
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1445–1455,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Commonsense Knowledge Base Completion

Xiang Li∗‡ Aynaz Taheri† Lifu Tu‡ Kevin Gimpel‡

∗University of Chicago, Chicago, IL, 60637, USA
†University of Illinois at Chicago, Chicago, IL, 60607, USA

‡Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

lix1@uchicago.edu, ataher2@uic.edu, {lifu,kgimpel}@ttic.edu

Abstract

We enrich a curated resource of common-
sense knowledge by formulating the prob-
lem as one of knowledge base comple-
tion (KBC). Most work in KBC focuses
on knowledge bases like Freebase that re-
late entities drawn from a fixed set. How-
ever, the tuples in ConceptNet (Speer and
Havasi, 2012) define relations between an
unbounded set of phrases. We develop
neural network models for scoring tuples
on arbitrary phrases and evaluate them by
their ability to distinguish true held-out
tuples from false ones. We find strong
performance from a bilinear model using
a simple additive architecture to model
phrases. We manually evaluate our trained
model’s ability to assign quality scores to
novel tuples, finding that it can propose tu-
ples at the same quality level as medium-
confidence tuples from ConceptNet.

1 Introduction

Many ambiguities in natural language process-
ing (NLP) can be resolved by using knowledge
of various forms. Our focus is on the type of
knowledge that is often referred to as “common-
sense” or “background” knowledge. This knowl-
edge is rarely expressed explicitly in textual cor-
pora (Gordon and Van Durme, 2013). Some re-
searchers have developed techniques for inferring
this knowledge from patterns in raw text (Gor-
don, 2014; Angeli and Manning, 2014), while oth-
ers have developed curated resources of common-
sense knowledge via manual annotation (Lenat
and Guha, 1989; Speer and Havasi, 2012) or
games with a purpose (von Ahn et al., 2006).

Curated resources typically have high preci-
sion but suffer from a lack of coverage. For cer-

relation right term conf.
MOTIVATEDBYGOAL relax 3.3

USEDFOR relaxation 2.6
MOTIVATEDBYGOAL your muscle be sore 2.3
HASPREREQUISITE go to spa 2.0

CAUSES get pruny skin 1.6
HASPREREQUISITE change into swim suit 1.6

Table 1: ConceptNet tuples with left term “soak in
hotspring”; final column is confidence score.

tain resources, researchers have developed meth-
ods to automatically increase coverage by infer-
ring missing entries. These methods are com-
monly categorized under the heading of knowl-
edge base completion (KBC). KBC is widely-
studied for knowledge bases like Freebase (Bol-
lacker et al., 2008) which contain large sets of enti-
ties and relations among them (Mintz et al., 2009;
Nickel et al., 2011; Riedel et al., 2013; West et
al., 2014), including recent work using neural net-
works (Socher et al., 2013; Yang et al., 2014).

We improve the coverage of commonsense re-
sources by formulating the problem as one of
knowledge base completion. We focus on a par-
ticular curated commonsense resource called Con-
ceptNet (Speer and Havasi, 2012). ConceptNet
contains tuples consisting of a left term, a rela-
tion, and a right term. The relations come from
a fixed set. While terms in Freebase tuples are en-
tities, ConceptNet terms can be arbitrary phrases.
Some examples are shown in Table 1. An NLP ap-
plication may wish to query ConceptNet for infor-
mation about soaking in a hotspring, but may use
different words from those contained in the Con-
ceptNet tuples. Our goal is to do on-the-fly knowl-
edge base completion so that queries can be an-
swered robustly without requiring the precise lin-
guistic forms contained in ConceptNet.

To do this, we develop neural network mod-
els to embed terms and provide scores to arbi-

1445



trary tuples. We train them on ConceptNet tuples
and evaluate them by their ability to distinguish
true and false held-out tuples. We consider sev-
eral functional architectures, comparing two com-
position functions for embedding terms and two
functions for converting term embeddings into tu-
ple scores. We find that all architectures are able
to outperform several baselines and reach similar
performance on classifying held-out tuples.

We also experiment with several training ob-
jectives for KBC, finding that a simple cross en-
tropy objective with randomly-generated negative
examples performs best while also being fastest.
We manually evaluate our trained model’s abil-
ity to assign quality scores to novel tuples, find-
ing that it can propose tuples at the same qual-
ity level as medium-confidence tuples from Con-
ceptNet. We release all of our resources, includ-
ing our ConceptNet KBC task data, large sets of
randomly-generated tuples scored with our model,
training code, and pretrained models with code for
calculating the confidence of novel tuples.1

2 Related Work

Our methods are similar to past work on
KBC (Mintz et al., 2009; Nickel et al., 2011; Lao
et al., 2011; Nickel et al., 2012; Riedel et al., 2013;
Gardner et al., 2014; West et al., 2014), particu-
larly methods based on distributed representations
and neural networks (Socher et al., 2013; Bordes
et al., 2013; Bordes et al., 2014a; Bordes et al.,
2014b; Yang et al., 2014; Neelakantan et al., 2015;
Gu et al., 2015; Toutanova et al., 2015). Most prior
work predicts new relational links between terms
drawn from a fixed set. In a notable exception,
Neelakantan and Chang (2015) add new entities
to KBs using external resources along with prop-
erties of the KB itself. Relatedly, Yao et al. (2013)
induce an unbounded set of entity categories and
associate them with entities in KBs.

Several researchers have developed techniques
for discovering commonsense knowledge from
text (Gordon et al., 2010; Gordon and Schu-
bert, 2012; Gordon, 2014; Angeli and Manning,
2014). Open information extraction systems like
REVERB (Fader et al., 2011) and NELL (Carl-
son et al., 2010) find tuples with arbitrary terms
and relations from raw text. In contrast, we start
with a set of commonsense facts to use for train-

1Available at http://ttic.uchicago.edu/
˜kgimpel/commonsense.html.

ing, though our methods could be applied to the
output of these or other extraction systems.

Our goals are similar to those of the Analogy-
Space method (Speer et al., 2008), which uses ma-
trix factorization to improve coverage of Concept-
Net. However, AnalogySpace can only return a
confidence score for a pair of terms drawn from
the training set. Our models can assign scores to
tuples that contain novel terms (as long as they
consist of words in our vocabulary).

Though we use ConceptNet, similar techniques
can be applied to other curated resources like
WordNet (Miller, 1995) and FrameNet (Baker et
al., 1998). For WordNet, tuples can contain lexi-
cal entries that are linked via synset relations (e.g.,
“hypernym”). WordNet contains many multi-
word entries (e.g., “cold sweat”), which can be
modeled compositionally by our term models; al-
ternatively, entire glosses could be used as terms.
To expand frame relationships in FrameNet, tuples
can draw relations from the frame relation types
(e.g., “is causative of”) and terms can be frame
lexical units or their definitions.

Several researchers have used commonsense
knowledge to improve language technologies, in-
cluding sentiment analysis (Cambria et al., 2012;
Agarwal et al., 2015), semantic similarity (Caro et
al., 2015), and speech recognition (Lieberman et
al., 2005). Our hope is that our models can en-
able many other NLP applications to benefit from
commonsense knowledge.

Our work is most similar to that of Angeli and
Manning (2013). They also developed methods
to assess the plausibility of new facts based on
a training set of facts, considering commonsense
data from ConceptNet in one of their settings.
Like us, they can handle an unbounded set of terms
by using (simple) composition functions for novel
terms, which is rare among work in KBC. One key
difference is that their best method requires iterat-
ing over the KB at test time, which can be com-
putationally expensive with large KBs. Our mod-
els do not require iterating over the training set.
We compare to several baselines inspired by their
work, and we additionally evaluate our model’s
ability to score novel tuples derived from both
ConceptNet and Wikipedia.

3 Models

Our goal is to represent commonsense knowledge
such that it can be used for NLP tasks. We as-

1446



sume this knowledge is given in the form of tuples
〈t1, R, t2〉, where t1 is the left term, t2 is the right
term, and R is a (directed) relation that exists be-
tween the terms. Examples are shown in Table 1.2

Given a set of tuples, our goal is to develop a
parametric model that can provide a confidence
score for new, unseen tuples. That is, we want
to design and train models that define a function
score(t1, R, t2) that provides a quality score for
an arbitrary tuple 〈t1, R, t2〉. These models will be
evaluated by their ability to distinguish true held-
out tuples from false ones.

We describe two model families for scoring tu-
ples. We assume that we have embeddings for
words and define models that use these word em-
beddings to score tuples. So our models are lim-
ited to tuples in which terms consist of words
in the word embedding vocabulary, though future
work could consider character-based architectures
for open-vocabulary modeling (Huang et al., 2013;
Ling et al., 2015).

3.1 Bilinear Models

We first consider bilinear models, since they have
been found useful for KBC in past work (Nickel
et al., 2011; Jenatton et al., 2012; Garcı́a-Durán et
al., 2014; Yang et al., 2014). A bilinear model has
the following form for a tuple 〈t1, R, t2〉:

v>1 MR v2

where v1 ∈ Rr is the (column) vector representing
t1, v2 ∈ Rr is the vector for t2, and MR ∈ Rr×r

is the parameter matrix for relation R.
To convert terms t1 and t2 into term vectors v1

and v2, we consider two possibilities: word aver-
aging and a bidirectional long short-term memory
(LSTM) recurrent neural network (Hochreiter and
Schmidhuber, 1997). This provides us with two
models: Bilinear AVG and Bilinear LSTM.

One downside of this architecture is that as the
length of the term vectors grows, the size of the re-
lation matrices grows quadratically. This can slow
down training while requiring more data to learn
the large numbers of parameters in the matrices.
To address this, we include an additional nonlin-
ear transformation of each term:

ui = a(W (B)vi + b(B))

2These examples are from the Open Mind Common Sense
(OMCS) part of ConceptNet version 5 (Speer and Havasi,
2012). In our experiments below, we only use OMCS tuples.

where a is a nonlinear activation function (tuned
among ReLU, tanh, and logistic sigmoid) and
where we have introduced additional parameters
W (B) and b(B). This gives us the following model:

scorebilinear(t1, R, t2) = u>1 MR u2

When using the LSTM, we tune the decision about
how to produce the final term vectors to pass to the
bilinear model, including possibly using the final
vectors from each direction and the output of max
or average pooling. We use the same LSTM pa-
rameters for each term.

3.2 Deep Neural Network Models

Our second family of models is based on deep neu-
ral networks (DNNs). While bilinear models have
been shown to work well for KBC, their functional
form makes restrictions about how terms can inter-
act. DNNs make no such restrictions.

As above, we define two models, one based on
using word averaging for the term model (DNN
AVG) and one based on LSTMs (DNN LSTM).
For the DNN AVG model, we obtain the term vec-
tors v1 and v2 by averaging word vectors in the re-
spective terms. We then concatenate v1, v2, and a
relation vector vR to form the input of the DNN,
denoted vin . The DNN uses a single hidden layer:

u = a(W (D1)vin + b(D1))

scoreDNN(t1, R, t2) = W (D2)u+ b(D2) (1)

where a is again a (tuned) nonlinear activation
function. The size of the hidden vector u is
tuned, but the output dimensionality (the numbers
of rows in W (D2) and b(D2)) is fixed to 1. We do
not use a nonlinear activation for the final layer
since our goal is to output a scalar score.

For the DNN LSTM model, we first create a
single vector for the two terms using an LSTM.
That is, we concatenate t1, a delimiter token, and
t2 to create a single word sequence. We use a bidi-
rectional LSTM to convert this word sequence to
a vector, again possibly using pooling (the deci-
sion is tuned; details below). We concatenate the
output of this bidirectional LSTM with the rela-
tion vector vr to create the DNN input vector vin ,
then use Eq. 1 to obtain a score. We found this
to work better than separately using an LSTM on
each term. We can not try this for the Bilinear
LSTM model since its functional form separates
the two term vectors.

1447



The relation vectors vR are learned in addition
to the DNN parameters W (D1), W (D2), b(D1),
b(D2), and the LSTM parameters (in the case of
the DNN LSTM model). Also, word embedding
parameters are updated in all settings.

4 Training

Given a tuple training set T , we train our models
using two different loss functions: hinge loss and
a binary cross entropy function. Both rely on ways
of generating negative examples (Section 4.3).
Both also use regularization (Section 4.4).

4.1 Hinge Loss
Given a training tuple τ = 〈t1, R, t2〉, the hinge
loss seeks to make the score of τ larger than the
score of negative examples by a margin of at least
γ. This corresponds to minimizing the following
loss, summed over all examples τ ∈ T :

losshinge(τ) =
max{0, γ − score(τ) + score(τneg(t1))}
+ max{0, γ − score(τ) + score(τneg(R))}
+ max{0, γ − score(τ) + score(τneg(t2))}

where τneg(t1) is the negative example obtained by
replacing t1 in τ with some other t1, and τneg(R)

and τneg(t2) are defined analogously for the rela-
tion and right term. We describe how we generate
these negative examples in Section 4.3 below.

4.2 Binary Cross Entropy
Though we only have true tuples in our training
set, we can create a binary classification problem
by assigning a label of 1 to training tuples and a
label of 0 to negative examples. Then we can min-
imize cross entropy (CE) as is common when us-
ing neural networks for classification. To generate
negative examples, we consider the methods de-
scribed in Section 4.3 below. We also need to con-
vert our models’ scores into probabilities, which
we do by using a logistic sigmoid σ on score. We
denote the label as `, where the label is 1 if the tu-
ple is from the training set and 0 if it is a negative
example. Then the loss is defined:

lossCE(τ, `) =
−` log σ(score(τ))− (1−`) log(1− σ(score(τ)))

When using this loss, we generate three negative
examples for each positive example (one for swap-
ping each component of the tuple, as in the hinge

loss). For a mini-batch of size β, there are β pos-
itive examples and 3β negative examples used for
training. The loss is summed over these 4β exam-
ples yielded by each mini-batch.

4.3 Negative Examples

For the loss functions above, we need ways of au-
tomatically generating negative examples. For ef-
ficiency, we consider using the current mini-batch
only, as our models are trained using optimiza-
tion on mini-batches. We consider the follow-
ing three strategies to construct negative examples.
Each strategy constructs three negative examples
for each positive example τ : one by replacing t1,
one by replacing R, and one by replacing t2.

Random sampling. We create the three negative
examples for τ by replacing each component with
its counterpart in a randomly-chosen tuple in the
same mini-batch.

Max sampling. We create the three negative ex-
amples for τ by replacing each component with
its counterpart in some other tuple in the mini-
batch, choosing the substitution to maximize the
score of the resulting negative example. For ex-
ample, when swapping out t1 in τ = 〈t1, R, t2〉,
we choose the substitution t′1 as follows:

t′1 = argmax
t:〈t,R′,t′2〉∈µ\τ

score(t, R, t2)

where µ is the current mini-batch of tuples. We
perform the analogous procedure for R and t2.

Mix sampling. This is a mixture of the above,
using random sampling 50% of the time and max
sampling the remaining 50% of the time.

4.4 Regularization

We use L2 regularization. For the DNN models,
we add the penalty term λ‖θ‖2 to the losses, where
λ is the regularization coefficient and θ contains all
other parameters. However, for the bilinear mod-
els we regularize the relation matrices MR toward
the identity matrix instead of all zeroes, adding the
following to the loss:

λ1‖θ‖2 + λ2

∑
R

‖MR − Ir‖22

where Ir is the r × r identity matrix, the summa-
tion is performed over all relations R, and θ repre-
sents all other parameters.

1448



5 Experimental Setup

We now evaluate our tuple models. We measure
whether our models can distinguish true and false
tuples by training a model on a large set of tuples
and testing on a held-out set.

5.1 Task Design

The tuples are obtained from the Open Mind Com-
mon Sense (OMCS) entries in the ConceptNet
5 dataset (Speer and Havasi, 2012). They are
sorted by a confidence score. The most confident
1200 tuples were reserved for creating our test set
(TEST). The next most confident 600 tuples (i.e.,
those numbered 1201–1800) were used to build a
development set (DEV1) and the next most confi-
dent 600 (those numbered 1801–2400) were used
to build a second development set (DEV2).

For each set S (S ∈ {DEV1, DEV2, TEST}), for
each tuple τ ∈ S, we created a negative example
and added it to S. So each set doubled in size. To
create a negative example from τ ∈ S, we ran-
domly swapped one of the components of τ with
another tuple τ ′ ∈ S. One third of the time we
swapped t1 in τ for t1 in τ ′, one third of the time
we swapped their R’s, and the remaining third of
the time we swapped their t2’s. Thus, distinguish-
ing positive and negative examples in this task is
similar to the objectives optimized during training.

Each of DEV1 and DEV2 has 1200 tuples (600
positive examples and 600 negative examples),
while TEST has 2400 tuples (1200 positive and
1200 negative). For training data, we selected
100,000 tuples from the remaining tuples (num-
bered 2401 and beyond).

The task is to separate the true and false tuples
in our test set. That is, the labels are 1 for true
tuples and 0 for false tuples. Given a model for
scoring tuples, we select a threshold by maximiz-
ing accuracy on DEV1 and report accuracies on
DEV2. This is akin to learning the bias feature
weight (using DEV1) of a linear classifier that uses
our model’s score as its only feature. We tuned
several choices—including word embeddings, hy-
perparameter values, and training objectives—on
DEV2 and report final performance on TEST. One
annotator (a native English speaker) attempted the
same classification task on a sample of 100 tu-
ples from DEV2 and achieved an accuracy of 95%.
We release these datasets to the community so that
others can work on this same task.

5.2 Word Embeddings

Our tuple models rely on initial word embeddings.
To help our models better capture the common-
sense knowledge in ConceptNet, we generated
word embedding training data using the OMCS
sentences underlying our training tuples (we ex-
cluded the top 2400 tuples which were used for
creating DEV1, DEV2, and TEST). We created
training data by merging the information in the
tuples and their OMCS sentences. Our goal was
to combine the grammatical context of the OMCS
sentences with the words in the actual terms, so as
to ensure that we learn embeddings for the words
in the terms. We also insert the relations into the
OMCS sentences so that we can learn embeddings
for the relations themselves.

We describe the procedure by example and also
release our generated data for ease of replication.
The tuple 〈soak in a hotspring, CAUSES, get pruny
skin〉 was automatically extracted/normalized (by
the ConceptNet developers) from the OMCS sen-
tence “The effect of [soaking in a hotspring] is
[getting pruny skin]” where brackets surround
terms. We replace the bracketed portions with
their corresponding terms and insert the relation
between them: “The effect of soak in a hotspring
CAUSES get pruny skin”. We do this for all train-
ing tuples.3

We used the word2vec (Mikolov et al., 2013)
toolkit to train skip-gram word embeddings on
this data. We trained for 20 iterations, using a
dimensionality of 200 and a window size of 5.
We refer to these as “CN-trained” embeddings for
the remainder of this paper. Similar approaches
have been used to learn embeddings for partic-
ular downstream tasks, e.g., dependency pars-
ing (Bansal et al., 2014). We use our CN-trained
embeddings within baseline methods and also pro-
vide the initial word embeddings of our models.
For all of our models, we update the initial word
embeddings during learning.

In the baseline methods described below, we
compare our CN-trained embeddings to pretrained
word embeddings. We use the GloVe (Penning-
ton et al., 2014) embeddings trained on 840 bil-
lion tokens of Common Crawl web text and the
PARAGRAM-SimLex embeddings of Wieting et al.
(2015), which were tuned to have strong perfor-
mance on the SimLex-999 task (Hill et al., 2015).

3For reversed relations, indicated by an asterisk in the
OMCS sentences, we swap t1 and t2 in the tuple.

1449



5.3 Baselines
We consider three baselines inspired by those of
Angeli and Manning (2013):

• Similar Fact Count (Count): For each tuple
τ = 〈t1, R, t2〉 in the evaluation set, we count
the number of similar tuples in the training set.
A training tuple τ ′ = 〈t′1, R′, t′2〉 is considered
“similar” to τ if R = R′, one of the terms
matches exactly, and the other term has the same
head word. That is, (R = R′) ∧ (t1 = t′1) ∧
(head(t2) = head(t′2)), or (R = R′) ∧ (t2 =
t′2) ∧ (head(t1) = head(t′1)). The head word
for a term was obtained by running the Stanford
Parser (Klein and Manning, 2003) on the term.
This baseline does not use word embeddings.
• Argument Similarity (ArgSim): This baseline

computes the cosine similarity of the vectors for
t1 and t2, ignoring the relation. Vectors for t1
and t2 are obtained by word averaging.
• Max Similarity (MaxSim): For tuple τ in an

evaluation set, this baseline outputs the maxi-
mum similarity between τ and any tuple in the
training set. The similarity is computed by con-
catenating the vectors for t1, R, and t2, then
computing cosine similarity. As in ArgSim,
we obtain vectors for terms by averaging their
words. We only consider R when using our
CN-trained embeddings since they contain em-
beddings for the relations. When using GloVe
and PARAGRAM embeddings for this baseline,
we simply use the two term vectors (still con-
structed via averaging the words in each term).

We chose these baselines because they can all han-
dle unbounded term sets but differ in their other
requirements. ArgSim and MaxSim use word
embeddings while Count does not. Count and
MaxSim require iterating over the training set dur-
ing inference while ArgSim does not.

For each baseline, we tuned a threshold on
DEV1 to maximize classification accuracy then
tested on DEV2 and TEST.

5.4 Training and Tuning
We used AdaGrad (Duchi et al., 2011) for opti-
mization, training for 20 epochs through the train-
ing tuples. We separately tuned hyperparameters
for each model and training objective. We tuned
the following hyperparameters: the relation ma-
trix size r for the bilinear models (also the length
of the transformed term vectors, denoted u1 and

u2 above), the activation a, the hidden layer size g
for the DNN models, the relation vector length d
for the DNN models, the LSTM hidden vector size
h for models with LSTMs, the mini-batch size β,
the regularization parameters λ, λ1, and λ2, and
the AdaGrad learning rate α.

All tuning used early stopping: periodically
during training, we used the current model to
find the optimal threshold on DEV1 and evaluated
on DEV2. Due to computational limitations, we
were unable to perform thorough grid searches for
all hyperparameters. We combined limited grid
searches with greedy hyperparameter tuning based
on regions of values that were the most promising.

For the Bilinear LSTM and DNN LSTM, we
did hyperparameter tuning by training on the full
training set of 100,000 tuples for 20 epochs, com-
puting DEV2 accuracy once per epoch. For the av-
eraging models, we tuned by training on a subset
of 1000 tuples with β = 200 for 20 epochs; the
averaging models showed more stable results and
did not require the full training set for tuning. Be-
low are the tuned hyperparameter values:

• Bilinear AVG: for CE: r = 150, a = tanh,
β = 200, α = 0.01, λ1 = λ2 = 0.001. Hinge
loss: same values as above except α = 0.005.

• Bilinear LSTM: for CE: r = 50, a = ReLU,
h = 200, β = 800, α = 0.02, and λ1 = λ2 =
0.00001. To obtain vectors from the term bidi-
rectional LSTMs, we used max pooling. For
hinge loss: r = 50, a = tanh, h = 200,
β = 400, α = 0.007, λ1 = 0.00001, and
λ2 = 0.01. To obtain vectors from the term
bidirectional LSTMs, we used the concatena-
tion of average pooling and final hidden vectors
in each direction. For each sampling method
and loss function, α was tuned by grid search
with the others fixed to the above values.

• DNN AVG: for both losses: a = ReLU, d =
200, g = 1000, β = 600, α = 0.01, λ = 0.001.

• DNN LSTM: for both losses: a = ReLU, d =
200, bidirectional LSTM hidden layer size h =
200, hidden layer dimension g = 800, β = 400,
α = 0.005, and λ = 0.00005. To get vectors
from the term LSTMs, we used max pooling.

6 Results

Word Embedding Comparison. We first evalu-
ate the quality of our word embeddings trained on
the ConceptNet training tuples. Table 2 compares

1450



GloVe PARAGRAM CN-trained
ArgSim 68 69 73
MaxSim 73 70 82

Table 2: Accuracies (%) on DEV2 of two base-
lines using three different sets of word embed-
dings. Our ConceptNet-trained embeddings out-
perform GloVe and PARAGRAM embeddings.

DNN AVG DNN LSTM
CE hinge CE hinge

random 124 230 710 783
mix 20755 21045 25928 26380
max 39338 41867 49583 49427

Table 4: Loss function runtime comparison (sec-
onds per epoch) of the DNN models.

accuracies on DEV2 for the two baselines that
use embeddings: ArgSim and MaxSim. We find
that pretrained GloVe and PARAGRAM embed-
dings perform comparably, but both are outper-
formed by our ConceptNet-trained embeddings.
We use the latter for the remaining experiments in
this paper.

Training Comparison. Table 3 shows the re-
sults of our models with the two loss functions and
three sampling strategies. We find that the binary
cross entropy loss with random sampling performs
best across models. We note that our conclusion
differs from some prior work that found max or
mix sampling to be better than random (Wieting
et al., 2016). We suspect that this difference may
stem from characteristics of the ConceptNet train-
ing data. It may often be the case that the max-
scoring negative example in the mini-batch is ac-
tually a true fact, due to the generic nature of the
facts expressed.

Table 4 shows a runtime comparison of the
losses and sampling strategies.4 We find random
sampling to be orders of magnitude faster than the
others while also performing the best.

Final Results. Our final results are shown in Ta-
ble 5. We show the DEV2 and TEST accuracies for
our baselines and for the best configuration (tuned
on DEV2) for each model. All models outperform
all baselines handily. Our models perform simi-
larly, with the Bilinear models and the DNN AVG
model all exceeding 90% on both DEV2 and TEST.

We note that the AVG models performed
strongly compared to those that used LSTMs for

4These experiments were performed using 2 threads on a
3.40-GHz Intel Core i7-3770 CPU with 8 cores.

DEV2 TEST
Count 75.4 79.0

ArgSim 72.9 74.2
MaxSim 81.9 83.5

Bilinear AVG 90.3 91.7
Bilinear LSTM 90.8 90.7

DNN AVG 91.3 92.0
DNN LSTM 88.1 89.2

Bilinear AVG + data 91.8 92.5
human ∼95.0 —

Table 5: Accuracies (%) of baselines and final
model configurations on DEV2 and TEST. “+ data”
uses enlarged training set of size 300,000, and then
doubles this training set by including tuples with
conjugated forms; see text for details. Human per-
formance on DEV2 was estimated from a sample
of size 100.

modeling terms. We suggest two reasons for this.
The first is that most terms are short, with an aver-
age term length of 2.3 words in our training tu-
ples. An LSTM may not be needed to capture
long-distance properties. The second reason may
be due to hyperparameter tuning. Recall that we
used a greedy search for optimal hyperparameter
values; we found that models with LSTMs take
more time per epoch, more epochs to converge,
and exhibit more hyperparameter sensitivity com-
pared to models based on averaging. This may
have contributed to inferior hyperparameter values
for the LSTM models.

We also trained the Bilinear AVG model on a
larger training set (row labeled “Bilinear AVG +
data”). We note that the ConceptNet tuples typ-
ically contain unconjugated forms; we sought to
use both conjugated and unconjugated words. We
began with a larger training set of 300,000 tuples
from ConceptNet, then augmented them to include
conjugated word forms as in the following exam-
ple. For the tuple 〈soak in a hotspring, CAUSES,
get pruny skin〉 obtained from the OMCS sentence
“The effect of [soaking in a hotspring] is [get-
ting pruny skin]”, we generated an additional tuple
〈soaking in a hotspring, CAUSES, getting pruny
skin〉. We thus created twice as many training tu-
ples. The results with this larger training set im-
proved from 91.7 to 92.5 on the test set. We re-
lease this final model to the research community.

We note that the strongest baseline, MaxSim, is
a nonparametric model that requires iterating over
all training tuples to provide a score to new tuples.
This is a serious bottleneck for use in NLP appli-
cations that may need to issue large numbers of

1451



Bilinear AVG Bilinear LSTM DNN AVG DNN LSTM
CE hinge CE hinge CE hinge CE hinge

random 90 84 91 83 91 87 88 57
mix 90 83 90 87 90 78 82 63
max 86 75 65 66 61 52 56 52

Table 3: Accuracies (%) on DEV2 of models trained with two loss functions (cross entropy (CE) and
hinge) and three sampling strategies (random, mix, and max). The best accuracy for each model is shown
in bold. Cross entropy with random sampling is best across models and is also fastest (see Table 4).

queries. Our models are parametric models that
can compress a large training set into a fixed num-
ber of parameters. This makes them extremely fast
for answering queries, particularly the AVG mod-
els, enabling use in downstream NLP applications.

7 Generating and Scoring Novel Tuples

We now measure our model’s ability to score novel
tuples generated automatically from ConceptNet
and Wikipedia. We first describe simple pro-
cedures to generate candidate tuples from these
two datasets. We then score the tuples using our
MaxSim baseline and the trained Bilinear AVG
model.5 We evaluate the highly-scoring tuples us-
ing a small-scale manual evaluation.

The DNN AVG and Bilinear AVG models
reached the highest TEST accuracies in our evalua-
tion, though in preliminary experiments we found
that the Bilinear AVG model appeared to perform
better when scoring the novel tuples described be-
low. We suspect this is because the DNN func-
tion class has more flexibility than the bilinear one.
When scoring novel tuples, many of which may be
highly noisy, it appears that the constrained struc-
ture of the Bilinear AVG model makes it more ro-
bust to the noise.

7.1 Generating Tuples From ConceptNet
In order to get new tuples, we automatically mod-
ify existing ConceptNet tuples. We take an exist-
ing tuple and randomly change one of the three
fields (t1, t2, orR), ensuring that the result is not a
tuple existing in ConceptNet. We then score these
tuples using MaxSim and the Bilinear AVG model
and analyze the results.

7.2 Generating Tuples from Wikipedia
We also propose a simple method to extract candi-
date tuples from raw text. We first run the Stan-
ford part-of-speech (POS) tagger (Toutanova et

5For the results in this section, we used the Bilinear AVG
model that achieved 91.7 on TEST rather than the one aug-
mented with additional data.

t1, R, t2 score
bus, ISA, public transportation 0.95

bus, ISA, public transit 0.90
bus, ISA, mass transit 0.79

bus, ATLOCATION, downtown area 0.98
bus, ATLOCATION, subway station 0.98

bus, ATLOCATION, city center 0.94
bus, CAPABLEOF, low cost 0.72

bus, CAPABLEOF, local service 0.65
bus, CAPABLEOF, train service 0.63

Table 6: Top Wikipedia tuples for 3 relations with
t1 = bus, scored by Bilinear AVG model.

al., 2003) on the terms in our ConceptNet training
tuples. We enumerate the 50 most frequent term
pair tag sequences for each relation. We do lim-
ited manual filtering of the frequent tag sequences,
namely removing the sequences “DT NN NN” and
“DT JJ NN” for the ISA relation. We do this in or-
der to reduce noise in the extracted tuples. To fo-
cus on finding nontrivial tuples, for each relation
we retain the top 15 POS tag sequences in which
t1 or t2 has at least two words.

We then run the tagger on sentences from En-
glish Wikipedia. We extract word sequence pairs
corresponding to the relation POS tag sequence
pairs, requiring that there be a gap of at least one
word between the two terms. We then remove
word sequence pairs in which one term is solely
one of the following words: be, the, always, there,
has, due, however. We also remove tuples con-
taining words that are not in the vocabulary of our
ConceptNet-trained embeddings. We require that
one term does not include the other term. We cre-
ate tuples consisting of the two terms and all pos-
sible relations that occur with the POS sequences
of those two terms. Finally, we remove tuples that
exactly match our ConceptNet training tuples.

We use our trained Bilinear AVG model to
score these tuples. We extract term pairs that oc-
cur within the same sentence because we hope that
these will have higher precision than if we were to
pair together arbitrary pairs. Some example tuples
for t1 = bus are shown in Table 6.

1452



7.3 Manual Analysis of Novel Tuples

To evaluate our models on newly generated tu-
ples, we rank them using different models and
manually score the high-ranking tuples for qual-
ity. We first randomly sampled 3000 tuples from
each set of novel tuples. We do so due to the time
requirements of the MaxSim baseline, which re-
quires iterating through the entire training set for
each candidate tuple. We score these sampled tu-
ples using MaxSim and the Bilinear AVG model
and rank them by their scores. The top 100 tu-
ples under each ranking were given to an annota-
tor who is a native English speaker. The annota-
tor assigned a quality score to each tuple, using
the same 0-4 annotation scheme as Speer et al.
(2010): 0 (“Doesn’t make sense”), 1 (“Not true”),
2 (“Opinion/Don’t know”), 3 (“Sometimes true”),
and 4 (“Generally true”). We report the average
quality score across each set of 100 tuples.

The results are shown in Table 7. To calibrate
the scores, we also gave two samples of Concept-
Net (CN) tuples to the annotator: a sample of 100
high-confidence tuples (first row) and a sample
of 100 medium-confidence tuples (second row).
We find the high-confidence tuples to be of high
quality, recording an average of 3.68, though the
medium-confidence tuples drop to 3.14.

The next two rows show the quality scores
of the MaxSim baseline and the Bilinear AVG
model. The latter outperforms the baseline and
matches the quality of the medium-confidence
ConceptNet tuples. Since our novel tuples are not
contained in ConceptNet, this result suggests that
our model can be used to add medium-confidence
tuples to ConceptNet.

The novel Wikipedia tuples (top 100 tuples
ranked by Bilinear AVG model) had a lower qual-
ity score (2.78), but this is to be expected due to
the difference in domain. Since Wikipedia con-
tains a wide variety of text, we found the novel
tuples to be noisier than those from ConceptNet.
Still, we are encouraged that on average the tuples
are judged to be close to “sometimes true.”

7.4 Text Analysis with Commonsense Tuples

We note that our method of tuple extraction and
scoring could be used as an aid in applications
that require sentence understanding. Two example
sentences are shown in Table 8, along with the top
tuples extracted and scored using our method. The
tuples capture general knowledge about phrases

tuples quality
high-confidence CN tuples 3.68
medium-confidence CN tuples 3.14
novel CN tuples, ranked by MaxSim 2.74
novel CN tuples, ranked by Bilinear AVG 3.20
novel Wiki tuples, ranked by Bilinear AVG 2.78

Table 7: Average quality scores from manual eval-
uation of novel tuples. Each row corresponds to a
different set of tuples. See text for details.

After nine years of primary school, students can go to
the high school or to an educational institution.

t1, R, t2 score
school, HASPROPERTY, educational 0.89
school, ISA, educational institution 0.80

school, ISA, institution 0.78
school, HASPROPERTY, high 0.77
high school, ISA, institution 0.71

On March 14, 1964, Ruby was convicted of murder with
malice, for which he received a death sentence.

t1, R, t2 score
murder, CAUSES, death∗ 1.00

murder, CAUSES, death sentence 0.86
murder, HASSUBEVENT, death 0.84

murder, CAPABLEOF, death 0.51

Table 8: Top ranked tuples extracted from two
example sentences and scored by Bilinear AVG
model. ∗ = contained in ConceptNet.

contained in the sentence, rather than necessarily
indicating what the sentence means. This proce-
dure could provide relevant commonsense knowl-
edge for a downstream application that seeks to
understand the sentence. We leave further investi-
gation of this idea to future work.

8 Conclusion

We proposed methods to augment curated com-
monsense resources using techniques from knowl-
edge base completion. By scoring novel tuples,
we showed how we can increase the applicability
of the knowledge contained in ConceptNet. In fu-
ture work, we will explore how to use our model
to improve downstream NLP tasks, and consider
applying our methods to other knowledge bases.
We have released all of our resources—code, data,
and trained models—to the research community.6

Acknowledgments

We thank the anonymous reviewers, John Wieting,
and Luke Zettlemoyer.

6Available at http://ttic.uchicago.edu/
˜kgimpel/commonsense.html.

1453



References
Basant Agarwal, Namita Mittal, Pooja Bansal, and

Sonal Garg. 2015. Sentiment analysis using
common-sense and context information. Comp. Int.
and Neurosc.

Gabor Angeli and Christopher Manning. 2013.
Philosophers are mortal: Inferring the truth of un-
seen facts. In Proc. of CoNLL.

Gabor Angeli and D. Christopher Manning. 2014.
NaturalLI: Natural logic inference for common
sense reasoning. In Proc. of EMNLP.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The Berkeley FrameNet project. In Proc. of
COLING.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proc. of ACL.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proc. of the ACM SIGMOD
International Conference on Management of Data.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in NIPS.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014a. Question answering with subgraph embed-
dings. In Proc. of EMNLP.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014b. A semantic matching en-
ergy function for learning with multi-relational data.
Machine Learning, 94(2).

Erik Cambria, Daniel Olsher, and Kenneth Kwok.
2012. Sentic activation: A two-level affective com-
mon sense reasoning framework. In Proc. of AAAI.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In Proc. of AAAI.

Luigi Di Caro, Alice Ruggeri, Loredana Cupi, and
Guido Boella. 2015. Common-sense knowledge
for natural language understanding: Experiments in
unsupervised and supervised settings. In Proc. of
AI*IA.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proc. of EMNLP.

Alberto Garcı́a-Durán, Antoine Bordes, and Nicolas
Usunier. 2014. Effective blending of two and three-
way interactions for modeling multi-relational data.
In Machine Learning and Knowledge Discovery in
Databases.

Matt Gardner, Partha Pratim Talukdar, Jayant Krish-
namurthy, and Tom Mitchell. 2014. Incorporat-
ing vector space similarity in random walk inference
over knowledge bases. In Proc. of EMNLP.

Jonathan Gordon and Lenhart K Schubert. 2012.
Using textual patterns to learn expected event fre-
quencies. In Proc. of Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale
Knowledge Extraction.

Jonathan Gordon and Benjamin Van Durme. 2013.
Reporting bias and knowledge acquisition. In Proc.
of Workshop on Automated Knowledge Base Con-
struction.

Jonathan Gordon, Benjamin Van Durme, and
Lenhart K Schubert. 2010. Learning from the
web: Extracting general world knowledge from
noisy text. In Collaboratively-Built Knowledge
Sources and AI.

Jonathan Gordon. 2014. Inferential Commonsense
Knowledge from Text. Ph.D. thesis, University of
Rochester.

Kelvin Gu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In
Proc. of EMNLP.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with
(genuine) similarity estimation. Computational Lin-
guistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proc. of CIKM.

Rodolphe Jenatton, Nicolas L. Roux, Antoine Bordes,
and Guillaume R Obozinski. 2012. A latent factor
model for highly multi-relational data. In Advances
in NIPS.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proc. of ACL.

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proc. of EMNLP.

Douglas B Lenat and Ramanathan V Guha. 1989.
Building large knowledge-based systems: represen-
tation and inference in the Cyc project. Addison-
Wesley Longman Publishing Co., Inc.

1454



Henry Lieberman, Alexander Faaborg, Waseem Daher,
and José Espinosa. 2005. How to wreck a nice
beach you sing calm incense. In Proc. of IUI.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proc. of EMNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in NIPS.

George A Miller. 1995. WordNet: a lexical database
for English. Communications of the ACM, 38(11).

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proc of ACL.

Arvind Neelakantan and Ming-Wei Chang. 2015. In-
ferring missing entity type instances for knowledge
base completion: New dataset and methods. In
Proc. of NAACL.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base completion. In Proc. of ACL.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proc. of ICML.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing YAGO: Scalable ma-
chine learning for linked data. In Proc. of WWW.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proc. of EMNLP.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
M. Benjamin Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
Proc. of NAACL-HLT.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Ad-
vances in NIPS.

Robert Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in ConceptNet 5.
In Proc. of LREC.

Robert Speer, Catherine Havasi, and Henry Lieberman.
2008. AnalogySpace: Reducing the dimensionality
of common sense knowledge. In Proc. of AAAI.

Robert Speer, Catherine Havasi, and Harshit Surana.
2010. Using verbosity: Common sense data from
games with a purpose. In Proc. of FLAIRS.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proc. of NAACL-HLT.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proc. of EMNLP.

Luis von Ahn, Mihir Kedia, and Manuel Blum. 2006.
Verbosity: a game for collecting common-sense
facts. In Proc. of CHI.

Robert West, Evgeniy Gabrilovich, Kevin Murphy,
Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014.
Knowledge base completion via search-based ques-
tion answering. In Proc. of WWW.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the ACL.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proc. of ICLR.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Limin Yao, Sebastian Riedel, and Andrew McCallum.
2013. Universal schema for entity type prediction.
In Proc. of Workshop on Automated Knowledge Base
Construction.

1455


