to
the space limitation.
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Table 1: TPA results on the AMT dataset.
S → T MDA∗ fs(Xt) TPA TPAe
d→ b 84.59 81.36 82.61 83.19
e→ b 78.07 73.87 75.93 79.95
k → b 78.75 73.50 75.02 78.39
b→ d 85.07 82.54 83.56 84.32
e→ d 79.99 76.46 77.67 81.60
k → d 80.76 77.58 79.16 81.92
b→ e 80.32 76.44 78.54 81.81
d→ e 83.70 78.65 80.75 82.89
k → e 89.05 87.55 88.38 88.50
b→ k 84.00 79.46 81.44 85.21
d→ k 86.08 80.83 83.15 86.14
e→ k 90.76 89.97 91.10 90.86
Avg 83.4 79.85 81.44 83.73

As we can see, both TPA and TPAe signifi-
cantly outperform the baseline fs(Xt) obtained
with no adaptation. Furthermore, extending TPA
with words present in target documents only al-
lows to further improve the classification accuracy
in most cases. Finally, TPAe often outperforms
the dream case and also on average (note however
that MDA∗ uses the features common to source
and target documents as input).

To understand the effect of prediction adapta-
tion we analyze the book → electronics adapta-
tion task. In the mapping W, we sort the weights
corresponding to the correlation between the posi-
tive class and the target features. Features with the
highest weights (up-weighted by TPA) are great,

my, sound, easy, excellent, good, easy to, best, yo, a great,

when, well, the best. On contrary, the words that got
the smallest weight (down-weighted by TPA) are
no, was, number, don’t, after, money, if, work, bad, get, buy.

As TPA is totally unsupervised, we run addi-
tional experiments to understand its practical use-
fulness. We compare TPA to the case of weakly
annotated target data, where few target examples
are labelled and used for training a target classi-
fier. Trained with 40, 100 and 200 target exam-
ples, a logistic regression yields an average accu-
racy of 64.63%, 68.01% and 75.13% over 12 tasks
and a Multinomial Naives Bayes reports 65.82%,
71.49% and 76%, respectively. Even with 200
labeled target documents, the target versus tar-
get classification results are significantly below
the 79.8% average accuracy of the baseline source
classifier.

All these values are therefore significantly be-
low the 83.73% obtained with TPAe. This strongly
supports the domain adaptation scenario, when a
sentiment analysis classifier trained on a larger
source set and adapted to target documents can

do better than a classifier trained on a small set
of labeled target documents. Furthermore, we
have seen that the baseline can be significantly im-
proved by TPA and even more by TPAe without
the need of even a small amount of manual label-
ing of the target set.

The second group of evaluation tests is on the
20Newsgroup dataset. It contains around 20,000
documents of 20 classes and represents a stan-
dard testbed for text categorization. For the do-
main adaptation, we follow the setting described
in (Pan et al., 2012). We filter out rare words (ap-
pearing less than 3 times) and keep at most 10,000
features for each task with a tf-idf termweight-
ing. As all documents are organized as a hi-
erarchy, the domain adaptation tasks are defined
on category pairs with sources and targets cor-
responding to subcategories. For example, for
the ’comp vs sci’ task, subcategories such as
comp.sys.ibm.pc.hardware and sci.crypt are set as
source domains and comp.sys.ibm.mac.hardware
and sci.med as targets, respectively.

In our experiments we consider 5 adaptation
tasks on category pairs ( ’comp vs sci’,’rec vs talk’,
’rec vs sci’, ’sci vs talk’ and ’comp vs rec’ as in
(Pan et al., 2012) ), and run the baseline, TPA and
TPAe methods. For each category pair, we addi-
tionally inverse the source and target roles; this
explains two sets of experimental results for each
pair. We show the evaluation results in Table 2. It
is easy to observe again the significant improve-
ment over the baseline fs(xt

n) and the positive ef-
fect of including the unseen words in the TPA.

Table 2: TPA results on the 20Newsgroup dataset.
class pair fs(Xt) TPA TPAe

’comp vs sci’ 71.06 80.24 80.43
65.4 71.6 71.98

’rec vs talk’ 65.66 68.01 70.18
69.93 75.84 77.2

’rec vs sci’ 76.02 85.97 86.42
74.17 81.14 82.71

’sci vs talk’ 76.1 80.22 81.3
74.92 80.07 80.19

’comp vs rec’ 86.63 91.56 92.06
86.97 92.67 93.34

Avg 74.69 80.73 81.58

4 Conclusion

In this paper we address the domain adaptation
scenario without access to source data and where
source classifiers are available as black boxes. In
the transductive setting, the source classifiers can

329



predict class scores for target instances, and we
consider these predictions as corrupted by domain
shift. We use the Marginalized Denoising Autoen-
coders (Chen et al., 2012) to reconstruct the pre-
dictions by exploiting the ”correlation” between
the target features and the predicted scores. We
test the transductive prediction adaptation on two
known benchmarks and demonstrate that it can
significantly improve the classification accuracy,
comparing to the baseline and to the case of full
access to source data. This is an encouraging re-
sult because it demonstrates that domain adapta-
tion can still be effective despite the absence of
source data. Lastly, in the future, we would like to
explore the adaptation of other language process-
ing components, such as named entity recognition,
with our method.
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