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Abstract

In this work, we propose a novel method to
incorporate corpus-level discourse infor-
mation into language modelling. We call
this larger-context language model. We in-
troduce a late fusion approach to a recur-
rent language model based on long short-
term memory units (LSTM), which helps
the LSTM unit keep intra-sentence depen-
dencies and inter-sentence dependencies
separate from each other. Through the
evaluation on four corpora (IMDB, BBC,
Penn TreeBank, and Fil9), we demonstrate
that the proposed model improves per-
plexity significantly. In the experiments,
we evaluate the proposed approach while
varying the number of context sentences
and observe that the proposed late fusion
is superior to the usual way of incorporat-
ing additional inputs to the LSTM. By an-
alyzing the trained larger-context language
model, we discover that content words, in-
cluding nouns, adjectives and verbs, bene-
fit most from an increasing number of con-
text sentences. This analysis suggests that
larger-context language model improves
the unconditional language model by cap-
turing the theme of a document better and
more easily.

1 Introduction

The goal of language modelling is to estimate the
probability distribution of various linguistic units,
e.g., words, sentences (Rosenfeld, 2000). Among
the earliest techniques were count-based n-gram
language models which intend to assign the prob-
ability distribution of a given word observed af-

∗Recently, (Ji et al., 2015) independently proposed a sim-
ilar approach.

ter a fixed number of previous words. Later Ben-
gio et al. (2003) proposed feed-forward neural
language model, which achieved substantial im-
provements in perplexity over count-based lan-
guage models. Bengio et al. showed that this neu-
ral language model could simultaneously learn the
conditional probability of the latest word in a se-
quence as well as a vector representation for each
word in a predefined vocabulary.

Recently recurrent neural networks have be-
come one of the most widely used models in lan-
guage modelling (Mikolov et al., 2010). Long
short-term memory unit (LSTM, Hochreiter and
Schmidhuber, 1997) is one of the most common
recurrent activation function. Architecturally, the
memory state and output state are explicitly sep-
arated by activation gates such that the vanish-
ing gradient and exploding gradient problems de-
scribed in Bengio et al. (1994) is avoided. Moti-
vated by such gated model, a number of variants
of RNNs (e.g. Cho et al. (GRU, 2014b), Chung
et al. (GF-RNN, 2015)) have been designed to eas-
ily capture long-term dependencies.

When modelling a corpus, these language mod-
els assume the mutual independence among sen-
tences, and the task is often reduced to as-
signing a probability to a single sentence. In
this work, we propose a method to incorporate
corpus-level discourse dependency into neural lan-
guage model. We call this larger-context lan-
guage model. It models the influence of con-
text by defining a conditional probability in the
form of P (wn|w1:n−1, S), where w1, ..., wn are
words from the same sentence, and S represents
the context which consists a number of previous
sentences of arbitrary length.

We evaluated our model on four different cor-
pora (IMDB, BBC, Penn TreeBank, and Fil9).
Our experiments demonstrate that the proposed
larger-context language model improve perplex-

1319



ity for sentences, significantly reducing per-word
perplexity compared to the language models with-
out context information. Further, through Part-Of-
Speech tag analysis, we discovered that content
words, including nouns, adjectives and verbs, ben-
efit the most from increasing number of context
sentences. Such discovery led us to the conclu-
sion that larger-context language model improves
the unconditional language model by capturing the
theme of a document.

To achieve such improvement, we proposed a
late fusion approach, which is a modification to
the LSTM such that it better incorporates the dis-
course context from preceding sentences. In the
experiments, we evaluated the proposed approach
against early fusion approach with various num-
bers of context sentences, and demonstrated the
late fusion is superior to the early fusion approach.

Our model explores another aspect of context-
dependent recurrent language model. It is novel
in that it also provides an insightful way to feed
information into LSTM unit, which could benefit
all encoder-decoder based applications.

2 Statistical Language Modelling with
Recurrent Neural Network

Given a document D = (S1, S2, . . . , SL) which
consists of L sentences, statistical language mod-
elling aims at computing its probability P (D).
It is often assumed that each sentence in the
whole document is mutually independent from
each other:

P (D) ≈
L∏

l=1

P (Sl). (1)

We call this probability (before approximation) a
corpus-level probability. Under this assumption of
mutual independence among sentences, the task of
language modelling is often reduced to assigning
a probability to a single sentence P (Sl).

A sentence Sl = (w1, w2, . . . , wTl
) is a

variable-length sequence of words or tokens. By
assuming that a word at any location in a sentence
is largely predictable by preceding words, we can
rewrite the sentence probability into

P (S) =
Tl∏

t=1

p(wt|w<t), (2)

where w<t denotes all the preceding words. We
call this a sentence-level probability.

This rewritten probability expression can be ei-
ther directly modelled by a recurrent neural net-
work (Mikolov et al., 2010) or further approxi-
mated as a product of n-gram conditional proba-
bilities such that

P (S) ≈
Tl∏

t=1

p(wt|wt−1
t−(n−1)), (3)

where wt−1
t−(n−1) = (wt−(n−1), . . . , wt−1). The

latter is called n-gram language modelling.
A recurrent language model is composed of two

functions–transition and output functions. The
transition function reads one word wt and updates
its hidden state such that

ht = φ (wt,ht−1) , (4)

where h0 is an all-zero vector. φ is a recurrent
activation function. For more details on widely-
used recurrent activation units, we refer the reader
to (Jozefowicz et al., 2015; Greff et al., 2015).

At each timestep, the output function computes
the probability over all possible next words in the
vocabulary V . This is done by

p(wt+1 = w′|wt
1) ∝ exp (gw′(ht)) . (5)

g is commonly an affine transformation:

g(ht) = Woht + bo,

where Wo ∈ R|V |×d and bo ∈ R|V |.
The whole model is trained by maximizing the

log-likelihood of a training corpus often using
stochastic gradient descent with backpropagation
through time (see, e.g., Rumelhart et al., 1988).

This conventional approach to statistical lan-
guage modelling often treats every sentence in a
document to be independent from each other This
is often due to the fact that downstream tasks, such
as speech recognition and machine translation, are
done sentence-wise. In this paper, we ask how
strong an assumption this is, how much impact this
assumption has on the final language model qual-
ity and how much gain language modelling can get
by making this assumption less strong.

Long Short-Term Memory Here let us briefly
describe a long short-term memory unit which is
widely used as a recurrent activation function φ
(see Eq. (4)) for language modelling (see, e.g.,
Graves, 2013).
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A layer of long short-term memory (LSTM)
unit consists of three gates and a single memory
cell. They are computed by

it =σ (Wixt + Uiht−1 + bi)
ot =σ (Woxt + Uoht−1 + bo)
ft =σ (Wfxt + Ufht−1 + bf ) ,

where σ is a sigmoid function. xt is the input at
time t. The memory cell is computed by

ct = ft � ct−1 + it � tanh (Wcx + Ucht−1 + bc) ,

where � is an element-wise multiplication. This
adaptive leaky integration of the memory cell al-
lows the LSTM to easily capture long-term depen-
dencies in the input sequence.

The output, or the activation of this LSTM layer,
is then computed by ht = ot � tanh(ct).

3 Larger-Context Language Modelling

In this paper, we aim not at improving the
sentence-level probability estimation P (S) (see
Eq. (2)) but at improving the corpus-level prob-
ability P (D) from Eq. (1) directly. One thing we
noticed at the beginning of this work is that it is not
necessary for us to make the assumption of mutual
independence of sentences in a corpus. Rather,
similarly to how we model a sentence probability,
we can loosen this assumption by

P (D) ≈
L∏

l=1

P (Sl|Sl−1
l−n), (6)

where Sl−1
l−n = (Sl−n, Sl−n+1, . . . , Sl−1). n de-

cides on how many preceding sentences each con-
ditional sentence probability conditions on, sim-
ilarly to what happens with a usual n-gram lan-
guage modelling.

From the statistical modelling’s perspective, es-
timating the corpus-level language probability in
Eq. (6) is equivalent to build a statistical model
that approximates

P (Sl|Sl−1
l−n) =

Tl∏
t=1

p(wt|w<t, S
l−1
l−n), (7)

similarly to Eq. (2). One major difference from the
existing approaches to statistical language mod-
elling is that now each conditional probability of
a next word is conditioned not only on the preced-
ing words in the same sentence, but also on the
n− 1 preceding sentences.

A conventional, count-based n-gram language
model is not well-suited due to the issue of data
sparsity. In other words, the number of rows in the
table storing n-gram statistics will explode as the
number of possible sentence combinations grows
exponentially with respect to both the vocabulary
size, each sentence’s length and the number of
context sentences.

Either neural or recurrent language modelling
however does not suffer from this issue of data
sparsity. This makes these models ideal for mod-
elling the larger-context sentence probability in
Eq. (7). More specifically, we are interested in
adapting the recurrent language model for this.

In doing so, we answer two questions in the
following subsections. First, there is a question
of how we should represent the context sentences
Sl−1

l−n. We consider two possibilities in this work.
Second, there is a large freedom in how we build a
recurrent activation function to be conditioned on
the context sentences. We also consider two alter-
natives in this case.

3.1 Context Representation

A sequence of preceding sentences can be repre-
sented in many different ways. Here, let us de-
scribe two alternatives we test in the experiments.

The first representation is to simply bag all the
words in the preceding sentences into a single vec-
tor s ∈ [0, 1]|V |. Any element of s corresponding
to the word that exists in one of the preceding sen-
tences will be assigned the frequency of that word,
and otherwise 0. This vector is multiplied from
left by a matrix P which is tuned together with all
the other parameters: p = Ps. We call this repre-
sentation p a bag-of-words (BoW) context.

Second, we try to represent the preceding con-
text sentences as a sequence of bag-of-words.
Each bag-of-word sj is the bag-of-word represen-
tation of the j-th context sentence, and they are put
into a sequence (sl−n, . . . , sl−1). Unlike the first
BoW context, this allows us to incorporate the or-
der of the preceding context sentences.

This sequence of BoW vectors are read by
a recurrent neural network which is separately
from the one used for modelling a sentence (see
Eq. (4).) We use LSTM units as recurrent acti-
vations, and for each context sentence in the se-
quence, we get zt = φ (xt, zt−1) , for t = l −
n, . . . , l − 1. We set the last hidden state zl−1 of
this context recurrent neural network as the con-
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text vector p.

Attention-based Context Representation The
sequence of BoW vectors can be used in a bit dif-
ferent way from the above. Instead of a unidi-
rectional recurrent neural network, we first use a
bidirectional recurrent neural network to read the
sequence. The forward recurrent neural network
reads the sequence as usual in a forward direction,
and the reverse recurrent neural network in the op-
posite direction. The hidden states from these two
networks are then concatenated for each context
sentence in order to form a sequence of annotation
vectors (zl−n, . . . , zl−1).

Unlike the other approaches, in this case, the
context vector p differs for each word wt in the
current sentence, and we denote it by pt. The con-
text vector pt for the t-th word is computed as the
weighted sum of the annotation vectors:

pt =
l−1∑

l′=l−n

αt,l′zl′ ,

where the attention weight αt,l′ is computed by

αt,l′ =
exp score (zl′ ,ht)∑l−1

k=l−n exp score (zk,ht)
.

ht is the hidden state of the recurrent language
model of the current sentence from Eq. (5). The
scoring function score(zl′ ,ht) returns a relevance
score of the l′-th context sentence w.r.t. ht.

3.2 Conditional LSTM
Early Fusion Once the context vector p is com-
puted from the n preceding sentences, we need to
feed this into the sentence-level recurrent language
model. One most straightforward way is to simply
consider it as an input at every time step such that

x = E>wt + Wpp,

where E is the word embedding matrix that trans-
forms the one-hot vector of the t-th word into a
continuous word vector. We call this approach an
early fusion of the context.

Late Fusion In addition to this approach, we
propose here a modification to the LSTM such
that it better incorporates the context from the pre-
ceding sentences (summarized by pt.) The ba-
sic idea is to keep dependencies within the sen-
tence being modelled (intra-sentence dependen-
cies) and those between the preceding sentences

(a) Early Fusion

(b) Late Fusion

Figure 1: Proposed fusion methods

and the current sent (inter-sentence dependencies)
separately from each other.

We let the memory cell ct of the LSTM to
model intra-sentence dependencies. This simply
means that there is no change to the existing for-
mulation of the LSTM.

The inter-sentence dependencies are reflected
on the interaction between the memory cell ct,
which models intra-sentence dependencies, and
the context vector p, which summarizes the n pre-
ceding sentences. We model this by first comput-
ing the amount of influence of the preceding con-
text sentences as

rt = σ (Wr (Wpp) + Wrct + br) .

This vector rt controls the strength of each of the
elements in the context vector p. This amount
of influence from the n preceding sentences is
decided based on the currently captured intra-
sentence dependency structures and the preceding
sentences.

This controlled context vector rt � (Wpp) is
used to compute the output of the LSTM layer:

ht = ot � tanh (ct + rt � (Wpp)) .

This is illustrated in Fig. 1 (b).
We call this approach a late fusion, as the ef-

fect of the preceding context is fused together with
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the intra-sentence dependency structure in the later
stage of the recurrent activation.

Late fusion is a simple, but effective way to
mitigate the issue of vanishing gradient in corpus-
level language modelling. By letting the context
representation flow without having to pass through
saturating nonlinear activation functions, it pro-
vides a linear path through which the gradient for
the context flows easily.

4 Related Work

Context-dependent Language Model This
possibility of extending a neural or recurrent
language modeling to incorporate larger context
was explored earlier. Especially, (Mikolov and
Zweig, 2012) proposed an approach, called
context-dependent recurrent neural network
language model, very similar to the proposed
approach here. The basic idea of their approach
is to use a topic distribution, represented as a
vector of probabilities, of previous n words when
computing the hidden state of the recurrent neural
network each time.

There are three major differences in the pro-
posed approach from the work by Mikolov and
Zweig (2012). First, the goal in this work is
to explicitly model preceding sentences to bet-
ter approximate the corpus-level probability (see
Eq. (6)) rather than to get a better context of the
current sentence. Second, Mikolov and Zweig
(2012) use an external method, such as latent
Dirichlet allocation (Blei et al., 2003) or latent se-
mantics analysis (Dumais, 2004) to extract a fea-
ture vector, whereas we learn the whole model, in-
cluding the context vector extraction, end-to-end.
Third, we propose a late fusion approach which
is well suited for the LSTM units which have re-
cently been widely adopted many works involv-
ing language models (see, e.g., Sundermeyer et al.,
2015). This late fusion is later shown to be supe-
rior to the early fusion approach.

Dialogue Modelling with Recurrent Neural
Networks A more similar model to the pro-
posed larger-context recurrent language model is
a hierarchical recurrent encoder decoder (HRED)
proposed recently by Serban et al. (2015). The
HRED consists of three recurrent neural networks
to model a dialogue between two people from the
perspective of one of them, to which we refer as a
speaker. If we consider the last utterance of the
speaker, the HRED is a larger-context recurrent

language model with early fusion.
Aside the fact that the ultimate goals differ (in

their case, dialogue modelling and in our case,
document modelling), there are two technical dif-
ferences. First, they only test with the early fusion
approach. We show later in the experiments that
the proposed late fusion gives a better language
modelling quality than the early fusion. Second,
we use a sequence of bag-of-words to represent the
preceding sentences, while the HRED a sequence
of sequences of words. This allows the HRED to
potentially better model the order of the words in
each preceding sentence, but it increases computa-
tional complexity (one more recurrent neural net-
work) and decreases statistical efficient (more pa-
rameters with the same amount of data.)

Skip-Thought Vectors Perhaps the most simi-
lar work is the skip-thought vector by Kiros et al.
(2015). In their work, a recurrent neural network
is trained to read a current sentence, as a sequence
of words, and extract a so-called skip-thought vec-
tor of the sentence. There are two other recurrent
neural networks which respectively model preced-
ing and following sentences. If we only con-
sider the prediction of the following sentence, then
this model becomes a larger-context recurrent lan-
guage model which considers a single preceding
sentence as a context.

As with the other previous works we have dis-
cussed so far, the major difference is in the ulti-
mate goal of the model. Kiros et al. (2015) fully
focused on using their model to extract a good,
generic sentence vector, while in this paper we
are focused on obtaining a good language model.
There are less major technical differences. First,
the skip-thought vector model conditions only on
the immediate preceding sentence, while we ex-
tend this to multiple preceding sentences. Second,
similarly to the previous works by Mikolov and
Zweig (2012), the skip-thought vector model only
implements early fusion.

Neural Machine Translation Neural machine
translation is another related approach (Forcada
and Ñeco, 1997; Kalchbrenner and Blunsom,
2013; Cho et al., 2014b; Sutskever et al., 2014;
Bahdanau et al., 2014). In neural machine transla-
tion, often two recurrent neural networks are used.
The first recurrent neural network, called an en-
coder, reads a source sentence, represented as a
sequence of words in a source language, to form
a context vector, or a set of context vectors. The
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other recurrent neural network, called a decoder,
then, models the target translation conditioned on
this source context.

This is similar to the proposed larger-context re-
current language model, if we consider the source
sentence as a preceding sentence in a corpus. The
major difference is in the ultimate application, ma-
chine translation vs. language modelling, and
technically, the differences between neural ma-
chine translation and the proposed larger-context
language model are similar to those between the
HRED and the larger-context language model.

Context-Dependent Question-Answering Mod-
els Context-dependent question-answering is a
task in which a model is asked to answer a ques-
tion based on the facts from a natural language
paragraph. The question and answer are often for-
mulated as filling in a missing word in a query
sentence (Hermann et al., 2015; Hill et al., 2015).
This task is closely related to the larger-context
language model we proposed in this paper in the
sense that its goal is to build a model to learn

p(qk|q<k, q>k, D), (8)

where qk is the missing k-th word in a query Q,
and q<k and q>k are the context words from the
query. D is the paragraph containing facts about
this query. It is explicitly constructed so that the
query q does not appear in the paragraph D.

It is easy to see the similarity between Eq. (8)
and one of the conditional probabilities in the
r.h.s. of Eq. (7). By replacing the context sen-
tences Sl−1

l−n in Eq. (7) with D in Eq. (8) and con-
ditioning wt on both the preceding and follow-
ing words, we get a context-dependent question-
answering model. In other words, the pro-
posed larger-context language model can be used
for context-dependent question-answering, how-
ever, with computational overhead. The overhead
comes from the fact that for every possible answer
the conditional probability completed query sen-
tence must be evaluated.

5 Experimental Settings

5.1 Models

There are six possible combinations of the pro-
posed methods. First, there are two ways of rep-
resenting the context sentences; (1) bag-of-words
(BoW) and (2) a sequence of bag-of-words (Se-
qBoW), from Sec. 3.1. There are two separate

ways to incorporate the SeqBoW; (1) with atten-
tion mechanism (ATT) and (2) without it. Then,
there are two ways of feeding the context vector
into the main recurrent language model (RLM);
(1) early fusion (EF) and (2) late fusion (LF), from
Sec. 3.2. We will denote them by

1. RLM-BoW-EF-n
2. RLM-SeqBoW-EF-n
3. RLM-SeqBoW-ATT-EF-n
4. RLM-BoW-LF-n
5. RLM-SeqBoW-LF-n
6. RLM-SeqBoW-ATT-LF-n

n denotes the number of preceding sentences to
have as a set of context sentences. We test four
different values of n; 1, 2, 4 and 8.

As a baseline, we also train a recurrent language
model without any context information. We refer
to this model by RLM. Furthermore, we also re-
port the result with the conventional, count-based
n-gram language model with the modified Kneser-
Ney smoothing with KenLM (Heafield et al.,
2013).

Each recurrent language model uses 1000
LSTM units and is trained with Adadelta (Zeiler,
2012) to maximize the log-likelihood; L(θ) =
1
K

∑K
k=1 log p(Sk|Sk−1

k−n). We early-stop training
based on the validation log-likelihood and report
the perplexity on the test set using the best model
according to the validation log-likelihood.

We use only those sentences of length up to 50
words when training a recurrent language model
for the computational reason. For KenLM, we
used all available sentences in a training corpus.

5.2 Datasets
We evaluate the proposed larger-context language
model on three different corpora. For detailed
statistics, see Table 1.

IMDB Movie Reviews A set of movie reviews
is an ideal dataset to evaluate many different
settings of the proposed larger-context language
models, because each review is highly likely of a
single theme (the movie under review.) A set of
words or the style of writing will be well deter-
mined based on the preceding sentences.

We use the IMDB Movie Review Corpus
(IMDB) prepared by Maas et al. (2011).1 This cor-
pus has 75k training reviews and 25k test reviews.

1http://ai.stanford.edu/˜amaas/data/
sentiment/
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(a) IMDB (b) Penn Treebank

(c) BBC (d) Fil9

Figure 2: Corpus-level perplexity on (a) IMDB, (b) Penn Treebank, (c) BBC and (d) Fil9. The count-
based 5-gram language models with Kneser-Ney smoothing respectively resulted in the perplexities of
110.20, 148, 127.32 and 65.21, and are not shown here.

We use the 30k most frequent words in the training
corpus for recurrent language models.

BBC Similarly to movie reviews, each new ar-
ticle tends to convey a single theme. We use the
BBC corpus prepared by Greene and Cunningham
(2006).2 Unlike the IMDB corpus, this corpus
contains news articles which are almost always
written in a formal style. By evaluating the pro-
posed approaches on both the IMDB and BBC
corpora, we can tell whether the benefits from
larger context exist in both informal and formal
languages. We use the 10k most frequent words in
the training corpus for recurrent language models.

Both with the IMDB and BBC corpora, we did
not do any preprocessing other than tokenization.3

Penn Treebank We evaluate a normal recurrent
language model, count-based n-gram language
model as well as the proposed RLM-BoW-EF-n
and RLM-BoW-LF-n with varying n = 1, 2, 4, 8
on the Penn Treebank Corpus. We preprocess the

2http://mlg.ucd.ie/datasets/bbc.html
3https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

corpus according to (Mikolov et al., 2011) and use
a vocabulary of 10k words from the training cor-
pus.

Fil9 Fil9 is a cleaned Wikipedia corpus, consist-
ing of approximately 140M tokens, and is pro-
vided on Matthew Mahoney’s website.4 We tok-
enized the corpus and used the 44k most frequent
words in the training corpus for recurrent language
models.

6 Results and Analysis

Corpus-level Perplexity We evaluated the mod-
els, including all the proposed approaches (RLM-
{BoW,SeqBoW}-{ATT,∅}-{EF,LF}-n), on the
IMDB corpus. In Fig. 2 (a), we see three ma-
jor trends. First, RLM-BoW, either with the
early fusion or late fusion, outperforms both the
count-based n-gram and recurrent language model
(LSTM) regardless of the number of context sen-
tences. Second, the improvement grows as the
number n of context sentences increases, and this
is most visible with the novel late fusion. Lastly,

4http://mattmahoney.net/dc/textdata
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Figure 3: Perplexity per POS tag on the (a) IMDB, (b) BBC and (c) Penn Treebank corpora.

we see that the RLM-SeqBoW does not work
well regardless of the fusion type (RLM-SeqBow-
EF not shown), while the attention-based model
(RLM-SeqBow-ATT) outperforms all the others.

After observing that the late fusion clearly
outperforms the early fusion, we evaluated
only RLM-{BoW,SeqBoW}-{ATT}-LF-n’s on
the other two corpora.

On the other two corpora, PTB and BBC,
we observed a similar trend of RLM-SeqBoW-
ATT-LF-n and RLM-BoW-LF-n outperforming
the two conventional language models, and that
this trend strengthened as the number n of the con-
text sentences grew. We also observed again that
the RLM-SeqBoW-ATT-LF outperforms RLM-
SeqBoW-LF and RLM-BoW in almost all the
cases.

Observing the benefit of RLM-SeqBoW-ATT-
LF, we evaluated only such model on Fil9 to val-
idate its performance on large corpus. Similar to
the results on all three previous corpora, we con-
tinue to observe the advantage of RLM-SeqBoW-
ATT-LF-n on Fil9 corpus.

From these experiments, the benefit of allow-
ing larger context to a recurrent language model is
clear, however, with the right choice of the context
representation (see Sec. 3.1) and the right mech-
anism for feeding the context information to the
recurrent language model (see Sec. 3.2.) In these
experiments, the sequence of bag-of-words repre-
sentation with attention mechanism, together with
the late fusion was found to be the best choice in
all four corpora.

One possible explanation on the failure of the
SeqBoW representation with a context recurrent
neural network is that it is simply difficult for the

context recurrent neural network to compress mul-
tiple sentences into a single vector. This difficulty
in training a recurrent neural network to com-
press a long sequence into a single vector has been
observed earlier, for instance, in neural machine
translation (Cho et al., 2014a). Attention mech-
anism, which was found to avoid this problem
in machine translation (Bahdanau et al., 2014), is
found to solve this problem in our task as well.

Perplexity per Part-of-Speech Tag Next, we
attempted at discovering why the larger-context
recurrent language model outperforms the uncon-
ditional one. In order to do so, we computed the
perplexity per part-of-speech (POS) tag.

We used the Stanford log-linear part-of-speech
tagger (Stanford POS Tagger, Toutanova et al.,
2003) to tag each word of each sentence in the cor-
pora.5 We then computed the perplexity of each
word and averaged them for each tag type sepa-
rately. Among the 36 POS tags used by the Stan-
ford POS Tagger, we looked at the perplexities of
the ten most frequent tags (NN, IN, DT, JJ, RB,
NNS, VBZ, VB, PRP, CC), of which we combined
NN and NNS into a new tag Noun and VB and
VBZ into a new tag Verb.

We show the results using the RLM-BoW-
LF and RLM-SeqBoW-ATT-LF on three corpora–
IMDB, BBC and Penn Treebank– in Fig. 3. We
observe that the predictability, measured by the
perplexity (negatively correlated), grows most for
nouns (Noun) and adjectives (JJ) as the number
of context sentences increases. They are followed
by verbs (Verb). In other words, nouns, adjec-

5http://nlp.stanford.edu/software/
tagger.shtml
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IMDB BBC Penn TreeBank Fil9
# Sentences # Words # Sentences # Words # Sentences # Words # Sentences # Words

Training 930,139 21M 37,207 890K 42,068 888K 6,619,098 115M
Validation 152,987 3M 1,998 49K 3,370 70K 825,919 14M

Test 151,987 3M 2,199 53K 3,761 79K 827,416 14M

Table 1: Statistics of IMDB, BBC, Penn TreeBank and Fil9.

tives and verbs are the ones which become more
predictable by a language model given more con-
text. We however noticed the relative degradation
of quality in coordinating conjunctions (CC), de-
terminers (DT) and personal pronouns (PRP).

It is worthwhile to note that nouns, adjectives
and verbs are open-class, content, words, and con-
junctions, determiners and pronouns are closed-
class, function, words (see, e.g., Miller, 1999).
The functions words often play grammatical roles,
while the content words convey the content of a
sentence or discourse, as the name indicates. From
this, we may carefully conclude that the larger-
context language model improves upon the con-
ventional, unconditional language model by cap-
turing the theme of a document, which is reflected
by the improved perplexity on “content-heavy”
open-class words (Chung and Pennebaker, 2007).
In our experiments, this came however at the ex-
pense of slight degradation in the perplexity of
function words, as the model’s capacity stayed
same (though, it is not necessary.)

This observation is in line with a recent find-
ing by Hill et al. (2015). They also observed sig-
nificant gain in predicting open-class, or content,
words when a question-answering model, includ-
ing humans, was allowed larger context.

7 Conclusion

In this paper, we proposed a method to improve
language model on corpus-level by incorporating
larger context. Using this model results in the im-
provement in perplexity on the IMDB, BBC, Penn
Treebank and Fil9 corpora, validating the advan-
tage of providing larger context to a recurrent lan-
guage model.

From our experiments, we found that the se-
quence of bag-of-words with attention is better
than bag-of-words for representing the context
sentences (see Sec. 3.1), and the late fusion is
better than the early fusion for feeding the con-
text vector into the main recurrent language model
(see Sec. 3.2). Our part-of-speech analysis re-
vealed that content words, including nouns, adjec-

tives and verbs, benefit most from an increasing
number of context sentences. This analysis sug-
gests that larger-context language model improves
perplexity because it captures the theme of a doc-
ument better and more easily.

To explore the potential of such a model, there
are several aspects in which more research needs
to be done. First, the four datasets we used in this
paper are relatively small in the context of lan-
guage modelling, therefore the proposed larger-
context language model should be evaluated on
larger corpora. Second, more analysis, beyond the
one based on part-of-speech tags, should be con-
ducted in order to better understand the advantage
of such larger-context models. Lastly, it is impor-
tant to evaluate the impact of the proposed larger-
context models in downstream tasks such as ma-
chine translation and speech recognition.
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