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Abstract

Recently a few systems for automatically
solving math word problems have reported
promising results. However, the datasets
used for evaluation have limitations in
both scale and diversity. In this paper,
we build a large-scale dataset which is
more than 9 times the size of previous
ones, and contains many more problem
types. Problems in the dataset are semi-
automatically obtained from community
question-answering (CQA) web pages. A
ranking SVM model is trained to auto-
matically extract problem answers from
the answer text provided by CQA users,
which significantly reduces human anno-
tation cost. Experiments conducted on the
new dataset lead to interesting and surpris-
ing results.

1 Introduction

Designing computer systems for automatically
solving math word problems is a challenging re-
search topic that dates back to the 1960s (Bobrow,
1964a; Briars and Larkin, 1984; Fletcher, 1985).
As early proposals seldom report empirical evalu-
ation results, it is unclear how well they perform.
Recently, promising results have been reported on
both statistical learning approaches (Kushman et
al., 2014; Hosseini et al., 2014; Koncel-Kedziorski
et al., 2015; Zhou et al., 2015; Roy and Roth,
2015) and semantic parsing methods (Shi et al.,
2015). However, we observe two limitations on
the datasets used by these previous works. First,
the datasets are small. The most frequently used
dataset (referred to as Alg514 hereafter) only con-
tains 514 algebra problems. The Dolphin1878

∗Work done while this author was an intern at Microsoft
Research.

dataset (Shi et al., 2015), the largest collection
among them, contains 1878 problems. Second, the
diversity of problems in the datasets is low. The
Alg514 collection contains linear algebra prob-
lems of 28 types (determined by 28 unique equa-
tion systems), with each problem type correspond-
ing to at least 6 problems. Although the Dol-
phin1878 collection has over 1,000 problem types,
only number word problems (i.e., math word prob-
lems about the operations and relationship of num-
bers) are contained in the collection.

Due to the above two limitations, observations
and conclusions based on existing datasets may
not be representative. Therefore it is hard to give a
convincing answer to the following question: How
well do state-of-the-art computer algorithms per-
form in solving math word problems?

To answer this question, we need to re-evaluate
state-of-the-art approaches on a larger and more
diverse data set. It is not hard to collect a large
set of problems from the web. The real challenge
comes from attaching annotations to the problems.
Important annotation types include equation sys-
tems (required by most statistical learning meth-
ods for model training) and gold answers (for
testing algorithm performance). Manually adding
equation systems and gold answers is extremely
time-consuming1.

In this paper, we build a large-scale and diverse
dataset called Dolphin18K 2, which contains over
18,000 annotated math word problems. It is con-
structed by semi-automatically extracting prob-
lems, equation systems and answers from commu-
nity question-answering (CQA) web pages. The
source data we leverage are the (question, answer
text) pairs in the math category of Yahoo! An-

1According to our experience, the speed is about 10-15
problems per hour for a person with good math skills.

2Available from http://research.microsoft.com/en-
us/projects/dolphin/.

887



swers3. Please note that the answer text provided
by CQA users cannot be used directly in evalua-
tion as gold answers, because answer numbers and
other numbers are often mixed together in answer
text (refer to Figure 1 of Section 3). We train a
ranking SVM model to identify (structured) prob-
lem answers from unstructured answer text.

We then conduct experiments to test the perfor-
mance of some recent math problem solving sys-
tems on the dataset. We make the following main
observations,

1. All systems evaluated on the Dolphin18K
dataset perform much worse than on their
original small and less diverse datasets.

2. On the large dataset, a simple similarity-
based method performs as well as more so-
phisticated statistical learning approaches.

3. System performance improves sub-linearly
as more training data is used. This suggests
that we need to develop algorithms which can
utilize data more effectively.

Our experiments indicate that the problem of
automatic math word problem solving is still far
from being solved. Good results obtained on small
datasets may not be good indicators of high perfor-
mance on larger and diverse datasets. For current
methods, simply adding more training data is not
an effective way to improve performance. New
methodologies are required for this topic.

2 Related Work

2.1 Math Word Problem Solving
Previous work on automatic math word prob-
lem solving falls into two categories: symbolic
approaches and statistical learning methods. In
symbolic approaches (Bobrow, 1964a; Bobrow,
1964b; Charniak, 1968; Charniak, 1969; Bakman,
2007; Liguda and Pfeiffer, 2012; Shi et al., 2015),
math problem sentences are transformed to certain
structures (usually trees) by pattern matching, verb
categorization, or semantic parsing. Math equa-
tions are then derived from the structured repre-
sentation. Addition/subtraction problems are stud-
ied most in early research (Briars and Larkin,
1984; Fletcher, 1985; Dellarosa, 1986; Bakman,
2007; Yuhui et al., 2010). Please refer to Mukher-
jee and Garain (2008) for a review of symbolic ap-
proaches before 2008.

3https://answers.yahoo.com/

Statistical machine learning methods have been
proposed to solve math word problems since 2014.
Hosseini et al. (2014) solve single step or multi-
step homogeneous addition and subtraction prob-
lems by learning verb categories from the train-
ing data. Kushman et al. (2014) and Zhou et al.
(2015) solve a wide range of algebra word prob-
lems, given that systems of linear equations are at-
tached to problems in the training set. Seo et al.
(2015) focuses on SAT geometry questions with
text and diagram provided. Koncel-Kedziorski et
al. (2015) and Roy and Roth (2015) target math
problems that can be solved by one single linear
equation.

No empirical evaluation results are reported in
most early publications on this topic. Although
promising empirical results are reported in recent
work, the datasets employed in their evaluation are
small and lack diversity. For example, the Alg514
dataset used in Kushman et al. (2014) and Zhou et
al. (2015) only contains 514 problems of 28 types.
Please refer to Section 3.4 for more details about
the datasets.

Recently, a framework was presented in
Koncel-Kedziorsk et al. (2016) for building an
online repository of math word problems. The
framework is initialized by including previous
public available datasets. The largest dataset
among them contains 1,155 problems.

2.2 Answer Extraction in CQA

Our work on automatic answer and equation ex-
traction is related to the recent CQA extraction
work (Agichtein et al., 2008; Cong et al., 2008;
Ding et al., 2008). Most of them aim to dis-
cover high-quality (question, answer text) pairs
from CQA posts. We are different because we ex-
tract structured data (i.e., numbers and equation
systems) inside the pieces of answer text.

3 Dataset Construction

Our goal is to construct a large and diverse prob-
lem collection of elementary mathematics (i.e.,
math topics frequently taught at the primary or
secondary school levels). We build our dataset by
automatically extracting problems and their anno-
tations from the mathematics category of the Ya-
hoo! Answers web site. A math problem post on
Yahoo! Answers consists of the raw problem text
and one or multiple pieces of answer text provided
by its answerers (refer to Figure 1).
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Please note that posts cannot be used directly
as our dataset entries. For example, for train-
ing statistical models, we have to extract equa-
tion systems from the unstructured text of user an-
swers. We also need to extract numbers (56,000
and 21,000 in Figure 1) from the raw answer text
as gold answers. We perform the following actions
to the posts,

• Removing the posts that do not contain a
math problem of our scope (Section 3.1)

• Cleaning problem text (Section 3.1)

• Extracting gold answers (Section 3.2)

• Extracting equation systems (Section 3.3)

In Section 3.4, we report some statistics of our
dataset and compare them with previous ones.

3.1 Preprocessing
We crawl over one million posts from the mathe-
matics categories of Yahoo! Answers. They are
part of the posts submitted and answered by users
since year 2008. By examining some examples,
we soon find that many of them do not contain
math problems of our scope. We discard or ignore
the posts with the following types:

1. Containing a general math-related question
but not a typical math problem. For exam-
ple, “Can anyone teach me how to set up two
equations for one problem, and then how to
solve it after?”.

2. College-level math

3. Containing multiple math problems in a sin-
gle post. They are discarded for simplifying
our answer and equation system extraction
process.

As the size of a set of one million problems is
large for human annotation and many of them be-
long to the above three types, we need a way to
automatically filter out undesired problems. We
manually annotate 6,000 posts with the speed of
about 150 posts per hour per person. Then a lo-
gistic regression classifier of posts is trained with
a precision of 80% and a recall of 70%. The post
collection after classification is reduced to 120,000
posts.

Then we randomly sample 46,000 posts from
the reduced post collection to perform two ac-
tions manually: post classification and problem

Question part:
Son’s 6th grade math? The number of cans
produced in one day by two companies A and
B were in ratio 8:3 and their difference was
35,000. How many cans did each company
produce that day?

Answer part:
Answer 1: Let can produced by 1 company
be 8x and the other 3x. so 8x - 3x = 35000.
5x = 35000. x = 7000. So the first company
produced 8 x 7000 = 56,000 cans, and the
other produced 3 x 7000 = 21,000 cans.
Answer 2: From the ratio: 3A=8B or
A=(8/3)B. From the difference: A-B=35000.
By substituting for A, we get (8/3)B-
B=35000 and further to B = 21000. From the
difference: A = 21000+35000=56000.
Answer 3: It’s 56000 and 21000.
Answer 4: what the hell thats not 6th grade
math!!!

Figure 1: An example post from Yahoo! answers

text cleaning. Please note that, since the precision
of the automatic classifier is only 80%, we rely
on manual classification to remove the remaining
20% undesired posts. Problem text cleaning is for
removing sentences like “please help” and “Son’s
6th grade math” (refer to Figure 1). The problem
text after cleaning is just like that appearing in a
formal math test in an elementary or secondary
school.

Eight annotators participated in the manual post
classification and problem text cleaning, at an av-
erage speed of about 80 posts per hour per person.

3.2 Automatic Answer Extraction

Compared to post classification and problem text
cleaning, it is much more time consuming to man-
ually assign gold answers and equation systems to
a problem (10-15 problems per hour per person
vs. 80 posts per hour per person). In addition, the
latter has higher requirements of the math skills
of annotators. Since manually annotating all prob-
lems exceeds our budget, we choose to train a high
precision model to automatically extract numbers
as gold answers from the answer part of a post.

In our dataset, the gold answer to a problem is
one or a set of numbers acting as the solution to
the problem. We define answer dimension as the
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count of numbers required in the gold answer. For
example, the gold answer to the problem in Figure
1 is {56000, 21000}, with dimension 2.

Extracting gold answers from the answer part of
a post is nontrivial. We tried an intuitive approach
called last-number-majority-voting, where the last
number in each answer of the post is chosen as a
candidate and then majority voting is performed
among all the candidates. We got a low accuracy
of 47% on our annotated data. Thus, we turn to a
machine learning model for better utilizing more
features in the posts.

Notations: Let χ denote the set of training
problems. For each problem xi in χ, Nij =
{n1

ij , n
2
ij , . . . , n

m
ij } denote the set of all unique

numbers given the jth answer, where m represents
the size of Nij . For each Nij , we generate possi-
ble subsets of numbers as candidate answers to the
problems. Please pay attention that the gold an-
swer to a problem may contain multiple numbers
(in the case that the answer dimension is larger
than 1). We use Yi to denote all the candidate an-
swers in problem xi.

Model: We define the conditional probability
of yik ∈ Yi given xi:

p(yik|xi; ν) =
exp(ν · f(xi, yik))∑

y′ik∈Yi
exp(ν · f(xi, y′ik))

where ν is a parameter vector of the model and
f(xi, yik) is the feature vector. We apply the
Ranking SVM (Herbrich et al., 2000) to maximize
the margin between the correct instances and the
negative ones. Constructing the SVM model is
equivalent to solving the following Quadratic Op-
timization problem:

min
ν
M(ν) =

1
2
‖ν‖2 + C

∑
i

ξi

s.t. ξi ≥ 0, ν · 〈f(xi, yik)+ − f(xi, yil)−〉 ≥ 1− ξi
where subscript “+” indicates the correct instance
and “-” indicates the false ones.

Features: Features are extracted from the an-
swer part of each post for model training. We
design features based on the following observa-
tions. In Yahoo! answers, users tend to write
down correct answers at the beginning of the an-
swer text, or at the end after providing the solv-
ing procedure. Surrounding words also give hints
for finding correct solutions. For example, num-
bers that are close to the word “answer” are more

likely to be in the gold answer. Given a post, num-
bers appearing in the answer text of more users
are more likely to be the correct solution. Some
words in the question sentence help determine an-
swer dimension. For example, “How far does
Tom run?” requires a one-dimension answer while
“How much do they each earn?” indicates multi-
ple dimensions. Main features are listed in table
1.

Table 1: Features for automatic answer extraction
Local context features
Relative position in the procedure
On right side of the symbol “=”?
On left side of the symbol “=”?
Close to “ans”, “answer”, “result”, or
“therefore”
Global features
Is in the text of the first answer (the first an-
swer is often marked as the best answer in Ya-
hoo! answers)?
Is in problem text?
Frequency in the text of all answers for this
problem
Frequency in the first position of all answers
Frequency in the last position of all answers
Number value features
Is positive?
Is an integer?
Its value is between 0 to 1?
Equals to the predicted solution in automatic
equation extraction?
Number set features
Are numbers at same line of answer text?
Are numbers at consecutive lines of answer
text?
Frequency of the numbers at same line in all
answers
Frequency of the numbers at consecutive lines
in all answers
Dimension features
Has singular verb in question?
Has plural noun in question?
Has special words (e.g., and, both, each, all)
in question?

Inference: After we train the model to get pa-
rameter vector ν, the predicated gold answer is se-
lected from the candidate number subsets by maxi-
mizing ν ·f(xi, yik). Formally, the predicated gold
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answer is,

arg max
yik∈Yi

ν · f(xi, yik)

About 3,000 problems are manually annotated
with answers and equations by the human annota-
tors we hire. Then we train and evaluate our model
using 5-fold cross validation. The extractor’s per-
formance is shown in Figure 2. To preserve an
accuracy rate of 90%, we use score = 3 as the
threshold and only keep problems with predicted
confidence score >= 3.

Please note that precision is more important
than recall in our scenario. We need to guaran-
tee that most extracted answers are correct. Lower
recall can be tackled by processing more posts.
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Figure 2: Accuracy of answer extraction

3.3 Automatic Equation Annotation
Now we illustrate how to extract equation systems
automatically from the unstructured answer text of
a post. The input is the answer text of n answers:

T = {T1, T2, . . . , Tn}

For example in Figure 1, there are four answers,
each corresponding to a piece of answer text Ti.

The task is not easy, because variables and
equations may not be in standard formats in an-
swer text. In addition, equations may be duplicate
(like those in Answer 1 of Figure 1). Our algo-
rithm is a two-phase procedure:

Candidate extraction: We extract an equation
system from each piece of answer text Ti. In pro-
cessing Ti, we first extract a list of equations by
regular expression matching. Then the equations
are added to the equation system by the order of
their occurrences in the text. Before adding an

equation, we check whether it can be induced by
the already-added equations. If so, we skip it.
Duplicate equations are effectively reduced in this
way.

Voting by solution: We solve each equation
system obtained from the first phase and build a
(equation system, solution) bipartite graph. We
then choose the equation system that has the max-
imum degree as our output. For example, if three
equation systems return the solution {24} and the
fourth returns {-1}, we will choose one from the
first three equation systems. To improve precision,
we do not return any equation system if the maxi-
mal degree is less than 2.

We evaluate our equation extractor on 3,000
manually annotated problems 4. For an equation
system extracted for a problem, we say it is cor-
rect if the annotated gold answer is a subset of the
solutions to the equation system. For example, if
the gold answer is {16, 34} and the solution to the
equation system is {16, 34, 100}, then the equa-
tion system is considered correct. Evaluation re-
sults show a precision of 91.4% and a recall of
64.7%.

3.4 Datasets Summary
Below are a list of previous benchmark datasets
for math word problem solving.

Alg514 is introduced in Kushman et al. (2014)
and also used in Zhou et al. (2015) for evaluation.
It consists of 514 algebra word problems from al-
gebra.com5, with each problem annotated with lin-
ear equations. The template (explained later) of
each problem has to appear at least six times in
the whole set.

Verb395 (Hosseini et al., 2014): A collection of
addition/subtraction problems.

Dolphin1878: A collection built by Shi et al.
(2015), containing 1,878 number word problems
obtained from algebra.com and Yahoo! answers.

DRAW (Upadhyay and Chang, 2015): Con-
taining 1,000 algebra word problems from alge-
bra.com, each annotated with linear equations.

SingleEQ: By Koncel-Kedziorski et al. (2015),
containing 508 problems, each of which corre-
sponds to one single equation.

Before comparing the datasets, let’s first intro-
duce the concept of equation system templates,
which are first introduced in Kushman et al. (2014)

4the same set of problems as we used in training and eval-
uating answer extraction

5http://www.algebra.com
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Table 2: Comparison of different datasets

Dataset # Problems # Templates # Sentences # Words Problems types
Verb395 395 3 1.13k 12.4k homogeneous addition or

subtraction problems
Alg514 514 28 1.62k 19.3k algebra, linear

Dolphin1878 1,878 1,183 3.30k 41.4k number word problems
DRAW 1,000 232 2.67k 35.3k algebra, linear

SingleEQ 508 31 1.38k 13.8k single equation, linear
Dolphin18K 18,460 5,871 49.9k 604k linear + nonlinear

for math word problem solving. A template is a
unique form of equation system. For example, the
following is a template of two equations:

n1 · x1 + x2 = n2

x1 + n3 · x2 = n4

The following equation system corresponds to
the above template,

3 · x1 + x2 = 5
x1 + 7 · x2 = 15

Table 2 shows some statistical information of
our dataset and previous ones. It can be seen that
our dataset has a much larger scale (about 10 times
the size of the Dolphin1878 collection and more
than 17 times larger than the others) and higher
diversity (in terms of both problem types and the
number of templates contained).

We split our dataset into a development set and
an evaluation set. The development set is used for
algorithm design and debugging, while the evalu-
ation set is for training and testing. Any problem
in the evaluation set should be invisible to the peo-
ple who design an automatic math problem solv-
ing system. Statistics on our dataset are shown in
Table 3, where dev and eval represent the develop-
ment set and the evaluation set respectively. Most
problems are assigned with both equation systems
and gold answers. Some of them are annotated
with answers only, either because annotators feel
it is hard to do so, or because our equation extrac-
tion algorithm returns empty results.

As most previous systems only handle linear
equation systems, we summarize, in Table 4, the
distribution of linear problems in the evaluation set
by template size. In the table, the size of a template
is defined as the number of problems correspond-
ing to this template. Between the two numbers in
each cell, the first one is the number of problems,

Table 3: Annotation statistics for our dataset

Equations Answer Sum
+ answer only

Manual 909 67 976
dev Auto 2,245 507 2,752

All 3,154 574 3,728
Manual 3,605 321 3,926

eval Auto 8,754 2,052 10,806
All 12,359 2,373 14,732

and the second number (or the one in parentheses)
is the number of templates in this category. For ex-
ample, in the automatically annotated evaluation
set, 166 templates have size 6 or larger. They cor-
respond to 4,826 problems.

4 Experiments

4.1 Systems for evaluation

We report the performance of several state-of-the-
art systems on our new dataset.

KAZB: A template-based statistical learning
method introduced in Kushman et al. (2014). It
maps a problem to one equation template defined
in the training set by reasoning across problem
sentences. KAZB reports an accuracy of 68.7%
on the Alg514 dataset.

ZDC: Proposed in Zhou et al. (2015) as an im-
proved version of KAZB. It reduces the search
space by not modeling alignment between noun
phrases and variables. It achieves an accuracy of
79.7% on Alg514.

SIM is a simple similarity-based method im-
plemented by us. To solve a problem, it calcu-
lates the lexical similarity between the problem
and each problem in the training set. Then the
equation system of the most similar problem is ap-
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Table 4: Problem distribution by template size (for
linear problems only)

Template size Manual Auto All
(all linear 2,675 7,969 10,644
templates) (876) (2,609) (3,158)
>=2 2,036 5,956 8,229

(237) (596) (743)
>=5 1,678 4,979 7,081

(98) (196) (254)
>=6 1,578 4,826 6,827

(78) (166) (216)
>=10 1,337 4,329 6,216

(43) (96) (130)
>=20 1,039 3,673 5,392

(22) (48) (68)
>=50 634 2,684 4,281

7 18 30

plied to the new problem. In a little more details,
a test problem PT is solved in two steps: tem-
plate selection, and template slot filling. In the first
step, each problem is modeled as a vector of word
TF-IDF scores. The similarity between two prob-
lems is calculated by the weighted Jaccard sim-
ilarity between their corresponding vectors. We
choose, from the training data, problem P1 that
has the maximal similarity with PT and use the
equation template T of P1 as the template of prob-
lem PT . In the second step, the numbers appearing
in problem PT are mapped to the number slots of
template T (which has been identified in the first
step). The mapping is implemented by selecting
one problem P2 from all the training problems cor-
responding to template T so that it has the min-
imum word-level edit-distance to PT . Then the
number mapping of P2 is borrowed as the number
mapping of PT . For example, for the following
test problem,

An overnight mail service charges $3.60 for
the first six ounces and $0.45 for each additional
ounce or fraction of an ounce. Find the number of
ounces in a package that cost $7.65 to deliver.

Assuming that a problem P1 has maximum Jac-
card similarity with the above problem and its cor-
responding equation template is as follows, this
template will be identified in the first step,

n1 + n2 ∗ (x− n3) = n4

Assume that P2 has the minimum edit-distance

to PT among all the training problems correspond-
ing to template T . Suppose the numbers in P2 are
(by their order in the problem text),

3.5, 5, 0.5, 6.5

Also suppose P2 is annotated with the following
equation system,

3.5 + 0.5 ∗ (x− 5) = 6.5

Then we will choose P2 and borrow its number
mapping. So the mapping from numbers in the
above test problem to template slots will be,

3.60/n1; 6/n3; 0.45/n2; 7.65/n4

In implementing SIM, we do not use any POS
tagging or syntactic parsing features for similar-
ity calculation. This method gets an accuracy of
71.2% on Alg514 and 49.0% on SingleEQ.

Systems not included for evaluation: Al-
though the system of Shi et al. (2015) achieves
very high performance on number word problems,
we do not include it in our evaluation because it is
unknown how to extend it to other problem types.
The system of Hosseini et al. (2014) is not in-
cluded in our evaluation because it only handles
homogeneous addition/subtraction problems. The
systems of Koncel-Kedziorski et al. (2015) and
Roy and Roth (2015) are also not included because
so far they only supports problems with one single
linear equation.

4.2 Overall Evaluation Results
Table 5 shows the accuracy of various systems
on different subsets of our dataset. In the ta-
ble, Manual.Linear contains all the manually an-
notated problems with linear equation systems. It
contains 2,675 problems and 876 templates (as
shown in Table 4). Auto.LinearT6 (containing
4,826 problems) is the set of all the automatically
annotated problems with a template size larger
than or equal to 6. Similarly, LinearT2 means
the subset of problems with template size ≥ 2.
For each system on each subset, experiments are
conducted using 5-fold cross-validation with 80%
problems randomly selected as training data and
the remaining 20% for test.

In the table, “-” means that the system does
not complete running on the dataset in three days.
Since KAZB and ZDC only handle linear equa-
tion systems, they are not applicable to the datasets
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Systems
Dataset KAZB ZDC SIM
Manual.Linear 10.7% 11.1% 13.3%
Manual.LinearT2 12.8% 13.9% 17.3%
Manual.LinearT6 17.6% 17.1% 18.8%
Auto.Linear - 17.2% 17.4%
Auto.LinearT2 - 20.1% 19.2%
Auto.LinearT6 - 19.2% 18.4%
All.Linear - 17.9% 18.4%
All.LinearT2 - 20.6% 20.3%
All.LinearT6 - 21.7% 20.2%
All (Dolphin18K) n/a n/a 16.7%
Alg514 68.7% 79.7% 71.2%

Table 5: Overall evaluation results

containing nonlinear problems. An “n/a” is filled
in the corresponding cell in this case.

The results show that all three systems (KAZB,
ZDC, and SIM) have extremely low performance
on our new datasets. Surprisingly, no system
achieves an accuracy rate of over 25%. Such re-
sults indicate that automatic math word problem
solving is still a very challenging task.

Another surprising observation is that KAZB
and ZDC do not perform better than SIM, a simple
similarity-based method which runs much faster
than the two statistical learning systems.

By comparing the results obtained from the
manual version of the datasets with their cor-
responding auto version (for example, Manu-
all.Linear vs. Auto.Linear), we can see larger ac-
curacy scores on the auto versions 6. This demon-
strates the usefulness of the automatically anno-
tated data. Considering the huge cost of manually
assigning equation systems and gold answers, au-
tomatic annotation has good potential in construct-
ing larger datasets.

4.3 Why Different from Previous Results
The last line of Table 5 displays the results on
Alg514. All three systems perform well on
Alg514 but poorly on Dolphin18K. To study the
reason of such a large gap, we derive two small
datasets from All.Linear by referring to the equa-
tion templates in Alg514.

Small.01: The set of all problems in All.Linear
that correspond to one of the 28 templates in
Alg514. The dataset contains 2,021 problems.

6Please note that the auto versions are more than 2 times
larger.

Small.02: A subset of Small.01, constructed
by randomly removing problems from Small.01
so that each template contains similar number of
problems as in Alg514. In other words, Small.02
and Alg514 have similar problem distribution
among templates.

Small.01 Small.02
KAZB 29.9% 50.0%
ZDC 30.1% 52.7%
SIM 33.7% 43.0%

Table 6: The case of fewer number of templates

We still use 5-fold cross validation to test and
compare system performance on the two small
datasets. Evaluation results are displayed in Table
6. We now obtain higher accuracy scores for each
system, but there is a big difference between the
results on Small.01 and Small.02. As mentioned
in (Upadhyay and Chang, 2015), Alg514 has a
skewed problem distribution, with a few templates
covering almost 50% problems. This may be the
main reason why all three systems achieve high
accuracy on this dataset and on Small.02. From
all of the above results, we see at least two factors
which affect system performance: number of tem-
plates in the dataset, and the distribution of prob-
lems among the templates. For a small dataset, the
distribution of problems among templates have a
huge impact on evaluation results.

4.4 Effect of Training Data Size
Now we investigate the performance change of
various systems when the size of training data
changes. The goal is to check whether the ac-
curacy increases quickly when more training data
are added. This is important: If it is the case, we
can tackle this task by simply adding more training
data, either manually or automatically. Otherwise,
we have to discover new approaches.

We conduct experiments in two settings: fixed-
test-set, and increasing-test-set. In the first setting,
we randomly choose 1/2 of the problems from the
Manual.Linear subset to form a fixed test-set (with
size 1330). Then the other problems in All.Linear
forms a candidate training collection (containing
9314 elements). We construct training sets of dif-
ferent scales by doing random sampling from the
candidate training collection.

In the second setting (i.e., increasing-test-set),
we construct datasets (training set plus test set) of
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Training data source All.LinearT6 All.Linear
Training data size 138 434 1024 2940 5771 500 1000 2000 5000 9000
Test set size 1330 1330 1330 1330 1330 1330 1330 1330 1330 1330
KAZB accuracy (%) 6.7 7.2 - - - 7.1 8.3 - - -
ZDC accuracy (%) 6.1 7.5 8.6 11.4 12.6 5.5 9.2 10.5 12.5 13.1
SIM accuracy (%) 5.5 8.7 11.0 13.7 15.9 6.5 10.8 12.2 14.9 18.4

Table 7: System performance with different training data size (setting: fixed-test-set)

Training data size 400 800 1600 4000 8516
Test set size 100 200 400 1000 2128
KAZB 5.4% 6.7% 11.7% - -
ZDC 5.8% 7.6% 12.9% 17.0% 17.9%
SIM 7.4% 10.0% 13.3% 16.9% 18.4%

Table 8: System performance with different training data size (setting: increasing-test-set)

different scales by doing random sampling from
All.Linear, and then conduct 5-fold cross valida-
tion on each dataset. In each fold, 80% problems
are chosen at random for training, and the other
20% for testing.

The results in the two settings are reported in
Tables 7 and 8 respectively. Both tables show
that the accuracy of all the three systems improves
steadily but slowly along with the increasing of
training data size. So it is not very effective to
improve accuracy by simply adding more training
data.

4.5 Results Summary

In summary, the following observations are made
from the experiments on our new dataset. First,
all systems evaluated on the Dolphin18K dataset
perform much worse than on the small and less di-
verse datasets. Second, the two statistical learn-
ing methods do not perform better than a sim-
ple similarity-based method. Third, it seems
not promising for the current methods to achieve
much better results by simply adding more train-
ing data. Automatic math word problem solving is
still a very challenging task so far.

5 Conclusion

We have constructed Dolphin18K, a large dataset
for training and evaluating automatic math word
problem solving systems. The new dataset is al-
most one order of magnitude larger than most of
previous ones, and has a much higher level of di-
versity in term of problem types. We reduce hu-

man annotation cost by automatically extracting
gold answers and equation systems from the un-
structured answer text of CQA posts.

We have also conducted experiments on our
dataset to evaluate state-of-the-art systems. Inter-
esting and surprising observations are made from
the experimental results.
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