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Abstract

While unsupervised anaphoric zero pro-
noun (AZP) resolvers have recently been
shown to rival their supervised counter-
parts in performance, it is relatively diffi-
cult to scale them up to reach the next level
of performance due to the large amount
of feature engineering efforts involved and
their ineffectiveness in exploiting lexical
features. To address these weaknesses,
we propose a supervised approach to AZP
resolution based on deep neural networks,
taking advantage of their ability to learn
useful task-specific representations and ef-
fectively exploit lexical features via word
embeddings. Our approach achieves state-
of-the-art performance when resolving the
Chinese AZPs in the OntoNotes corpus.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that
is found when a phonetically null form is used to
refer to a real-world entity. An anaphoric zero pro-
noun (AZP) is a ZP that corefers with one or more
preceding mentions in the associated text. Below
is an example taken from the Chinese Treebank
(CTB), where the ZP (denoted as *pro*) refers to
俄罗斯 (Russia).

[俄罗斯] 作为米洛舍夫维奇一贯的支持者，
*pro*曾经提出调停这场政治危机。
([Russia] is a consistent supporter of Milošević,
*pro* has proposed to mediate the political crisis.)

As we can see, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such
as number and gender. This makes ZP resolution
more challenging than overt pronoun resolution.
Automatic ZP resolution is typically composed

of two steps. The first step, AZP identification, in-

volves extracting ZPs that are anaphoric. The sec-
ond step, AZP resolution, aims to identify an an-
tecedent of an AZP. State-of-the-art ZP resolvers
have tackled both of these steps in a supervised
manner, training one classifier for AZP identifica-
tion and another for AZP resolution (e.g., Zhao and
Ng (2007), Kong and Zhou (2010)).
More recently, Chen and Ng (2014b; 2015) have

proposed unsupervised probabilistic AZP resolu-
tion models (henceforth the CN14 model and the
CN15 model, respectively) that rival their super-
vised counterparts in performance. An appeal-
ing aspect of these unsupervised models is that
their language-independent generative process en-
ables them to be applied to languages where data
annotated with ZP links are not readily avail-
able. Though achieving state-of-the-art perfor-
mance, these models have several weaknesses.
First, a lot of manual efforts need to be spent

on engineering the features for generative proba-
bilistic models, as these models are sensitive to the
choice of features. For instance, having features
that are (partially) dependent on each other could
harm model performance. Second, in the absence
of labeled data, it is difficult, though not impos-
sible, for these models to profitably employ lexi-
cal features (e.g., word pairs, syntactic patterns in-
volving words), as determining which lexical fea-
tures are useful and how to combine the poten-
tially large number of lexical features in an un-
supervised manner is a very challenging task. In
fact, the unsupervised models proposed by Chen
and Ng (2014b; 2015) are unlexicalized, presum-
ably owing to the aforementioned reasons. Unfor-
tunately, as shown in previous work (e.g, Zhao and
Ng (2007), Chen and Ng (2013)), the use of lex-
ical features contributed significantly to the per-
formance of state-of-the-art supervised AZP re-
solvers. Finally, owing to the lack of labeled data,
the model parameters are learned to maximize data
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likelihood, which may not correlate well with the
desired evaluation measure (i.e., F-score). Hence,
while unsupervised resolvers have achieved state-
of-the-art performance, these weaknesses together
suggest that it is very challenging to scale these
models up so that they can achieve the next level
of performance.
Our goal in this paper is to improve the state

of the art in AZP resolution. Motivated by the
aforementioned weaknesses, we propose a novel
approach to AZP resolution using deep neural net-
works, which we believe has three key advantages
over competing unsupervised counterparts.
First, deep neural networks are particularly good

at discovering hidden structures from the input
data and learning task-specific representations via
successive transformations of the input vectors,
where different layers of a network correspond to
different levels of abstractions that are useful for
the target task. For the task of AZP resolution,
this is desirable. Traditionally, it is difficult to cor-
rectly resolve an AZP if its context is lexically dif-
ferent from its antecedent's context. This is es-
pecially the case for unsupervised resolvers. In
contrast, a deep network can handle difficult cases
like this via learning representations that make lex-
ically different contexts look similar.
Second, we train our deep network in a super-

vised manner.1 In particular, motivated by re-
cent successes of applying the mention-ranking
model (Denis and Baldridge, 2008) to entity coref-
erence resolution (e.g., Chang et al. (2013), Dur-
rett and Klein (2013), Clark and Manning (2015),
Martschat and Strube (2015), Wiseman et al.
(2015)), we propose to employ a ranking-based
deep network, which is trained to assign the high-
est probability to the correct antecedent of an AZP
given a set of candidate antecedents. This con-
trasts with existing supervised AZP resolvers, all
of which are classification-based. Optimizing this
objective function is better than maximizing data
likelihood, as the former is more tightly coupled
with the desired evaluation metric (F-score) than
the latter.
Finally, given that our network is trained in a su-

pervised manner, we can extensively employ lex-

1Note that deep neural networks do not necessarily have to
be trained in a supervised manner. In fact, in early research on
extending semantic modeling using auto-encoders (Salakhut-
dinov and Hinton, 2007), the networks were trained in an un-
supervised manner, where the model parameters were opti-
mized for the reconstruction of the input vectors.

ical features and use them in combination with
other types of features that have been shown to be
useful for AZP resolution. However, rather than
employing words directly as features, we employ
word embeddings trained in an unsupervised man-
ner. The goal of the deep network will then be
to take these task-independent word embeddings
as input and convert them into embeddings that
would work best for AZP resolution via super-
vised learning. We call our approach an embed-
ding matching approach because the underlying
deep network attempts to compare the embedding
learned for an AZPwith the embedding learned for
each of its antecedents.
To our knowledge, this is the first approach to

AZP resolution based on deep networks. When
evaluated on the Chinese portion of the OntoNotes
5.0 corpus, our embedding matching approach
to AZP resolution outperforms the CN15 model,
achieving state-of-the-art results.
The rest of the paper is organized as follows.

Section 2 overviews related work on zero pro-
noun resolution for Chinese and other languages.
Section 3 describes our embedding matching ap-
proach, specifically the network architecture and
the way we train and apply the network. We
present our evaluation results in Section 4 and our
conclusions in Section 5.

2 Related Work

Chinese ZP resolution. Early approaches to
Chinese ZP resolution are rule-based. Con-
verse (2006) applied Hobbs' algorithm (Hobbs,
1978) to resolve the ZPs in the CTB documents.
Yeh and Chen (2007) hand-engineered a set of
rules for ZP resolution based on Centering The-
ory (Grosz et al., 1995).
In contrast, virtually all recent approaches to

this task are learning-based. Zhao and Ng (2007)
are the first to employ a supervised learning ap-
proach to Chinese ZP resolution. They trained
an AZP resolver by employing syntactic and po-
sitional features in combination with a decision
tree learner. Unlike Zhao and Ng, Kong and
Zhou (2010) employed context-sensitive convolu-
tion tree kernels (Zhou et al., 2008) in their re-
solver to model syntactic information. Chen and
Ng (2013) extended Zhao and Ng's feature set with
novel features that encode the context surrounding
a ZP and its candidate antecedents, and exploited
the coreference links between ZPs as bridges to
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Figure 1: The architecture of our embedding matching model. The number in each box indicates the size of the
corresponding vector.

find textually distant antecedents for ZPs. Asmen-
tioned above, there have been attempts to perform
unsupervised AZP resolution. For instance, us-
ing only data containing manually resolved overt
pronouns, Chen and Ng (2014a) trained a super-
vised overt pronoun resolver and applied it to re-
solve AZPs. More recently, Chen and Ng (2014b;
2015) have proposed unsupervised probabilistic
AZP resolution models that rivaled their super-
vised counterparts in performance. While we aim
to resolve anaphoric ZPs, Rao et al. (2015) re-
solved deictic non-anaphoric ZPs, which "refer
to salient entities in the environment such as the
speaker, hearer or pragmatically accessible refer-
ent without requiring any introduction in the pre-
ceding text''.

ZP resolution for other languages. There have
been rule-based and supervised machine learn-
ing approaches for resolving ZPs in other lan-
guages. For example, to resolve ZPs in Spanish
texts, Ferrández and Peral (2000) proposed a set
of hand-crafted rules that encode preferences for
candidate antecedents. In addition, supervised ap-
proaches have been extensively employed to re-
solve ZPs in Korean (e.g., Han (2006)), Japanese
(e.g., Seki et al. (2002), Isozaki and Hirao (2003),
Iida et al. (2006; 2007), Sasano et al. (2008), Taira
et al. (2008), Imamura et al. (2009), Sasano et al.
(2009), Watanabe et al. (2010), Hayashibe et al.
(2011), Iida and Poesio (2011), Sasano and Kuro-

hashi (2011), Yoshikawa et al. (2011), Hangyo et
al. (2013), Yoshino et al. (2013), Iida et al. (2015)),
and Italian (e.g., Iida and Poesio (2011)).

3 Model

In this section, we first introduce our network ar-
chitecture (Section 3.1), and then describe how we
train it (Section 3.2) and apply it (Section 3.3).

3.1 Network Architecture

The network architecture is shown in Figure 1.
Since we employ a ranking model to rank the can-
didate antecedents of an AZP z, the inputs to the
network are (1) a feature vector representing the
AZP, and (2) n feature vectors representing its n
candidate antecedents, c1, c2, . . ., cn. As will be
explained in detail in Section 3.2.2, the features in
each feature vector can be divided into two types:
word embedding features and hand-crafted fea-
tures. Each input feature vector will then be passed
through three hidden layers in the network, which
will successively map it into a low-dimensional
feature space. The resulting vector can be viewed
as the low-dimensional semantic embedding of the
corresponding input vector. Finally, the model
computes a matching score between z and each
of its candidate antecedents based on their low-
dimensional representations. These scores are then
normalized into probabilities using a softmax.
More formally, let xe(z) and xh(z) be the vec-
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tors of embedding and hand-crafted features rep-
resenting AZP z respectively, and let xe(ci) and
xh(ci) be the vectors of embedding and hand-
crafted features representing candidate antecedent
ci respectively. In addition, let y(z) and y(ci) be
the (low-dimensional) output vectors for z and ci

respectively, l1, l2, and l3 be the intermediate hid-
den layers, Wi and W ′

i be the weight matrices as-
sociated with z and the ci's in hidden layer i, bi and
b′i be the bias terms associated with z and the ci's.2
We then have:

l1(z) = f(W1xe(z) + b1)
l2(z) = l1(z)⊕ xh(z)
l3(z) = f(W2l2(z) + b2)
y(z) = f(W3l3(z) + b3)

(1)

l1(ci) = f(W ′
1xe(ci) + b′1)

l2(ci) = l1(ci)⊕ xh(ci)
l3(ci) = f(W ′

2l2(ci) + b′2)
y(ci) = f(W ′

3l3(z) + b′3)

(2)

where f is the activation function at output layer
y and hidden layers l1 and l3. In this network, we
employ tanh as the activation function. Hence,

f(x) = tanh(x) =
1− e−2x

1 + e−2x
(3)

The matching score between an AZP z and a
candidate antecedent ci is then measured as:

R(z, ci) = cos(y(z), y(ci)) =
y(z)T y(ci)

||y(z)||||y(ci)||
(4)

3.2 Training
3.2.1 Training Instance Creation
We create one training instance from each AZP

in each training document. Since our model is
ranking-based, each training instance corresponds
to an AZP z and all of its candidate antecedents
Ci. In principle, we can follow previous work
and assume that the set of candidate antecedents
C contains all and only those maximal or modifier
noun phrases (NPs) that precede z in the associ-
ated text and are at most two sentences away from
it. However, to improve training efficiency, we
select exactly four candidate antecedents for each

2Note that the target AZP and its candidate antecedents use
different weight matrices and biases within each layer. This
is needed because the features of the AZP and those of the
candidate antecedents come from two different feature spaces.

AZP z as follows. First, we take the closest correct
antecedent z to be one of the four candidate an-
tecedents. Next, we compute a salience score for
each of its non-coreferent candidate antecedents
and select the three with the highest salience scores
as the remaining three candidate antecedents.
We compute salience as follows. For each AZP

z, we compute the salience score for each (partial)
entity preceding z.3 To reduce the size of the list of
preceding entities, we only consider a partial entity
active if at least one of its mentions appears within
two sentences of the active AZP z. We compute
the salience score of each active entity w.r.t. z us-
ing the following equation:∑

m∈E

g(m) ∗ decay(m) (5)

wherem is a mention belonging to active entityE,
g(m) is a grammatical score which is set to 4, 2,
or 1 depending on whetherm's grammatical role is
Subject, Object, or Other respectively, and
decay(m) is a decay factor that is set to 0.5dis

(where dis is the sentence distance betweenm and
z).
Finally, we assign the correct label (i.e., the

matching score) to each candidate antecedent. The
score is 1 for the correct antecedent and 0 other-
wise.

3.2.2 Features
As we can see from Figure 1, each input feature

vector, regardless of whether it is representing an
AZP or one of its candidate antecedents, is com-
posed of two types of features, embedding features
and hand-crafted features, as described below.
Embedding features. To encode the lexical con-
texts of the AZP and its candidate antecedents, one
could employ one-hot vectors. However, the re-
sulting lexical features may suffer from sparsity.
To see the reason, assuming that the vocabulary
size is V and the number of neurons in the first
hidden layer l1 is L1, the size of the weight ma-
trices W1 and W ′

1 is V ∗ L1, which in our dataset
is around two million while the number of training
examples is much smaller.
Therefore, instead of using one-hot vectors, we

employ embedding features. Specifically, we em-
ploy the pre-trainedword embeddings (of size 100)

3We compute the list of preceding entities automatically
using SinoCoreferencer (Chen and Ng, 2014c), a Chinese en-
tity coreference resolver downloadable from http://www.
hlt.utdallas.edu/~yzcchen/coreference/.
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Syntactic
features
(13)

whether z is the first gap in an IP clause; whether z is the first gap in a subject-less IP clause, and if so,
POS(w1); whether POS(w1) is NT; whether w1 is a verb that appears in a NP or VP; whether Pl is a NP
node; whether Pr is a VP node; the phrasal label of the parent of the node containing POS(w1); whether V
has a NP, VP or CP ancestor; whether C is a VP node; whether there is a VP node whose parent is an IP
node in the path from w1 to C.

Other
features (6)

whether z is the first gap in a sentence; whether z is in the headline of the text; the type of the clause in
which z appears; the grammatical role of z (Subject, Object, or Other); whether w−1 is a punctuation;
whether w−1 is a comma.

Table 1: Hand-crafted features associated with an AZP. z is a zero pronoun. V is the VP node following z. wi is
the ith word to the right of z (if i is positive) or the ith word to the left of z (if i is negative). C is lowest common ancestor of
w−1 and w1. Pl and Pr are the child nodes of C that are the ancestors of w−1 and w1 respectively.

Syntactic
features
(12)

whether c has an ancestor NP, and if so, whether this NP is a descendent of c's lowest ancestor IP; whether
c has an ancestor VP, and if so, whether this VP is a descendent of c's lowest ancestor IP; whether c has an
ancestor CP; the grammatical role of c (Subject, Object, or Other); the clause type in which c appears;
whether c is an adverbial NP, a temporal NP, a pronoun or a named entity.

Distance
features (4)

the sentence distance between c and z; the segment distance between c and z, where segments are separated
by punctuations; whether c is the closest NP to z; whether c and z are siblings in the associated parse tree.

Other
features (2)

whether c is in the headline of the text; whether c is a subject whose governing verb is lexically identical to
the verb governing of z.

Table 2: Hand-crafted features associated with a candidate antecedent. z is a zero pronoun. c is a candidate
antecedent of z. V is the VP node following z in the parse tree.

obtained by training word2vec4 on the Chinese
portion of the training data from the OntoNotes 5.0
corpus. For an AZP z, we first find the word pre-
ceding it and its governing verb, and then concate-
nate the embeddings of these two words to form
the AZP's embedding features. (If z happens to
begin a sentence, we use a special embedding to
represent the word preceding it.) For a candidate
antecedent, we employ the word embedding of its
head word as its embedding features.

Hand-crafted features. The hand-crafted fea-
tures are (low-dimensional) features that capture
the syntactic, positional and other relationships
between an AZP and its candidate antecedents.
These features are similar to the ones employed
in previous work on AZP resolution (e.g., Zhao
and Ng (2007), Kong and Zhou (2010), Chen and
Ng (2013)).
We split these hand-crafted features into two

disjoint sets: those associated with an AZP and
those associated with a candidate antecedent. If
a feature is computed based on the AZP, then we
regard it as a feature associated with the AZP; oth-
erwise, we put it in the other feature set. A brief
description of the hand-crafted features associated
with an AZP and those associated with a candidate
antecedent are shown in Table 1 and Table 2 re-
spectively. Note that we convert eachmulti-valued
feature into a corresponding set of binary-valued
features (i.e., if a feature has N different values,

4https://code.google.com/p/word2vec/

we will create N binary indicators to represent
it). To ensure that the number of hand-crafted fea-
tures representing anAZP is equal to the number of
hand-crafted features representing a candidate an-
tecedent5, we append to the end of a feature vector
as many dummy zeroes as needed.6

3.2.3 Parameter Estimation
We employ online learning to train the network,

with one training example in a mini-batch. In other
words, we update theweights after processing each
training example based on the correct matching
scores of the training example (which is 1 for the
correct antecedent and 0 otherwise) and the net-
work's predicted matching scores.
To compute the predicted matching score be-

tween AZP z and one of its candidate antecedents
ci, we apply the following softmax function:

P (ci|z, Λ) =
exp(γR(z, ci))∑

c′∈C exp(γR(z, c′))
(6)

where (1) γ is a smoothing factor that is empiri-
cally set on a held-out data set, (2) R(z, ci) is the
cosine similarity between vector y(z) and vector
y(ci) (see Section 3.1), (3) C denotes the set of can-
didate antecedents of z, and (4) Λ denotes the set
of parameters of our neural network:

5As seen in Figure 1, we set the length of the vector to 50.
6Appending dummy 0s is solely for the convenience of the

network implementation: doing so does not have any effect
on any computation.
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Λ = {W1,W2,W3, b1, b2, b3,

W ′
1,W

′
2,W

′
3, b

′
1, b

′
2, b

′
3}

(7)

To maximize the matching score of the correct
antecedent, we estimate the model parameters to
minimize the following loss function:

Jz(Λ) = −
∑
ci∈C

δ(z, ci)P (ci|z, Λ) (8)

where δ(z, ci) is an indicator function indicating
whether AZP z and candidate antecedent ci are
coreferent:

δ(z, ci) =
{

1, if z and ci are coreferent
0, otherwise (9)

Since Jz(Λ) is differentiable w.r.t. to Λ, we
train the model using stochastic gradient descent.
Specifically, the model parameters Λ are updated
according to the following update rule:

Λt = Λt−1 − α
∂J (Λt−1)

∂Λt−1
(10)

where α is the learning rate, and Λt and Λt−1

are model parameters at the tth iteration and the
(t − 1)th iteration respectively. To avoid overfit-
ting, we determine the hyperparameters of the net-
work using a held-out development set.

3.3 Inference
After training, we can apply the resulting network
to find an antecedent for each AZP. Each test in-
stance corresponds to an AZP z and four of its can-
didate antecedents. Specifically, the four candi-
date antecedents with the highest salience scores
will be chosen. Importantly, unlike in training,
where we guarantee that the correct antecedents is
among the set of candidate antecedents, in testing,
we don't. We use the network to rank the candidate
antecedents by computing the posterior probability
of each of them being a correct antecedent of z, and
select the one with the highest probability to be its
antecedent.
The aforementioned resolution procedure can be

improved, however. The improvement is moti-
vated by a problem we observed previously (Chen
and Ng, 2013): an AZP and its closest antecedent
can sometimes be far away from each other, thus
making it difficult to correctly resolve the AZP. To
address this problem, we employ the following res-
olution procedure in our experiments. Given a test
document, we process its AZPs in a left-to-right

Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 110,034
AZPs 12,111 1,713

Table 3: Statistics on the training and test sets.

manner. As soon as we resolve an AZP to a pre-
ceding NP c, we fill the corresponding AZP's gap
with c. Hence, when we process an AZP z, all
of its preceding AZPs in the associated text have
been resolved, with their gaps filled by the NPs
they are resolved to. To resolve z, we create test
instances between z and its four most salient can-
didate antecedents in the same way as described
before. The only difference is that the set of candi-
date antecedents of z may now include those NPs
that are used to fill the gaps of the AZPs resolved
so far. Some of these additional candidate an-
tecedents are closer to z than the original candidate
antecedents, thereby facilitating the resolution of
z. If the model resolves z to the additional can-
didate antecedent that fills the gap left behind by,
say, AZP z′, we postprocess the output by resolv-
ing z to the NP that z′ is resolved to.7

4 Evaluation

4.1 Experimental Setup

Datasets. We employ the Chinese portion of the
OntoNotes 5.0 corpus that was used in the official
CoNLL-2012 shared task (Pradhan et al., 2012).
In the CoNLL-2012 data, the training set and the
development set contain ZP coreference annota-
tions, but the test set does not. Therefore, we train
our models on the training set and perform eval-
uation on the development set. Statistics on the
datasets are shown in Table 3. The documents
in these datasets come from six sources, namely
Broadcast News (BN), Newswire (NW), Broad-
cast Conversation (BC), Telephone Conversation
(TC), Web Blog (WB) and Magazine (MZ).

Evaluation measures. Following previous
work on AZP resolution (e.g., Zhao and Ng
(2007), Chen and Ng (2013)), we express the
results of AZP resolution in terms of recall (R),
precision (P) and F-score (F). We report the
scores for each source in addition to the overall
score.

7This postprocessing step is needed because the additional
candidate antecedents are only gap fillers.

783



Number of embedding features for a word 100
Number of hand-crafted features 50
Number of neurons in l1 100
Number of neurons in l3 75
Number of neurons in y 50
Number of epochs over the training data 100
Smoothing factor γ 20
Learning rate α 0.01

Table 4: Hyperparameter values.

Hyperparameter tuning. We reserve 20% of
the training set for tuning hyperparameters. The
tuned hyperparameter values are shown in Table 4.
Evaluation settings. Following Chen and Ng
(2013), we evaluate our model in three settings.
In Setting 1, we assume the availability of gold
syntactic parse trees and gold AZPs. In Setting 2,
we employ gold syntactic parse trees and system
(i.e., automatically identified) AZPs. Finally, in
Setting 3, we employ system syntactic parse trees
and system AZPs. The gold and system syntactic
parse trees, as well as the gold AZPs, are obtained
from the CoNLL-2012 shared task dataset, while
the systemAZPs are identified by a learning-based
AZP identifier described in the Appendix.
Baseline system. As our baseline, we employ
Chen and Ng's (2015) system, which has achieved
the best result on our test set.

4.2 Results and Discussion

Results of the baseline system and our model on
entire test set are shown in row 1 of Table 5. The
three major columns in the table show the results
obtained in the three settings. As we can see, our
model outperforms the baseline significantly by
2.0%, 1.8%, and 1.1% in F-score under Settings 1,
2, and 3, respectively.8

Rows 2−7 of Table 5 show the resolution re-
sults on each of the six sources. As we can see, in
Setting 1, our model beats the baseline on all six
sources in F-score: by 2.4% (NW), 2.5% (MZ),
4.5% (WB), 1.6% (BN), 1.4% (BC), and 0.4%
(TC). All the improvements are significant except
for TC. These results suggest that our approach
works well across different sources. In Setting 2,
our model outperforms the baseline on all sources
except NW and BC, where the F-scores drop in-
significantly by 0.1% for both sources. Finally,
in Setting 3, our model outperforms the baseline
on all sources except NW and TC, where F-scores

8All significance tests are paired t-tests, with p < 0.05.

drop significantly by 0.7% for NW and 1.1% for
TC.
Given the challenges in applying supervised

learning (in particular, the difficulty and time in-
volved in training the deep neural network as well
as the time and effort involved in manually anno-
tating the data needed to train the network), one
may wonder whether the small though statistically
significant improvements in these results provide
sufficient justification for going back to supervised
learning from the previous state-of-the-art unsu-
pervised model. We believe that this is the begin-
ning, not the end, of applying deep neural networks
for AZP resolution. In particular, there is a lot of
room for improvements, which may involve incor-
porating more sophisticated features and improv-
ing the design of the network (e.g., the dimension-
ality of the intermediate representations, the num-
ber of hidden layers, the objective function), for
instance.

4.3 Ablation Results
Recall that the input of our model is composed of
two groups of features, embedding features and
hand-crafted features. To investigate the contribu-
tion of each of these two feature groups, we con-
duct ablation experiments. Specifically, in each
ablation experiment, we retrain the network using
only one group of features.
Ablation results under the three settings are

shown in Table 6. In Setting 1, when the hand-
crafted features are ablated, F-score drops signifi-
cantly by 12.2%. We attribute the drop to the fact
that the syntactic, positional, and other relation-
ships encoded in the hand-crafted features play an
important role in resolving AZPs. When the em-
bedding features are ablated, F-score drops signif-
icantly by 3.7%. This result suggest the effective-
ness of the embedding features.
Similar trends can be observed w.r.t. the other

two settings: in Setting 2, F-score drops signifi-
cantly by 6.8% and 2.2% when the hand-crafted
features and the embedding features are ablated re-
spectively, while in Setting 3, F-score drops signif-
icantly by 4.6% and 1.1% when the hand-crafted
features and the embedding features are ablated.

4.4 Learning Curve
We show in Figure 2 the learning curve of the our
model obtained under Setting 1. As we can see,
after the first epoch, the F-score on the entire test
set is around 46%, and it gradually increases to
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Setting 1: Setting 2: Setting 3:
Gold Parses, Gold AZPs Gold Parses, System AZPs System Parses, System AZPs
Baseline Our Model Baseline Our Model Baseline Our Model

Source R P F R P F R P F R P F R P F R P F
Overall 50.0 50.4 50.2 51.8 52.5 52.2 35.7 26.2 30.3 39.6 27.0 32.1 19.6 15.5 17.3 21.9 15.8 18.4
NW 46.4 46.4 46.4 48.8 48.8 48.8 32.1 28.1 30.0 34.5 26.4 29.9 11.9 14.3 13.0 11.9 12.8 12.3
MZ 38.9 39.1 39.0 41.4 41.6 41.5 29.6 19.6 23.6 34.0 22.4 27.0 4.9 4.7 4.8 9.3 7.3 8.2
WB 51.8 51.8 51.8 56.3 56.3 56.3 39.1 22.9 28.9 44.7 25.1 32.2 20.1 14.3 16.7 23.9 16.1 19.2
BN 53.8 53.8 53.8 55.4 55.4 55.4 30.8 30.7 30.7 36.9 31.9 34.2 18.2 22.3 20.0 22.1 23.2 22.6
BC 49.2 49.6 49.4 50.4 51.3 50.8 35.9 26.6 30.6 37.6 25.6 30.5 19.4 14.6 16.7 21.2 14.6 17.3
TC 51.9 53.5 52.7 51.9 54.2 53.1 43.5 28.7 34.6 46.3 29.0 35.6 31.8 17.0 22.2 31.4 15.9 21.1

Table 5: AZP resolution results of the baseline and our model on the test set.

Setting 1: Setting 2: Setting 3:
Gold Parses Gold Parses System Parses
Gold AZPs System AZPs System AZPs

System R P F R P F R P F
Full system 51.8 52.5 52.2 39.6 27.0 32.1 21.9 15.8 18.4
Embedding features only 39.2 40.8 40.0 30.9 21.5 25.3 16.3 12.0 13.8
Hand-crafted features only 48.2 48.7 48.5 37.0 25.1 29.9 20.6 14.9 17.3

Table 6: Ablation results of AZP resolution on the whole test set.

Figure 2: The learning curve of our model on the
entire test set under Setting 1.

52% in the 80th epoch when performance starts
to plateau. These results provide suggestive evi-
dence for our earlier hypothesis that our objective
function (Equation (8)) is tightly coupled with the
desired evaluation metric (F-score).

4.5 Analysis of Results

To gain additional insights into our approach, we
examine the outputs of our model obtained under
Setting 1.
We first analyze the cases where the AZP was

correctly resolved by our model but incorrectly re-
solved by the baseline. Consider the following
representative examplewith the corresponding En-
glish translation.

[陈水扁] 在登机前发表简短谈话时表示，[台
湾]要站起来走出去。... ∗pro∗也希望此行能
把国际友谊带回来。
[Chen Shui-bian] delivered a short speech before
boarding, saying that [Taiwan] should stand up

and go out. ... ∗pro∗ also hopes that this trip can
bring back international friendship.

In this example, the correct antecedent of the
AZP is 陈水扁 (Chen Shui-bian). However, the
baseline incorrectly resolves it to 台湾 (Taiwan).
The baseline's mistake can be attributed to the facts
that (1) 台湾 is the most salient candidate an-
tecedent in the discourse, and (2)台湾 is closer to
the AZP than the correct antecedent陈水扁. Nev-
ertheless, our model still correctly identifies陈水
扁 as the AZP's antecedent because of the embed-
ding features. A closer inspection of the training
data reveals that although the word陈水扁 never
appeared as the antecedent of an AZP whose gov-
erning verb is 希望 (hope) in the training data,
many AZPs that are governed by希望 are corefer-
ent with other person names. Because the word陈
水扁 has a similar word embedding as those per-
son names, our approach successfully generalizes
such lexical context and makes the right resolution
decision.

Next, we examine the errors made by our model
and find that the majority of the mistakes result
from insufficient lexical contexts. Currently, to
encode the lexical contexts, we only consider the
word preceding the AZP and its governing verb, as
well as the head word of the candidate antecedent.
However, this encoding ignored a lot of potentially
useful context information, such as the clause fol-
lowing the AZP, the modifier of the candidate an-
tecedent and the clause containing the candidate
antecedent. Consider the following example:
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[我] 前一会精神上太紧张。...∗pro∗ 现在比较
平静了。
[I] was too nervous a while ago. ... ∗pro∗ am now
calmer.

To resolve the AZP to its correct antecedent我
(I), one needs to compare the two clauses contain-
ing the AZP and 我. However, since our model
does not encode a candidate antecedent's context,
it does not resolve the AZP correctly. One way to
address this problem would be to employ sentence
embeddings to represent the clauses containing the
AZP and its candidate antecedents, and then per-
form sentence embedding matching to resolve the
AZP. The primary challenge concerns how to train
the model to match two clauses with probably no
overlapping words and with a limited number of
training examples.

5 Conclusions

We proposed an embedding matching approach to
zero pronoun resolution based on deep networks.
To our knowledge, this is the first neural network-
based approach to zero pronoun resolution. When
evaluated on the Chinese portion of the OntoNotes
corpus, our approach achieved state-of-the-art re-
sults.
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Appendix: Anaphoric Zero Pronoun
Identification

Recall that Settings 2 and 3 in our evaluation in-
volve the use of system AZPs. Our supervised
AZP identification procedure is composed of two
steps. First, in the extraction step, we heuristically
extract ZPs. Then, in the classification step, we
train a classifier to determine which of the ZPs ex-
tracted in the first step are AZPs.
To implement the extraction step, we use Zhao

and Ng's (2007) observation: ZPs can only occur
before a VP node in a syntactic parse tree. How-
ever, according to Kong and Zhou (2010), ZPs do
not need to be extracted from every VP: if a VP
node occurs in a coordinate structure or is modi-
fied by an adverbial node, then only its parent VP
node needs to be considered. We extract ZPs from
all VPs that satisfy the above constraints.
To implement the classification step, we train a

binary classifier using SVMlight (Joachims, 1999)
on the CoNLL-2012 training set to distinguish
AZPs from non-AZPs. Each instance corresponds
to a ZP extracted in the first step and is represented

Syntactic
features
(13)

whether z is the first gap in an IP clause;
whether z is the first gap in a subject-less
IP clause, and if so, POS(w1); whether
POS(w1) is NT; whether t1 is a verb that
appears in a NP or VP; whether Pl is a NP,
QP, IP or ICP node; whether Pr is a VP
node; the phrasal label of the parent of the
node containing POS(t1); whether V has a
NP, VP, QP or CP ancestor; whether C is
a VP node; whether the parent of V is an IP
node; whether V's lowest IP ancestor has (1)
a VP node as its parent and (2) a VV node
as its left sibling; whether there is a VP node
whose parent is an IP node in the path from
t1 to C.

Lexical
features
(13)

the words surrounding z and/or their
POS tags, including w1, w−1, POS(w1),
POS(w−1) + POS(w1), POS(w1) +
POS(w2), POS(w−2) + POS(w−1),
POS(w1) + POS(w2) + POS(w3),
POS(w−1) + w1, and w−1 + POS(w1);
whether w1 is a transitive verb, an intransi-
tive verb or a preposition; whether w−1 is
a transitive verb without an object.

Other
features
(6)

whether z is the first gap in a sentence;
whether z is in the headline of the text; the
type of the clause in which z appears; the
grammatical role of z; whether w−1 is a
punctuation; whether w−1 is a comma.

Table 7: Features for AZP identification. z is a zero
pronoun. V is the VP node following z. wi is the ith word to
the right of z (if i is positive) or the ith word to the left of z

(if i is negative). C is lowest common ancestor of w−1 and
w1. Pl and Pr are the child nodes of C that are the ancestors
of w−1 and w1 respectively.

by 32 features, 13 of which were proposed by Zhao
and Ng (2007) and 19 of which were proposed by
Yang and Xue (2010). A brief description of these
features can be found in Table 7.
When gold parse trees are employed, the recall,

precision and F-score of the AZP identifier on our
test set are 75.1%, 50.1% and 60.1% respectively.
Using automatic parse trees, the performance of
the AZP identifier drops to 43.7% (R), 30.7% (P)
and 36.1% (F).
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