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Abstract

In this paper, we propose a neural network
model for graph-based dependency pars-
ing which utilizes Bidirectional LSTM
(BLSTM) to capture richer contextual in-
formation instead of using high-order fac-
torization, and enable our model to use
much fewer features than previous work.
In addition, we propose an effective way
to learn sentence segment embedding on
sentence-level based on an extra forward
LSTM network. Although our model uses
only first-order factorization, experiments
on English Peen Treebank and Chinese
Penn Treebank show that our model could
be competitive with previous higher-order
graph-based dependency parsing models
and state-of-the-art models.

1 Introduction

Dependency parsing is a fundamental task for lan-
guage processing which has been investigated for
decades. It has been applied in a wide range of ap-
plications such as information extraction and ma-
chine translation. Among a variety of dependency
parsing models, graph-based models are attractive
for their ability of scoring the parsing decisions
on a whole-tree basis. Typical graph-based mod-
els factor the dependency tree into subgraphs, in-
cluding single arcs (McDonald et al., 2005), sib-
ling or grandparent arcs (McDonald and Pereira,
2006; Carreras, 2007) or higher-order substruc-
tures (Koo and Collins, 2010; Ma and Zhao, 2012)
and then score the whole tree by summing scores
of the subgraphs. In these models, subgraphs are
usually represented as high-dimensional feature
vectors which are then fed into a linear model to
learn the feature weights.

However, conventional graph-based models

heavily rely on feature engineering and their per-
formance is restricted by the design of features.
In addition, standard decoding algorithm (Eisner,
2000) only works for the first-order model which
limits the scope of feature selection. To incor-
porate high-order features, Eisner algorithm must
be somehow extended or modified, which is usu-
ally done at high cost in terms of efficiency. The
fourth-order graph-based model (Ma and Zhao,
2012), which seems the highest-order model so far
to our knowledge, requires O(n5) time and O(n4)
space. Due to the high computational cost, high-
order models are normally restricted to produc-
ing only unlabeled parses to avoid extra cost in-
troduced by inclusion of arc-labels into the parse
trees.

To alleviate the burden of feature engineering,
Pei et al. (2015) presented an effective neural net-
work model for graph-based dependency parsing.
They only use atomic features such as word uni-
grams and POS tag unigrams and leave the model
to automatically learn the feature combinations.
However, their model requires many atomic fea-
tures and still relies on high-order factorization
strategy to further improve the accuracy.

Different from previous work, we propose an
LSTM-based dependency parsing model in this
paper and aim to use LSTM network to capture
richer contextual information to support parsing
decisions, instead of adopting a high-order factor-
ization. The main advantages of our model are as
follows:

• By introducing Bidirectional LSTM, our
model shows strong ability to capture poten-
tial long range contextual information and ex-
hibits improved accuracy in recovering long
distance dependencies. It is different to pre-
vious work in which a similar effect is usually
achieved by high-order factorization. More-

2306



over, our model also eliminates the need
for setting feature selection windows and re-
duces the number of features to a minimum
level.

• We propose an LSTM-based sentence seg-
ment embedding method named LSTM-
Minus, in which distributed representation of
sentence segment is learned by using subtrac-
tion between LSTM hidden vectors. Experi-
ment shows this further enhances our model’s
ability to access to sentence-level informa-
tion.

• Last but important, our model is a first-order
model using standard Eisner algorithm for
decoding, the computational cost remains at
the lowest level among graph-based models.
Our model does not trade-off efficiency for
accuracy.

We evaluate our model on the English Penn
Treebank and Chinese Penn Treebank, experi-
ments show that our model achieves competi-
tive parsing accuracy compared with conventional
high-order models, however, with a much lower
computational cost.

2 Graph-based dependency parsing

In dependency parsing, syntactic relationships are
represented as directed arcs between head words
and their modifier words. Each word in a sen-
tence modifies exactly one head, but can have any
number of modifiers itself. The whole sentence is
rooted at a designated special symbol ROOT, thus
the dependency graph for a sentence is constrained
to be a rooted, directed tree.

For a sentence x, graph-based dependency pars-
ing model searches for the highest-scoring tree of
x:

y∗(x) = arg max
ŷ∈Y (x)

Score(x, ŷ; θ) (1)

Here y∗(x) is the tree with the highest score, Y (x)
is the set of all valid dependency trees for x and
Score(x, ŷ; θ) measures how likely the tree ŷ is
the correct analysis of the sentence x, θ are the
model parameters. However, the size of Y (x)
grows exponentially with respect to the length of
the sentence, directly solving equation (1) is im-
practical.

The common strategy adopted in the graph-
based model is to factor the dependency tree ŷ into

Figure 1: First-order, Second-order and Third-
order factorization strategy. Here h stands for head
word, m stands for modifier word, s and t stand
for the sibling of m. g stands for the grandparent
of m.

a set of subgraph c which can be scored in isola-
tion, and score the whole tree ŷ by summing score
of each subgraph:

Score(x, ŷ; θ) =
∑
c∈ŷ

ScoreC(x, c; θ) (2)

Figure 1 shows several factorization strategies.
The order of the factorization is defined accord-
ing to the number of dependencies that subgraph
contains. The simplest first-order factorization
(McDonald et al., 2005) decomposes a depen-
dency tree into single dependency arcs. Based
on the first-order factorization, second-order fac-
torization (McDonald and Pereira, 2006; Carreras,
2007) brings sibling and grandparent information
into their model. Third-order factorization (Koo
and Collins, 2010) further incorporates richer con-
textual information by utilizing grand-sibling and
tri-sibling parts.

Conventional graph-based models (McDonald
et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010; Ma and Zhao,
2012) score subgraph by a linear model, which
heavily depends on feature engineering. The neu-
ral network model proposed by Pei et al. (2015)
alleviates the dependence on feature engineering
to a large extent, but not completely. We follow
Pei et al. (2015) to score dependency arcs using
neural network model. However, different from
their work, we introduce a Bidirectional LSTM to
capture long range contextual information and an
extra forward LSTM to better represent segments
of the sentence separated by the head and modi-
fier. These make our model more accurate in re-
covering long-distance dependencies and further
decrease the number of atomic features.
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Figure 2: Architecture of the Neural Network. x1

to x5 stand for the input token of Bidirectional
LSTM. a1 to a5 stand for the feature embeddings
used in our model.

3 Neural Network Model

In this section, we describe the architecture of our
neural network model in detail, which is summa-
rized in Figure 2.

3.1 Input layer
In our neural network model, the words, POS
tags are mapped into distributed embeddings. We
represent each input token xi which is the in-
put of Bidirectional LSTM by concatenating POS
tag embedding epi ∈ Rde and word embedding
ewi ∈ Rde , de is the the dimensionality of em-
bedding, then a linear transformation we is per-
formed and passed though an element-wise acti-
vation function g:

xi = g(we[ewi ; epi ] + be) (3)

where xi ∈ Rde , we ∈ Rde×2de is weight matrix,
be ∈ Rde is bias term. the dimensionality of input
token xi is equal to the dimensionality of word and
POS tag embeddings in our experiment, ReLU is
used as our activation function g.

3.2 Bidirectional LSTM
Given an input sequence x = (x1, . . . , xn), where
n stands for the number of words in a sentence,
a standard LSTM recurrent network computes the
hidden vector sequence h = (h1, . . . , hn) in one
direction.

Bidirectional LSTM processes the data in both
directions with two separate hidden layers, which
are then fed to the same output layer. It com-
putes the forward hidden sequence

−→
h , the back-

ward hidden sequence
←−
h and the output sequence

v by iterating the forward layer from t = 1 to n,
the backward layer from t = n to 1 and then up-
dating the output layer:

vt =
−→
h t +

←−
h t (4)

where vt ∈ Rdl is the output vector of Bidirec-
tional LSTM for input xt,

−→
h t ∈ Rdl ,

←−
h t ∈ Rdl , dl

is the dimensionality of LSTM hidden vector. We
simply add the forward hidden vector

−→
h t and the

backward hidden vector
←−
h t together, which gets

similar experiment result as concatenating them
together with a faster speed.

The output vectors of Bidirectional LSTM are
used as word feature embeddings. In addition,
they are also fed into a forward LSTM network
to learn segment embedding.

3.3 Segment Embedding

Contextual information of word pairs1 has been
widely utilized in previous work (McDonald et
al., 2005; McDonald and Pereira, 2006; Pei et
al., 2015). For a dependency pair (h,m), previ-
ous work divides a sentence into three parts (pre-
fix, infix and suffix) by head word h and modifier
word m. These parts which we call segments in
our work make up the context of the dependency
pair (h,m).

Due to the problem of data sparseness, conven-
tional graph-based models can only capture con-
textual information of word pairs by using bigrams
or tri-grams features. Unlike conventional mod-
els, Pei et al. (2015) use distributed representa-
tions obtained by averaging word embeddings in
segments to represent contextual information of
the word pair, which could capture richer syn-
tactic and semantic information. However, their
method is restricted to segment-level since their
segment embedding only consider the word infor-
mation within the segment. Besides, averaging
operation simply treats all the words in segment
equally. However, some words might carry more

1A word pair is limited to the dependency pair (h, m) in
our work since we use only first-order factorization. In previ-
ous work, word pair could be any pair with particular relation
(e.g., sibling pair (s, m) in Figure 1).
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Figure 3: Illustration for learning segment embed-
dings based on an extra forward LSTM network,
vh, vm and v1 to v7 indicate the output vectors
of Bidirectional LSTM for head word h, modifier
word m and other words in sentence, hh, hm and
h1 to h7 indicate the hidden vectors of the forward
LSTM corresponding to vh, vm and v1 to v7.

salient syntactic or semantic information and they
are expected to be given more attention.

A useful property of forward LSTM is that it
could keep previous useful information in their
memory cell by exploiting input, output and for-
get gates to decide how to utilize and update the
memory of previous information. Given an in-
put sequence v = (v1, . . . , vn), previous work
(Sutskever et al., 2014; Vinyals et al., 2014) of-
ten uses the last hidden vector hn of the forward
LSTM to represent the whole sequence. Each hid-
den vector ht (1 ≤ t ≤ n) can capture useful in-
formation before and including vt.

Inspired by this, we propose a method named
LSTM-Minus to learn segment embedding. We
utilize subtraction between LSTM hidden vectors
to represent segment’s information. As illustrated
in Figure 3, the segment infix can be described as
hm − h2, hm and h2 are hidden vector of the for-
ward LSTM network. The segment embedding of
suffix can also be obtained by subtraction between
the last LSTM hidden vector of the sequence (h7)
and the last LSTM hidden vector in infix (hm). For
prefix, we directly use the last LSTM hidden vec-
tor in prefix to represent it, which equals to sub-
tract a zero embedding. When no prefix or suffix
exists, the corresponding embedding is set to zero.

Specifically, we place an extra forward LSTM
layer on top of the Bidirectional LSTM layer and
learn segment embeddings using LSTM-Minus
based on this forward LSTM. LSTM-minus en-
ables our model to learn segment embeddings

from information both outside and inside the seg-
ments and thus enhances our model’s ability to ac-
cess to sentence-level information.

3.4 Hidden layer and output layer
As illustrated in Figure 2, we map all the feature
embeddings to a hidden layer. Following Pei et al.
(2015), we use direction-specific transformation to
model edge direction and tanh-cube as our activa-
tion function:

h = g
(∑

i

W d
hi
ai + bdh

)
(5)

where ai ∈ Rdai is the feature embedding, dai

indicates the dimensionality of feature embedding
ai, W d

hi
∈ Rdh×dai is weight matrices which cor-

responding to ai, dh indicates the dimensionality
of hidden layer vector, bdh ∈ Rdh is bias term. W d

hi

and bdh are bound with index d ∈ {0, 1} which in-
dicates the direction between head and modifier.

A output layer is finally added on the top of the
hidden layer for scoring dependency arcs:

ScoreC(x, c) = W d
o h+ bdo (6)

Where W d
o ∈ RL×dh is weight matrices, bdo ∈ RL

is bias term, ScoreC(x, c) ∈ RL is the output vec-
tor, L is the number of dependency types. Each di-
mension of the output vector is the score for each
kind of dependency type of head-modifier pair.

3.5 Features in our model
Previous neural network models (Pei et al., 2015;
Pei et al., 2014; Zheng et al., 2013) normally set
context window around a word and extract atomic
features within the window to represent the con-
textual information. However, context window
limits their ability in detecting long-distance in-
formation. Simply increasing the context window
size to get more contextual information puts their
model in the risk of overfitting and heavily slows
down the speed.

Unlike previous work, we apply Bidirectional
LSTM to capture long range contextual informa-
tion and eliminate the need for context windows,
avoiding the limit of the window-based feature
selection approach. Compared with Pei et al.
(2015), the cancellation of the context window al-
lows our model to use much fewer features. More-
over, by combining a word’s atomic features (word
form and POS tag) together, our model further de-
creases the number of features.
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Pei et al. (2015)

h−2.w, h−1.w, h.w, h1.w, h2.w
h−2.p, h−1.p, h.p, h1.p, h2.p
m−2.w, m−1.w, m.w, m1.w, m2.w
m−2.p, m−1.p, m.p, m1.p, m2.p
dis(h, m)

Our basic model vh, vm

dis(h, m)

Table 1: Atomic features in our basic model and
Pei’s 1st-order atomic model. w is short for word
and p for POS tag. h indicates head and m indi-
cates modifier. The subscript represents the rela-
tive position to the center word. dis(h,m) is the
distance between head and modifier. vh and vm in-
dicate the outputs of Bidirectional LSTM for head
word and modifier word.

Table 1 lists the atomic features used in 1st-
order atomic model of Pei et al. (2015) and atomic
features used in our basic model. Our basic model
only uses the outputs of Bidirectional LSTM for
head word and modifier word, and the distance be-
tween them as features. Distance features are en-
coded as randomly initialized embeddings. As we
can see, our basic model reduces the number of
atomic features to a minimum level, making our
model run with a faster speed. Based on our ba-
sic model, we incorporate additional segment in-
formation (prefix, infix and suffix), which further
improves the effect of our model.

4 Neural Training

In this section, we provide details about training
the neural network.

4.1 Max-Margin Training

We use the Max-Margin criterion to train our
model. Given a training instance (x(i), y(i)), we
use Y (x(i)) to denote the set of all possible depen-
dency trees and y(i) is the correct dependency tree
for sentence x(i). The goal of Max Margin train-
ing is to find parameters θ such that the difference
in score of the correct tree y(i) from an incorrect
tree ŷ ∈ Y (x(i)) is at least4(y(i), ŷ).

Score(x(i),y(i); θ)≥Score(x(i),ŷ; θ)+4(y(i),ŷ)

The structured margin loss4(y(i), ŷ) is defined
as:

4(y(i), ŷ) =
n∑
j

κ1{h(y(i), x
(i)
j ) 6= h(ŷ, x(i)

j )}

where n is the length of sentence x, h(y(i), x
(i)
j )

is the head (with type) for the j-th word of x(i) in
tree y(i) and κ is a discount parameter. The loss is
proportional to the number of word with an incor-
rect head and edge type in the proposed tree.

Given a training set with size m, The regular-
ized objective function is the loss function J(θ)
including a l2-norm term:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
||θ||2

li(θ) = max
ŷ∈Y (x(i))

(Score(x(i),ŷ; θ)+4(y(i),ŷ))

−Score(x(i),y(i); θ) (7)

By minimizing this objective, the score of the
correct tree is increased and score of the highest
scoring incorrect tree is decreased.

4.2 Optimization Algorithm
Parameter optimization is performed with the di-
agonal variant of AdaGrad (Duchi et al., 2011)
with minibatchs (batch size = 20) . The param-
eter update for the i-th parameter θt,i at time step
t is as follows:

θt,i = θt−1,i − α√∑t
τ=1 g

2
τ,i

gt,i (8)

where α is the initial learning rate (α = 0.2 in our
experiment) and gτ ∈ R|θi| is the subgradient at
time step τ for parameter θi.

To mitigate overfitting, dropout (Hinton et al.,
2012) is used to regularize our model. we apply
dropout on the hidden layer with 0.2 rate.

4.3 Model Initialization&Hyperparameters
The following hyper-parameters are used in all
experiments: word embedding size = 100, POS
tag embedding size = 100, hidden layer size =
200, LSTM hidden vector size = 100, Bidirec-
tional LSTM layers = 2, regularization parameter
λ = 10−4.

We initialized the parameters using pretrained
word embeddings. Following Dyer et al. (2015),
we use a variant of the skip n-gram model in-
troduced by Ling et al. (2015) on Gigaword
corpus (Graff et al., 2003). We also exper-
imented with randomly initialized embeddings,
where embeddings are uniformly sampled from
range [−0.3, 0.3]. All other parameters are uni-
formly sampled from range [−0.05, 0.05].

2310



Models UAS LAS Speed(sent/s)

First-order

MSTParser 91.60 90.39 20
1st-order atomic (Pei et al., 2015) 92.14 90.92 55
1st-order phrase (Pei et al., 2015) 92.59 91.37 26
Our basic model 93.09 92.03 61
Our basic model + segment 93.51 92.45 26

Second-order
MSTParser 92.30 91.06 14
2nd-order phrase (Pei et al., 2015) 93.29 92.13 10

Third-order (Koo and Collins, 2010) 93.04 N/A N/A
Fourth-order (Ma and Zhao, 2012) 93.4 N/A N/A

Unlimited-order
(Zhang and McDonald, 2012) 93.06 91.86 N/A
(Zhang et al., 2013) 93.50 92.41 N/A
(Zhang and McDonald, 2014) 93.57 92.48 N/A

Table 2: Comparison with previous graph-based models on Penn-YM.

5 Experiments

In this section, we present our experimental setup
and the main result of our work.

5.1 Experiments Setup

We conduct our experiments on the English Penn
Treebank (PTB) and the Chinese Penn Treebank
(CTB) datasets.

For English, we follow the standard splits of
PTB3. Using section 2-21 for training, section 22
as development set and 23 as test set. We con-
duct experiments on two different constituency-to-
dependency-converted Penn Treebank data sets.
The first one, Penn-YM, was created by the
Penn2Malt tool2 based on Yamada and Matsumoto
(2003) head rules. The second one, Penn-SD,
use Stanford Basic Dependencies (Marneffe et al.,
2006) and was converted by version 3.3.03 of
the Stanford parser. The Stanford POS Tagger
(Toutanova et al., 2003) with ten-way jackknifing
of the training data is used for assigning POS tags
(accuracy ≈ 97.2%).

For Chinese, we adopt the same split of CTB5
as described in (Zhang and Clark, 2008). Follow-
ing (Zhang and Clark, 2008; Dyer et al., 2015;
Chen and Manning, 2014), we use gold segmen-
tation and POS tags for the input.

5.2 Experiments Results

We first make comparisons with previous graph-
based models of different orders as shown in Ta-

2http://stp.lingfil.uu.se/nivre/
research/Penn2Malt.html

3http://nlp.stanford.edu/software/
lex-parser.shtml

ble 2. We use MSTParser 4 for conventional first-
order model (McDonald et al., 2005) and second-
order model (McDonald and Pereira, 2006). We
also include the results of conventional high-order
models (Koo and Collins, 2010; Ma and Zhao,
2012; Zhang and McDonald, 2012; Zhang et al.,
2013; Zhang and McDonald, 2014) and the neu-
ral network model of Pei et al. (2015). Different
from typical high-order models (Koo and Collins,
2010; Ma and Zhao, 2012), which need to extend
their decoding algorithm to score new types of
higher-order dependencies. Zhang and McDonald
(2012) generalized the Eisner algorithm to handle
arbitrary features over higher-order dependencies
and controlled complexity via approximate decod-
ing with cube pruning. They further improve their
work by using perceptron update strategies for in-
exact hypergraph search (Zhang et al., 2013) and
forcing inference to maintain both label and struc-
tural ambiguity through a secondary beam (Zhang
and McDonald, 2014).

Following previous work, UAS (unlabeled at-
tachment scores) and LAS (labeled attachment
scores) are calculated by excluding punctuation5.
The parsing speeds are measured on a workstation
with Intel Xeon 3.4GHz CPU and 32GB RAM
which is same to Pei et al. (2015). We measure
the parsing speeds of Pei et al. (2015) according to
their codes6 and parameters.

On accuracy, as shown in table 2, our

4http://sourceforge.net/projects/
mstparser

5Following previous work, a token is a punctuation if its
POS tag is {“ ” : , .}

6https://github.com/Williammed/
DeepParser
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Method
Penn-YM Penn-SD CTB5

UAS LAS UAS LAS UAS LAS
(Zhang and Nivre, 2011) 92.9 91.8 - - 86.0 84.4
(Bernd Bohnet, 2012) 93.39 92.38 - - 87.5 85.9
(Zhang and McDonald, 2014) 93.57 92.48 93.01 90.64 87.96 86.34
(Dyer et al., 2015) - - 93.1 90.9 87.2 85.7
(Weiss et al., 2015) - - 93.99 92.05 - -
Our basic model + segment 93.51 92.45 94.08 91.82 87.55 86.23

Table 3: Comparison with previous state-of-the-art models on Penn-YM, Penn-SD and CTB5.

basic model outperforms previous first-order
graph-based models by a substantial margin,
even outperforms Zhang and McDonald (2012)’s
unlimited-order model. Moreover, incorporating
segment information further improves our model’s
accuracy, which shows that segment embeddings
do capture richer contextual information. By using
segment embeddings, our improved model could
be comparable to high-order graph-based models7.

With regard to parsing speed, our model also
shows advantage of efficiency. Our model uses
only first-order factorization and requires O(n3)
time to decode. Third-order model requires O(n4)
time and fourth-order model requires O(n5) time.
By using approximate decoding, the unlimited-
order model of Zhang and McDonald (2012) re-
quires O(k ·log(k)·n3) time, where k is the beam
size. The computational cost of our model is the
lowest among graph-based models. Moreover, al-
though using LSTM requires much computational
cost. However, compared with Pei’s 1st-order
model, our model decreases the number of atomic
features from 21 to 3, this allows our model to re-
quire a much smaller matrix computation in the
scoring model, which cancels out the extra compu-
tation cost introduced by the LSTM computation.
Our basic model is the fastest among first-order
and second-order models. Incorporating segment
information slows down the parsing speed while it
is still slightly faster than conventional first-order
model. To compare with conventional high-order
models on practical parsing speed, we can make
an indirect comparison according to Zhang and
McDonald (2012). Conventional first-order model
is about 10 times faster than Zhang and McDon-

7Note that our model can’t be strictly comparable with
third-order model (Koo and Collins, 2010) and fourth-
order model (Ma and Zhao, 2012) since they are unlabeled
model. However, our model is comparable with all the three
unlimited-order models presented in (Zhang and McDon-
ald, 2012), (Zhang et al., 2013) and (Zhang and McDonald,
2014), since they all are labeled models as ours.

Method Peen-YM Peen-SD CTB5
Average 93.23 93.83 87.24
LSTM-Minus 93.51 94.08 87.55

Table 4: Model performance of different way to
learn segment embeddings.

ald (2012)’s unlimited-order model and about 40
times faster than conventional third-order model,
while our model is faster than conventional first-
order model. Our model should be much faster
than conventional high-order models.

We further compare our model with previous
state-of-the-art systems for English and Chinese.
Table 3 lists the performances of our model as well
as previous state-of-the-art systems on on Penn-
YM, Penn-SD and CTB5. We compare to conven-
tional state-of-the-art graph-based model (Zhang
and McDonald, 2014), conventional state-of-the-
art transition-based model using beam search
(Zhang and Nivre, 2011), transition-based model
combining graph-based approach (Bernd Bohnet,
2012) , transition-based neural network model us-
ing stack LSTM (Dyer et al., 2015) and transition-
based neural network model using beam search
(Weiss et al., 2015). Overall, our model achieves
competitive accuracy on all three datasets. Al-
though our model is slightly lower in accuarcy
than unlimited-order double beam model (Zhang
and McDonald, 2014) on Penn-YM and CTB5,
our model outperforms their model on Penn-SD.
It seems that our model performs better on data
sets with larger label sets, given the number of la-
bels used in Penn-SD data set is almost four times
more than Penn-YM and CTB5 data sets.

To show the effectiveness of our segment em-
bedding method LSTM-Minus, we compare with
averaging method proposed by Pei et al. (2015).
We get segment embeddings by averaging the out-
put vectors of Bidirectional LSTM in segments.
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Figure 4: Error rates of different distance between
head and modifier on Peen-YM.

To make comparison as fair as possible, we let two
models have almost the same number parameters.
Table 4 lists the UAS of two methods on test set.
As we can see, LSTM-Minus shows better per-
formance because our method further incorporates
more sentence-level information into our model.

5.3 Impact of Network Structure

In this part, we investigate the impact of the com-
ponents of our approach.

LSTM Recurrent Network
To evaluate the impact of LSTM, we make er-
ror analysis on Penn-YM. We compare our model
with Pei et al. (2015) on error rates of different
distance between head and modifier.

As we can see, the five models do not show
much difference for short dependencies whose dis-
tance less than three. For long dependencies, both
our two models show better performance com-
pared with the 1st-order model of Pei et al. (2015),
which proves that LSTM can effectively capture
long-distance dependencies. Moreover, our mod-
els and Pei’s 2nd-order phrase model both im-
prove accuracy on long dependencies compared
with Pei’s 1st-order model, which is in line with
our expectations. Using LSTM shows the same
effect as high-order factorization strategy. Com-
pared with 2nd-order phrase model of Pei et al.
(2015), our basic model occasionally performs
worse in recovering long distant dependencies.
However, this should not be a surprise since higher
order models are also motivated to recover long-
distance dependencies. Nevertheless, with the in-
troduction of LSTM-minus segment embeddings,
our model consistently outperforms the 2nd-order

phrase model of Pei et al. (2015) in accuracies of
all long dependencies. We carried out significance
test on the difference between our and Pei’s mod-
els. Our basic model performs significantly better
than all 1st-order models of Pei et al. (2015) (t-
test with p<0.001) and our basic+segment model
(still a 1st-order model) performs significantly bet-
ter than their 2nd-order phrase model (t-test with
p<0.001) in recovering long-distance dependen-
cies.

Initialization of pre-trained word embeddings
We further analyze the influence of using pre-
trained word embeddings for initialization. with-
out using pretrained word embeddings, our im-
proved model achieves 92.94% UAS / 91.83%
LAS on Penn-YM, 93.46% UAS / 91.19% LAS
on Penn-SD and 86.5% UAS / 85.0% LAS on
CTB5. Using pre-trained word embeddings can
obtain around 0.5%∼1.0% improvement.

6 Related work

Dependency parsing has gained widespread inter-
est in the computational linguistics community.
There are a lot of approaches to solve it. Among
them, we will mainly focus on graph-based de-
pendency parsing model here. Dependency tree
factorization and decoding algorithm are neces-
sary for graph-based models. McDonald et al.
(2005) proposed the first-order model which de-
composes a dependency tree into its individual
edges and use a effective dynamic programming
algorithm (Eisner, 2000) to decode. Based on first-
order model, higher-order models(McDonald and
Pereira, 2006; Carreras, 2007; Koo and Collins,
2010; Ma and Zhao, 2012) factor a dependency
tree into a set of high-order dependencies which
bring interactions between head, modifier, siblings
and (or) grandparent into their model. However,
for above models, scoring new types of higher-
order dependencies requires extensions of the un-
derlying decoding algorithm, which also requires
higher computational cost. Unlike above models,
unlimited-order models (Zhang and McDonald,
2012; Zhang et al., 2013; Zhang and McDonald,
2014) could handle arbitrary features over higher-
order dependencies by generalizing the Eisner al-
gorithm.

In contrast to conventional methods, neural net-
work model shows their ability to reduce the effort
in feature engineering. Pei et al. (2015) proposed
a model to automatically learn high-order feature
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combinations via a novel activation function, al-
lowing their model to use a set of atomic features
instead of millions of hand-crafted features.

Different from previous work, which is sensi-
tive to local state and accesses to larger context by
higher-order factorization. Our model makes pars-
ing decisions on a global perspective with first-
order factorization, avoiding the expensive com-
putational cost introduced by high-order factoriza-
tion.

LSTM network is heavily utilized in our model.
LSTM network has already been explored in
transition-based dependency parsing. Dyer et
al. (2015) presented stack LSTMs with push
and pop operations and used them to imple-
ment a state-of-the-art transition-based depen-
dency parser. Ballesteros et al. (2015) replaced
lookup-based word representations with character-
based representations obtained by Bidirectional
LSTM in the continuous-state parser of Dyer et
al. (2015), which was proved experimentally to be
useful for morphologically rich languages.

7 Conclusion

In this paper, we propose an LSTM-based neural
network model for graph-based dependency pars-
ing. Utilizing Bidirectional LSTM and segment
embeddings learned by LSTM-Minus allows our
model access to sentence-level information, mak-
ing our model more accurate in recovering long-
distance dependencies with only first-order factor-
ization. Experiments on PTB and CTB show that
our model could be competitive with conventional
high-order models with a faster speed.
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