
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 231–235,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Deep multi-task learning with low level tasks supervised at lower layers

Anders Søgaard
University of Copenhagen

soegaard@hum.ku.dk

Yoav Goldberg
Bar-Ilan University

yoav.goldberg@gmail.com

Abstract

In all previous work on deep multi-task
learning we are aware of, all task super-
visions are on the same (outermost) layer.
We present a multi-task learning architec-
ture with deep bi-directional RNNs, where
different tasks supervision can happen at
different layers. We present experiments
in syntactic chunking and CCG supertag-
ging, coupled with the additional task of
POS-tagging. We show that it is consis-
tently better to have POS supervision at
the innermost rather than the outermost
layer. We argue that this is because “low-
level” tasks are better kept at the lower
layers, enabling the higher-level tasks to
make use of the shared representation of
the lower-level tasks. Finally, we also
show how this architecture can be used for
domain adaptation.

1 Introduction

We experiment with a multi-task learning (MTL)
architecture based on deep bi-directional recurrent
neural networks (bi-RNNs) (Schuster and Paliwal,
1997; Irsoy and Cardie, 2014). MTL can be seen
as a way of regularizing model induction by shar-
ing representations (hidden layers) with other in-
ductions (Caruana, 1993). We use deep bi-RNNs
with task supervision from multiple tasks, sharing
one or more bi-RNNs layers among the tasks. Our
main contribution is the novel insight that (what
has historically been thought of as) low-level tasks
are better modeled in the low layers of such an ar-
chitecture. This is in contrast to previous work on
deep MTL (Collobert et al., 2011; Luong et al.,
2015) , in which supervision for all tasks happen
at the same (outermost) layer. Multiple-tasks su-
pervision at the outermost layer has a strong tradi-

tion in neural net models in vision and elsewhere
(Caruana, 1993; Zhang and Zhang, 2014; Yim et
al., 2015). However, in NLP it is natural to think
of some levels of analysis as feeding into others,
typically with low-level tasks feeding into high-
level ones; e.g., POS tags as features for syntactic
chunking (Sang and Buchholz, 2000) or parsing
(Nivre et al., 2007). Our architecture can be seen
as a seamless way to combine multi-task and cas-
caded learning. We also show how the proposed
architecture can be applied to domain adaptation,
in a scenario in which we have high-level task su-
pervision in the source domain, and lower-level
task supervision in the target domain.

As a point of comparison, Collobert et al.
(2011) improved deep convolutional neural net-
work models of syntactic chunking by also having
task supervision from POS tagging at the outer-
most level. In our work, we use recurrent instead
of convolutional networks, but our main contribu-
tion is observing that we obtain better performance
by having POS task supervision at a lower layer.
While Collobert et al. (2011) also experiment with
NER and SRL, they only obtain improvements
from MTL with POS and syntactic chunking. We
show that similar gains can be obtained for CCG
supertagging.

Our contributions (i) We present a MTL archi-
tecture for sequence tagging with deep bi-RNNs;
(ii) We show that having task supervision from all
tasks at the outermost level is often suboptimal;
(iii) we show that this architecture can be used for
domain adaptation.

2 Sequence tagging with deep bi-RNNs

Notation We use x1:n to denote a sequence of
n vectors x1, · · · , xn. Fθ(·) is a function param-
eterized with parameters θ. We write FL(·) as a
shortcut to FθL

– an instantiation of F with a spe-

231

cific set of parameters θL. We use ◦ to denote a
vector concatenation operation.

Deep bi-RNNs We use a specific flavor of Re-
current Neural Networks (RNNs) (Elman, 1990)
called long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997). For brevity,
we treat RNNs as a black-box abstraction, and
LSTMs as an instance of the RNN interface. For
further details on RNNs and LSTMs, see (Gold-
berg, 2015; Cho, 2015). We view RNN as a pa-
rameterized function RNNθ(x1:n) mapping a se-
quence of n input vectors x1:n, xi ∈ Rdin to a an
output vector hn ∈ Rdout . The output vector hn
is conditioned on all the input vectors x1:n, and
can be thought of as a summary of x1:n. The RNN
can be applied to all prefixes x1:i, 1 ≤ i ≤ n of
x1:n, resulting in n output vectors h1:n, where h1:i

summarizes x1:i.
A deep RNN (or k-layer RNN) is composed of k

RNN functions RNN1, · · · , RNNk that feed into
each other: the output h`1:n of RNN` becomes the
input of RNN`+1. Stacking RNNs in this way
was empirically shown to be effective.

A bidirectional RNN (Schuster and Paliwal,
1997; Irsoy and Cardie, 2014) is composed of two
RNNs, RNNF and RNNR, one reading the se-
quence in its regular order, and the other reading it
in reverse. Concretely, given a sequence x1:n and
a desired index i, the function BIRNNθ(x1:n, i)
is defined as:

BIRNNθ(x1:n, i) = vi = hF,i ◦ hR,i
hF,i = RNNF (x1, x2, · · · , xi)
hR,i = RNNR(xn, xn−1, · · · , xi)

The vector vi = BIRNN(x1:n, i) is then a rep-
resentation of the ith item in x1:n, taking into ac-
count both the entire history x1:i and the entire fu-
ture xi:n.

Finally, in a deep bidirectional RNN, both
RNNF and RNNR are k-layer RNNs, and
BIRNN `(x1:n, i) = v`i = h`F,i ◦ h`R,i.
Greedy sequence tagging with deep bi-RNNs
In a sequence tagging task, we are given an in-
put w1, · · · , wn and need to predict an output
y1, · · · , yn, yi ∈ [1, · · · , |L|], where L is a label
set of interest; i.e., in a POS tagging task, L is
the part-of-speech tagset, and yi is the pos-tag for
word wi.

If we take the inputs x1:n to correspond to a
sequence of sentence words w1, · · · , wn, we can

think of vi = BIRNN(x1:n, i) as inducing an in-
finite window around a focus word wi. We can
then use vi as an input to a multiclass classifica-
tion function f(vi), to assign a tag ŷi to each input
location i. The tagger is greedy: the tagging de-
cisions are independent of each other. However,
as shown below and in other recent work using
bi-RNNs for sequence tagging, we can still pro-
duce competitive tagging accuracies, because of
the richness of the representation vi that takes the
entire input sequence into account.

For a k-layer bi-RNN tagger we get:

tag(w1:n, i) = ŷi = f(vki)

vki = BIRNNk(x1:n, i)
x1:n = E(w1), E(w2), · · · , E(wn)

where E as an embedding function mapping each
word in the vocabulary into a demb-dimensional
vector, and vki is the output of the kth BIRNN layer
as defined above.

All the parameters (the embedding vectors for
the different vocabulary items, the parameters of
the different RNNs and the parameters of the clas-
sification function f) are trained jointly in order
to minimize the tagging loss over a sentence. The
embedding vectors are often initialized using vec-
tors that were pre-trained in a semi-supervised
manner.

This sequence tagging architecture was intro-
duced to NLP by Irsoy and Cardie (2014). A
similar architecture (with an RNN instead of bi-
RNN) was applied to CCG supertagging by Xu et
al (2015).

MTL in deep bi-RNNs In a multi-task learn-
ing (MTL) setting, we have several prediction
tasks over the same input space. For example,
in sequence tagging, the input may be the words
in the sentence, and the different tasks can be
POS-tagging, named entity recognition, syntactic
chunking, or CCG supertagging. Note that the
different tasks do not have to be traditional NLP
tasks, but also, say, two POS-annotated corpora
with slightly different guidelines. Each task has
its own output vocabulary (a task specific tagset),
but all of them map the length n input sequence
into a length n output sequence.

Intuitively, although NLP tasks such as POS
tagging, syntactic chunking and CCG supertag-
ging are different than each other, they also share
lot of substructure, e.g., knowing that a word is a

232

verb can help in determining its CCG supertag and
the syntactic chunk it participate in. We would
therefore like for these models to share parame-
ters.

The common approach is to share parameters
across most of the network. In the k-layers deep
bi-RNN tagger described above this is naturally
achieved by sharing the bi-RNN part of the net-
work across tasks, but training a specialized clas-
sification tagger ft(vki) for each task t.

This encourages the deep bi-RNN to learn a rep-
resentation vki that is useful for prediction of the
different tasks, allowing them to share parameters.

Supervising different tasks on different layers
Previous work in NLP on cascaded learning such
as Shen and Sarkar (2005) suggests there is some-
times a natural order among the different tasks:
some tasks may benefit more from other tasks,
than the other way around. This suggests having
task supervision for low-level tasks at the lower bi-
RNN layers. This also enables task-specific deep
learning of the high-level tasks.

Instead of conditioning all tasks on the outer-
most bi-RNN layer, we associate an RNN level
`(t) with each task t, and let the task specific clas-
sifier feed from that layer, e.g., pos tag(w1:n, i) =
fpos(v

`(pos)
i). This enables a hierarchy a task with

cascaded predictions, as well as deep task-specific
learning for high-level tasks. This means there
will be layers shared by all tasks and layers that
are specific to some tasks:

pos tag(w1:n, i) = fpos(v
`(pos)
i)

chunk tag(w1:n, i) = fchunk(v
`(chunk)
i)

ccg tag(w1:n, i) = fccg(v
`(ccg)
i)

v`i = BIRNN `(x1:n, i)
x1:n = E(w1), E(w2), · · · , E(wn)

The Multi-task training protocol We assume
T different training set, D1, · · · , DT , where
each Dt contains pairs of input-output sequences
(w1:n, y

t
1:n), wi ∈ V , yti ∈ Lt. The input vo-

cabulary V is shared across tasks, but the output
vocabularies (tagset) Lt are task dependent.

At each step in the training process we choose
a random task t, followed by a random training
instance (w1:n, y

t
1:n) ∈ Dt. We use the tag-

ger to predict the labels ŷti , suffer a loss with re-
spect to the true labels yti and update the model
parameters. Notice that a task t is associated

with a bi-RNN level `(t). The update for a sam-
ple from task t affects the parameters of ft and
BIRNN1, · · · , BIRNN `(t), but not the param-
eters of ft′ 6=t or BIRNN j>`(t).

Implementation details Our implementation is
based the CNN library1 for dynamic neural net-
works. We use CNN’s LSTM implementation as
our RNN variant. The classifiers ft() take the form
of a linear transformation followed by a softmax
ft(v) = arg maxi softmax(W (t)v+bt)[i], where
the weights matrix W (t) and bias vector b(t) are
task-specific parameters. We use a cross-entropy
loss summed over the entire sentence. The net-
work is trained using back-propagation and SGD
with batch-sizes of size 1, with the default learn-
ing rate. Development data is used to determine
the number of iterations.

We initialize the embedding layer E with pre-
trained word embeddings. We use the Senna em-
beddings2 in our domain adaptation experiments,
but these embeddings may have been induced
from data including the test data of our main ex-
periments, so we use the Polyglot embeddings in
these experiments.3 We use the same dimension-
ality for the hidden layers as in our pre-trained em-
beddings.

3 Experiments and Results

We experiment with POS-tagging, syntactic
chunking and CCG supertagging. See examples
of the different tasks below:

WORDS Vinken , 61 years old

POS NNP , CD NNS JJ
CHUNKS B-NP I-NP I-NP I-NP I-NP
CCG N , N/N N (S[adj]\ NP)\ NP

In-domain MTL In these experiments, POS,
Chunking and CCG data are from the English
Penn Treebank. We use sections 0–18 for training
POS and CCG supertagging, 15–18 for training
chunking, 19 for development, 20 for evaluating
chunking, and 23 for evaluating CCG supertag-
ging. These splits were motivated by the need for
comparability with previous results.4

1http://www.github.com/clab/cnn
2http://ronan.collobert.com/senna/
3http://polyglot.readthedocs.org
4In CCG supertagging, we follow common practice and

only evaluate performance with respect to the 425 most fre-
quent labels. For this reason, we also do not calculate any
loss from not predicting the other labels during training (but
we do suffer a loss for tokens tagged with a different label
during evaluation).

233

LAYERS DOMAINS
CHUNKS POS BROADCAST (6) BC-NEWS (8) MAGAZINES (1) WEBLOGS (6)

BI-LSTM
3 - 88.98 91.84 90.09 90.36
3 3 88.91 91.84 90.95 90.43
3 1 89.48 92.03 91.53 90.78

Table 1: Domain adaptation results for chunking across four domains (averages over micro-F1s for
individual files). The number in brackets is # files per domain in OntoNotes 4.0. We use the two first
files in each folder for POS supervision (for train+dev).

We do MTL training for either (POS+chunking)
or (POS+CCG), with POS being the lower-level
task. We experiment three architectures: single
task training for higher-level tasks (no POS layer),
MTL with both tasks feeding off of the outer layer,
and MTL where POS feeds off of the inner (1st)
layer and the higher-level task on the outer (3rd)
layer. OUr main results are below:

POS CHUNKS CCG

BI-LSTM
- 95.28 91.04
3 95.30 92.94
1 95.56 93.26

Our CHUNKS results are competitive with state-
of-the-art. Suzuki and Isozaki (2008), for ex-
ample, reported an F1-score of 95.15% on the
CHUNKS data. Our model also performs consid-
erably better than the MTL model in Collobert et
al. (2011) (94.10%). Note that our relative im-
provements are also bigger than those reported by
Collobert et al. (2011). Our CCG super tagging
results are also slighly better than a recently re-
ported result in Xu et al. (2015) (93.00%). Our
results are significantly better (p < 0.05) than our
baseline, and POS supervision at the lower layer is
consistently better than standard MTL.

Additional tasks? We also experimented with
NER (CoNLL 2003), super senses (SemCor), and
the Streusle Corpus of texts annotated with MWE
brackets and super sense tags. In none of these
cases, MTL led to improvements. This suggests
that MTL only works when tasks are sufficiently
similar, e.g., all of syntactic nature. Collobert et
al. (2011) also observed a drop in NER perfor-
mance and insignificant improvements for SRL.
We believe this is an important observation, since
previous work on deep MTL often suggests that
most tasks benefit from each other.

Domain adaptation We experiment with do-
main adaptation for syntactic chunking, based on
OntoNotes 4.0. We use WSJ newswire as our

source domain, and broadcast, broadcasted news,
magazines, and weblogs as target domains. We as-
sume main task (syntactic chunking) supervision
for the source domain, and lower-level POS su-
pervision for the target domains. The results in
Table 1 indicate that the method is effective for do-
main adaptation when we have POS supervision
for the target domain. We believe this result is
worth exploring further, as the scenario in which
we have target-domain training data for low-level
tasks such as POS tagging, but not for the task we
are interested in, is common. The method is ef-
fective only when the lower-level POS supervision
is applied at the lower layer, supporting the im-
portance of supervising different tasks at different
layers.

Rademacher complexity is the ability of mod-
els to fit random noise. We use the procedure in
Zhu et al. (2009) to measure Rademacher com-
plexity, i.e., computing the average fit to k random
relabelings of the training data. The subtask in our
set-up acts like a regularizer, increasing the induc-
tive bias of our model, preventing it from learning
random patterns in data. Rademacher complex-
ity measures the decrease in ability to learn such
patterns. We use the CHUNKS data in these exper-
iments. A model that does not fit to the random
data, will be right in 1/22 cases (with 22 labels).
We report the Rademacher complexities relative to
this.

LSTM(-3) LSTM(3-3) LSTM(1-3)

1.298 1.034 0.990

Our deep single task model increases perfor-
mance over this baseline by 30%. In contrast, we
see that when we predict both POS and the tar-
get task at the top layer, Rademacher complexity
is lower and close to a random baseline. Interest-
ingly, regularization seems to be even more effec-
tive, when the subtask is predicted from a lower
layer.

234

4 Conclusion

MTL and sharing of intermediate representations,
allowing supervision signals of different tasks to
benefit each other, is an appealing idea. However,
in case we suspect the existence of a hierarchy be-
tween the different tasks, we show that it is worth-
while to incorporate this knowledge in the MTL
architecture’s design, by making lower level tasks
affect the lower levels of the representation.

Acknowledgments

Anders Søgaard was supported by ERC Starting
Grant LOWLANDS No. 313695. Yoav Goldberg
was supported by The Israeli Science Foundation
grant No. 1555/15 and a Google Research Award.

References
Rich Caruana. 1993. Multitask learning: a knowledge-

based source of inductive bias. In ICML.

Kyunghyun Cho. 2015. Natural language under-
standing with distributed representation. CoRR,
abs/1511.07916.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Jeffrey L. Elman. 1990. Finding Structure in Time.
Cognitive Science, 14(2):179–211, March.

Yoav Goldberg. 2015. A primer on neural network
models for natural language processing. CoRR,
abs/1510.00726.

Sepp Hochreiter and Juergen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9:1735–1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion Mining
with Deep Recurrent Neural Networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
720–728, Doha, Qatar, October. Association for
Computational Linguistics.

M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and
L. Kaiser. 2015. Multi-task Sequence to Sequence
Learning. ArXiv e-prints, November.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932, Prague, Czech Republic, June. Associa-
tion for Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task chunk-
ing. In Fourth Conference on Computational Natu-
ral Language Learning and of the Second Learning
Language in Logic Workshop, pages 127–132.

M. Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, Novem-
ber.

Hong Shen and Anoop Sarkar. 2005. Voting between
multiple data representations for text chunking. In
Proceedings of the 18th Meeting of the Canadian
Society for Computational Intelligence.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In ACL.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
In ACL.

Junho Yim, Heechul Jung, ByungIn Yoo amd
Changkyu Choi, Dusik Park, and Junmo Kim. 2015.
Rotating Your Face Using Multi-task Deep Neural
Network. In CVPR.

Cha Zhang and Zhengyou Zhang. 2014. Improv-
ing Multiview Face Detection with Multi-Task Deep
Convolutional Neural Networks. In WACV.

Jerry Zhu, Timothy Rogers, and Bryan Gibson. 2009.
Human Rademacher complexity. In NIPS.

235

