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Abstract

Digital personal assistants are becoming
both more common and more useful. The
major NLP challenge for personal assis-
tants is machine understanding: translat-
ing natural language user commands into
an executable representation. This paper
focuses on understanding rules written as
If-Then statements, though the techniques
should be portable to other semantic pars-
ing tasks. We view understanding as struc-
ture prediction and show improved mod-
els using both conventional techniques and
neural network models. We also discuss
various ways to improve generalization
and reduce overfitting: synthetic training
data from paraphrase, grammar combina-
tions, feature selection and ensembles of
multiple systems. An ensemble of these
techniques achieves a new state of the art
result with 8% accuracy improvement.

1 Introduction

The ability to instruct computers using natural lan-
guage clearly allows novice users to better use
modern information technology. Work in se-
mantic parsing has explored mapping natural lan-
guage to some formal domain-specific program-
ming languages such as database queries (Woods,
1977; Zelle and Mooney, 1996; Berant et al.,
2013; Andreas et al., 2016; Yin et al., 2016),
commands to robots (Kate et al., 2005), operat-
ing systems (Branavan et al., 2009), and spread-
sheets (Gulwani and Marron, 2014). This pa-
per explores the use of neural network models
(NN) and conventional models for semantic pars-
ing. Recently approaches using neural networks
have shown great improvements in a number of
areas such as parsing (Vinyals et al., 2015), ma-

chine translation (Devlin et al., 2014), and image
captioning (Karpathy and Fei-Fei, 2015). We are
among the first to apply neural network methods to
semantic parsing tasks (Grefenstette et al., 2014;
Dong and Lapata, 2016).

There are several benchmark datasets for se-
mantic parsing, the most well known of which is
Geoquery (Zelle and Mooney, 1996). We target
an If-Then dataset (Quirk et al., 2015) for sev-
eral reasons. First, it is both directly applica-
ble to the end-user task of training personal dig-
ital assistants. Second, the training data, drawn
from the site http://ifttt.com, is com-
paratively quite large, containing nearly 100,000
recipe-description pairs. That said, it is several or-
ders of magnitude smaller than the data for other
tasks where neural networks have been successful.
Machine translation datasets, for instance, may
contain billions of tokens. NN methods appear
“data-hungry”. They require larger datasets to out-
perform sparse linear approaches with careful fea-
ture engineering, as evidenced in work on syntac-
tic parsing (Vinyals et al., 2015). This makes it
interesting to compare NN models with conven-
tional models on this dataset.

As in most prior semantic parsing attempts, we
model natural language understanding as a struc-
ture prediction problem. Each modeling decision
predicts some small component of the target struc-
ture, conditioned on the whole input and all prior
decisions. Because this is a real-world task, the
vocabulary is large and varied, with many words
appearing only rarely. Overfitting is a clear dan-
ger. We explore several methods to improve gen-
eralization. A classic method is to apply feature
selection. Synthetic data generated by paraphras-
ing helps augment the data available. Adjusting
the conditional structure of our model also makes
sense, as does creating ensembles of the best per-
forming approaches.
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An ensemble of the resulting systems achieves
a new state-of-the-art result, with an absolute im-
provement of 8% in accuracy. We compare the
performance of a neural network model with lo-
gistic regression, and explore in detail the contri-
bution of each of them, and why the logistic re-
gression is performing better than the neural net-
work.

2 Related Work

2.1 Semantic Parsing

Semantic parsing is the task of translating natu-
ral language to a meaning representation language
that the machine can execute. Various seman-
tic parsing tasks have been proposed before, in-
cluding querying a database (Zelle and Mooney,
1996), following navigation instructions (Chen,
2012), translating to Abstract Meaning Represen-
tation (AMR) (Artzi et al., 2015), as well as the
If-Then task we explore. Meaning representa-
tion languages vary with the task. In database
queries, the meaning representation language is ei-
ther the native query language (e.g. SQL or Pro-
log), or some alternative that can be deterministi-
cally transformed into the native query language.
To follow navigation instructions, the meaning
representation language is comprised of sequences
of valid actions: turn left, turn right, move for-
ward, etc. For parsing If-Then rules, the meaning
representation is an abstract syntax tree (AST) in
a very simple language. Each root node expands
into a “trigger” and “action” pair. These nodes in
turn expand into a set of supported triggers and ac-
tions. We model these trees as an (almost) context
free grammar1 that generates valid If-Then tasks.

A number of semantic parsing approaches have
been proposed, but most fit into the following
broad divisions. First, approaches driven by
Combinatory Categorical Grammar (CCG) have
proven successful at several semantic parsing
tasks. This approach is attractive in that it simul-
taneously provides syntactic and semantic parses
of a natural language utterance. Syntactic struc-
ture helps constrain and guide semantic interpre-
tation. CCG relies heavily on a lexicon that spec-
ifies both the syntactic category and formal se-

1Information at the leaves of the action may use parame-
ters drawn from the trigger. For instance, consider a rule that
says “text me the daily weather report.” The trigger is a new
weather report, and the action is to send an SMS. The con-
tents of that SMS are generated by the trigger, which is no
longer context free.

mantics of each lexical item in the language. In
many instantiations, the lexicon is learned from
the training data (Zettlemoyer and Collins, 2005)
and grounds directly in the meaning representa-
tion.

Another approach is to view the semantic pars-
ing task as a machine translation task, where the
source language is natural language commands
and the target language is the meaning represen-
tation. Several approaches have applied standard
machine translation techniques to semantic pars-
ing (Wong and Mooney, 2006; Andreas et al.,
2013; Ratnaparkhi, 1999) with successful results.

More recently, neural network approaches have
been developed for semantic parsing, and espe-
cially for querying a database. A neural network
is trained to translate the query and the database
into some continuous representation then use it to
answer the query (Andreas et al., 2016; Yin et al.,
2016).

2.2 If-Then dataset
We use a semantic parsing dataset collected from
http://ifttt.com, first introduced in Quirk
et al. (2015). This website publishes a large set of
recipes in the form of If-Then rules. Each recipe
was authored by a website user to automate sim-
ple tasks. For instance, a recipe could send you
a message every time you are tagged on a pic-
ture on Facebook. From a natural language stand-
point, the most interesting part of this data is that
alongside each recipe, there is a short natural lan-
guage description intended to name or advertise
the task. This provides a naturalistic albeit often
noisy source of parallel data for training seman-
tic parsing systems. Some of these descriptions
faithfully represent the program. Others are under-
specified or suggestive, with many details of the
recipe are not uniquely specified or omitted alto-
gether. The task is to predict the correct If-Then
code given a natural language description.

As for the code, If-Then statements follow the
format

I f T r i g g e r C h a n n e l .
T r i g g e r F u n c t i o n ( a r g s )

Then Ac t ionChanne l .
A c t i o n F u n c t i o n ( a r g s )

Every If-Then statement has exactly one trigger
and one action. Each trigger and action consist of
both a channel and a function. The channel repre-
sents a connection to a service, website, or device
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(e.g., Facebook, Android, or ESPN) and provides
a set of functions relevant to that channel. Finally,
each of these functions may take a number of argu-
ments: to receive a trigger when it becomes sunny,
we need to specify the location to watch. The re-
sulting dataset after cleaning and separation con-
tains 77,495 training recipes, 5,171 development
recipes and 4,294 testing recipes.

2.3 Semantic parsing for If-Then rules
Both CCG and MT-inspired approaches assume a
fairly strong correspondence between the words in
the natural language request and the concepts in
the meaning representation. That is, most words
in the description should correspond to some con-
cept in the code, and most concepts in the code
should correspond to some word in the descrip-
tion. However, prior work on this dataset (Quirk
et al., 2015) found that this strong correspondence
is often missing. The descriptions may mention
only the most crucial or interesting concepts; the
remainder of the meaning representation must be
inferred from context. The best performing meth-
ods focused primarily on generating well-formed
meaning representations, conditioning their deci-
sions on the source language.

Quirk et al. (2015) proposed two models that
rely on a grammar to generate all valid ASTs.
The first model learns a simple classifier for each
production in the grammar, treating the sentence
as a bag of features. No alignment between the
language and meaning representation is assumed.
The second method attempts to learn a correspon-
dence between the language and the code, jointly
learning to select the correct productions in the
meaning representation grammar. Although the
latter approach is more appealing from a modeling
standpoint, empirically it doesn’t perform substan-
tially better than the alignment-free model. Fur-
thermore the alignment-free model is much sim-
pler to implement and optimize. Therefore, we
build upon the alignment-free approach.

2.4 Neural Networks
Neural network approaches have recently made
great strides in several natural language process-
ing tasks, including machine translation and de-
pendency parsing. Partially these gains are due
to better generalization ability. Until recently,
the NLP community leaned heavily on feature-
rich approaches that allow models to learn com-
plex relationships from data. However, impor-

IF

TRIGGER ACTION

Instagram

AnyNewPhotoByYou

Dropbox

AddFileFromURL

Figure 1: Derivation tree of If-Then statement
of the recipe Autosave your Instagram photos to
Dropbox. Arguments of the functions AnyNew-
PhotoByYou and AddFileFromURL are ignored.

tant features, such as indicator features for words
and phrases, were often very sparse. Furthermore,
the best systems often relied on manually-induced
feature combinations (Bohnet, 2010). Multi-layer
neural networks have several advantages. Words
(or, more generally, features) are first embedded
into a continuous space where similar features
land in nearby locations; this helps lead to lexical
generalization. The additional hidden layers can
model feature interactions in complex ways, obvi-
ating the need for manual feature template induc-
tion. Feed-forward neural networks with relatively
simple structure have shown great gains in both
dependency parsing (Chen and Manning, 2014)
and machine translation (Devlin et al., 2014) with-
out the need for complex feature templates and
large models. Our NN models here are inspired
by these effective approaches.

3 Approach

We next describe the details of how If-Then
recipes are constructed given natural language de-
scriptions. As in prior work, we treat semantic
parsing as a structure prediction task. First we de-
scribe the structure and features of the model, then
expand on the details of inference.

3.1 Grammar
Along the lines of Quirk et al. (2015), we build
a context-free grammar baseline. This grammar
generates only well-formed meaning representa-
tions. In the case of this dataset, meaning repre-
sentations always consist of a root production with
two children: a trigger and an action. Both trigger
and action first generate a channel, then a function
matching that action. Optionally we may also gen-
erate the arguments of these functions; we do not
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evaluate these selections as they are often idiosyn-
cratic and specific to the user. For example, the
recipe Autosave your Instagram photos to Drop-
box has the following meaning representation:

IF I n s t a g r a m . AnyNewPhotoByYou
THEN Dropbox . AddFileFromURL (

FileURL ={ S o u r c e U r l } ,
Fi leName ={C a p t i o n } ,
D r opb oxF o ld e rP a th =IFTTT / I n s t a g r a m

)

If we ignore the function arguments, the resulting
meaning representation is:

IF I n s t a g r a m . AnyNewPhotoByYou
THEN Dropbox . AddFileFromURL

This examples shows also that most of the function
arguments are not crucial for the representation of
the If-Then statement.2

The grammar we use has productions corre-
sponding to every channel and every function.
Figure 1 shows an example derivation tree D. This
grammar consists of 892 productions: 128 trigger
channels, 487 trigger functions, 99 action channels
and 178 action functions.3

3.2 Model
Our goal is to learn a model of derivation trees D
given a natural sentences S. To predict the deriva-
tion for a sentence, we seek the derivation D with
maximum probability given the sentence P (D|S).

For the purposes of modeling, we prefer to work
with sequences rather than trees. Given a deriva-
tion tree D, we transform it into a sequence of pro-
ductions R(D) = r1, . . . , rn by a top-down, left-
to-right tree traversal: r1 is the top-most produc-
tion, and rn is the bottom right production. The
sentence S is represented as a set of features f(S).

The derivation score P (D|S) is a function of
the productions of D and those features f(S):

P (D|S) =
∏

ri∈R(D)

P (ri|r1, . . . , ri−1, f(S)) (1)

The score of a derivation tree given the sentence
is the product of probabilities of its productions.

2Arguments are still important for a few If-Then recipes.
For instance, in If there is snow tomorrow send a noti-
fication, “snow” is an argument to the function Tomor-
row’sForecastCallsFor. We are not handling such cases in
this work.

3For this task, it is possible to model the programs as a
4-tuple, but using the grammar approach allows us to port the
same technique to other semantic parsing tasks.

ri−1

ri−2

ri−3

S

ri

Hidden
layer(s)

Input
layer

Output
layer

Figure 2: Architecture of the feed-forward neural
networks used in this paper. When predicting rule
ri, the prior rules and the whole sentence are used
as input. Separate parameters are learned for each
position i.

The probability of selecting production ri given
the sentence S is dependent on the features of
the sentence as well as the previous productions
r1, . . . , ri−1; namely, all those productions that
are above and to the left of the current produc-
tion. Conditioning on previous productions helps
predicting the next one because it captures the
conditional dependencies between the productions
of the derivation tree, an improvement over prior
work (Quirk et al., 2015). In particular, we can
model which combinations of triggers and actions
are more compatible, both function and channel.

3.3 Training

To learn the derivation score P (D|S), we
need to learn probability of productions
P (ri|r1, . . . , ri−1, f(S)). We learn this prob-
ability using a multiclass classifier where the
output classes are the possible productions in the
grammar. The classifier is trained to predict the
next production given previous productions and
the sentence features.

Each sentence S is represented with a sparse
feature vector f(S). We used a simple set of fea-
tures: word unigrams and bigrams, character tri-
grams, and Brown clusters (Liang, 2005). Each
sentence is represented as a large sparse k-hot vec-
tor, where k is the number of features representing
S, |f(S)|. We use a simple one-hot representation
of prior rules.

For training, we explored two approaches: a
standard logistic regression classifier, and a feed
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forward neural network classifier. 4 As for net-
work structure, we evaluated models with either
one or two 200-dimensional hidden layers (with
sigmoid activation function) followed by a soft-
max output layer to produce a probability for each
production. We tried more than two hidden lay-
ers and larger hidden layer size, but the results
were similar or worse likely because training be-
comes more difficult. Figure 2 shows the archi-
tecture of the network we use. For training, we
used a variant of stochastic gradient descent called
RMSprop (Dauphin et al., 2015) that adjusts the
learning rate for each parameter adaptively, along
with a global learning rate of 1−3. The mini-
batch size was 100, with dropout regularization
for hidden layers at 0.5 along with an L2 regular-
izer with weight 0.005. Each of these parameters
were tuned on the validation set, though we found
learning to be robust to minor variations in these
parameters. All of the neural networks were im-
plemented with Theanets (Johnson, 2015).

Note that history features r1, . . . , ri−1 in clas-
sifier training are always correct. The model is
akin to a MEMM, rather than a CRF. We make this
simplifying assumption for tractability, like many
neural network approaches (Devlin et al., 2014).

3.4 Inference

When, at test time, we are given a new sentence,
we would like to infer its most probable deriva-
tion tree D. Classifiers trained as in the prior
section give probability distributions over produc-
tions given the sentence and all prior productions
P (ri|r1, . . . , ri−1, f(S)). Were the distribution
to be context free, we could rely on algorithms
similar to Earley parsing (Earley, 1970) to find
the max derivation. However, the dependency on
prior productions breaks the context free assump-
tion. Therefore, we resort to approximate infer-
ence, namely beam search. Each partial hypothe-
sis is grouped into a beam based on the number of
productions it contains; we use a beam width of 8,
and search for the highest scoring hypothesis.

4 Improving generalization

The data set we use for training and testing is pri-
marily English but contains a broad vocabulary as

4We tried the sequence-to-sequence model with
LSTMs (Sutskever et al., 2014) to map word sequence
to the derivation tree productions, but the results were always
lower than the feed forward network. This is probably
because of the lack of enough training data.

well as many sentences from other languages such
as Chinese, Arabic, and Russian. Thus, a seem-
ingly large dataset of nearly eighty thousand ex-
amples is likely to suffer from overfitting. In this
section, we discuss a few attempts to improve gen-
eralization in the sparse data setting.

4.1 Synthetic data using paraphrases

Arguably the best, though most expensive, way to
reduce overfitting is to collect more training data.
In our case, the training data available is limited
and difficult to create. We propose to augment the
training data in an automatic though potentially
noisy way by generating synthetic training pairs.

The main idea is that two semantically equiv-
alent sentences should have the same meaning
representation. Given an existing training pair,
replacing the pair’s linguistic description with a
paraphrase leads to a new synthetic training pair.
For example, a recipe like Autosave your Insta-
gram photos to Dropbox can be paraphrased to Au-
tosave your Instagram pictures to Dropbox while
retaining the meaning representation:

IF I n s t a g r a m . AnyNewPhotoByYou
THEN Dropbox . AddFileFromURL .

We first explore paraphrases using WordNet
synonyms. Every word in the sentence can be re-
placed by one of its synonyms that is picked ran-
domly (a word is a synonym of itself). For words
with multiple senses, we group all synonyms of all
senses, then retain only those synonyms already
in the vocabulary of the training data. This has
two advantages. First, we do not increase the vo-
cabulary size and therefore avoid overfitting. Sec-
ond, this acts as a simple form of word sense dis-
ambiguation. This adds around 50,000 additional
training examples.

Next, we consider augmenting the data us-
ing the Paraphrase Database (Ganitkevitch et al.,
2013). Each original description is converted into
a lattice. The original word at each position is
left in place with a constant score. For each word
or phrase in the description found PPDB, we add
one arc for each paraphrase, parameterized by the
PPDB score of that phrase. The resulting lattice
represents many possible paraphrases of the input.
We select at most 10 diverse paths through this
lattice using the method of Gimpel et al. (2013).5

This adds around 470,000 training examples.

5We use a trigram language model, and a weight of 4.
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TRIGGER ACTION

Instagram.AnyNewPhotoByYou Dropbox.AddFileFromURL

Figure 3: Derivation tree of IFTTT statement
of the recipe Autosave your Instagram photos to
Dropbox using the second grammar.

4.2 Alternative grammar formulation

We rely on a grammar to generate all valid mean-
ing representations and learn models over the pro-
ductions of this grammar. Different factorizations
of the grammar lead to different model distribu-
tions. Our primary grammar is described in Sec-
tion 3.1. A second, alternate grammar formulation
has fewer levels but more productions: it com-
bines the channel and function into a single pro-
duction, in both the trigger and the action. Figure 3
shows an example derivation tree using this gram-
mar. The size of this grammar is 780 productions
(552 triggers + 228 actions).

An advantage of this grammar is that it cannot
assign probability mass to invalid ASTs, where the
function is not applicaable to the channel. On the
other hand, this grammar likely does not general-
ize as well as the first grammar. The first grammar
effectively has much more data about each chan-
nel, which likely improves accuracy. Function
predictions can condition on hopefully accurate
channel predictions. It can also benefit from the
fact that some function names are shared among
channels. From that perspective, the second gram-
mar has fewer training instances for each outcome.

4.3 Feature selection

The training set contains approximately 77K train-
ing examples, yet the number of distinct features
types (word unigrams and bigrams, character tri-
grams, Brown clusters) is approximately 230K.
Only 80K features occur in the training set more
than once. This ratio suggests overfitting may be
a major issue.Feature selection likely can improve
these issues. We used only simple count cutoffs,
including only features that occur in the training
set more than once and more than twice. Including
features that occur more than once led to improve-
ments in practice.

4.4 Ensemble

Finally, we explore improving generalization by
building ensembles of multiple systems. Even
if systems overfit, they likely overfit in different
ways. When systems agree, they are likely to
agree on the correct answer. Combining their re-
sults will suffer less from overfitting. We use sim-
ple majority voting as an ensemble strategy, re-
solving ties in an arbitrary but deterministic way.

5 Evaluation

We evaluate the performance of the systems by
providing the model with descriptions unseen dur-
ing training. Free parameters of the models were
tuned using the development set. The separation
of data into training, development, and test fol-
lows Quirk et al. (2015). Two evaluation metrics
are used: accuracy on just channel selection and
accuracy of both channel and function.

Two major families of approaches are consid-
ered: a baseline logistic regression classifier from
scikit-learn (Pedregosa et al., 2011), as well as a
feed-forward neural network. We explore a num-
ber of variations, including feature selection and
grammar formulation.

5.1 Comparison systems

Our default system was described in section 3, not
including improvements from section 4 unless oth-
erwise noted. The grammar uses the primary for-
mulation from section 3.1. Neural network mod-
els use a single hidden layer by default; we also
explore two hidden layers.

We evaluate two approaches for generating syn-
thetic data. The first approach, leaning primar-
ily on WordNet to generate up to one paraphrase
for each instance, is labeled WN. The second ap-
proach using Paraphrase Database to generate up
to ten paraphrases is labeled PPDB.

The Alternate grammar line uses the section 4.2
grammar, and otherwise default configurations (no
synthetic data, single hidden layer for NN).

Feature selection again uses the default config-
uration, but uses only those features that occurred
more than once in the training data.

Finally we explore ensembles of all approaches.
First, we combine all variations within the same
model family; next, we bring all systems together.
To evaluate the impact of individual systems, we
also present results with specific systems removed.
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System Channel accuracy Full tree accuracy

NN LR NN LR

Quirk et al. (2015) w/o alignment - 46.30 - 33.00
Quirk et al. (2015) with alignment - 47.40 - 34.50

Default configurations 52.93 53.73 39.66 41.87
Two hidden layers 46.81 - 32.77 -
No hidden layers 50.05 - 38.47 -
Synthetic data (WN) 52.45 53.68 38.64 41.55
Synthetic data (PPDB) 51.86 52.96 38.86 40.63
Alternate grammar 50.09 52.42 39.10 41.15
Feature selection 52.91 53.31 39.29 41.34

Ensemble of systems above 53.98 53.73 41.06 41.85

Ensemble NN + LR 54.31 42.55
Ensemble NN + LR (w/o alternate grammar) 54.38 41.90
Ensemble NN + LR (w/o synthetic data) 53.98 42.41

Table 1: Accuracy of the Neural Network (NN) and Logistic Regression (LR) implementations of our
system with various configurations. Channel-only and full tree (channel+function) accuracies are listed.

5.2 Results

Table 1 shows the accuracy of each evaluated sys-
tem, and Table 2 explores system performance on
important subsets of the data. The first columns
present accuracy of just the channel, and the last
columns present the channel and the function to-
gether (the full derivation). We achieve new state-
of-the-art results, showing a 7% absolute improve-
ment on the channel-only accuracy and 8% abso-
lute improvement on the full derivation tree in the
most difficult condition.

5.3 Discussion

Partly these improved results are driven by better
features. Adding more robust representations of
the input (e.g. Brown clusters) and conditioning
on prior structure of the tree leads to more consis-
tent and coherent trees.

One key observation is that the logistic regres-
sion classifier consistently outperforms the neu-
ral network, though by a small margin. We sus-
pect two main causes: optimization difficulties
and training size. To compare the optimization al-
gorithms, Table 1 shows the result of a neural net-
work with no hidden layers, which is effectively
identical to a logistic regression model. Stochastic
gradient descent used to train the neural network
did not perform as well as the LIBLINEAR (Fan
et al., 2008) solver used to train the logistic re-
gression, because the loss function was not opti-
mized as well. Optimization problems are even
more likely with hidden layers, since the objective
is no longer convex.

Second, the training data is small by neural net-

work standards. Prior attempts to use neural net-
works for parsing required larger amounts of train-
ing data to exceed the state-of-the-art. Non-linear
models are able to capture regularities that linear
models cannot, but may require more training data
to do so. Table 1 shows that a network with a sin-
gle hidden layer outperforms a one with two hid-
den layers. This additional hidden layer seems to
make learning harder (even with layer-wise pre-
training). We also ran an additional experiment,
limiting both NN and LR to use word unigram
features, and varying the vocabulary size by fre-
quency thresholding; the results are in table 3. LR
models were more effective when all features were
present, likely due to their convex objective and
simple regularization. NN models, on the other
hand, actually outperform LR models when lim-
ited to more common vocabulary items. Given
more data, NN could likely find representations
that outperformed manual feature engineering.

Although we only considered feed-forward
nerual networks, results on recurrent architectures
Dong and Lapata (2016) are in accordance with
our findings. Their LSTM-based approach does
not achieve great gains on this data set because:
“user curated descriptions are often of low quality,
and thus align very loosely to their correspond-
ing ASTs”. Even though this training set is larger
than other semantic parsing datasets, the vocabu-
lary, sentence structures, and even languages here
are much more diverse, which make it difficult for
the NN to learn useful representations. Dong and
Lapata (2016) tried to reduce the impact of this
problem by evaluating only on the English sub-
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Channel Full tree

All: 4,294 recipes
posclass 47.4 34.5
D&L — —
NN 52.9 39.7
LR 53.7 41.9
Ensemble 54.3 42.6
oracleturk 48.8 37.8

Omit non-English: 3,744 recipes
posclass 50.0 36.9
D&L 54.3 39.2
NN 55.1 41.2
LR 56.0 44.3
Ensemble 56.8 44.5
oracleturk 56.0 43.5

Omit non-English, unintelligible: 2,433 recipes
posclass 67.2 50.4
D&L 68.8 50.5
NN 71.3 53.7
LR 71.9 56.6
Ensemble 72.7 57.1
oracleturk 86.2 59.4

≥3 agree with gold: 760 recipes
posclass 81.4 71.0
D&L 87.8 75.2
NN 88.0 74.3
LR 88.8 82.5
Ensemble 89.1 82.2
oracleturk 100.0 100.0

Table 2: System comparisons on various subsets
of the data. Following Quirk et al. (2015), we also
evaluation on illustrative subsets. “posclass” rep-
resents the best system from prior work. D&L is
the best-performing system from Dong and Lapata
(2016). NN and LR are the single best neural net-
work, logistic regression models, and Ensemble is
the combination of all systems. “oracleturk” rep-
resents cases where at least one turker agreed with
the gold standard.

set of the data. Interestingly, our carefully built
feed-forward networks outperform their approach
in almost every subset.

Although the neural network with one hidden
layer does not outperform logistic regression in a
feature rich setting, it makes substantially different
predictions. An ensemble of their outputs achieves
better accuracy than either system individually.

Our techniques for improving generalization do
not improve individual systems. Yet when all tech-
niques are combined in an ensemble, the resulting
predictions are better. Furthermore, an ensemble
without the synthetic data or without the alternate
grammar has lower accuracy: each technique con-
tributes to the final result.

System
Full tree accuracy

NN LR

All words 35.79 37.03
Count ≥ 2 37.01 36.91
Count ≥ 3 37.07 36.59

Table 3: Accuracy of NN and LR limited to word
unigram features, with three vocabulary sizes: all
words, words occurring at least twice in the train-
ing data (13,971 words), and those occurring at
least three times in the training data (8,974 words).

5.4 Comparison of logistic regression and
neural network approaches

We performed a detailed exploration of the cases
where either the LR model was correct and the NN
model was wrong, or vice versa. Table 4 breaks
these errors into a number of cases:

• Swapped trigger and action. Here the sys-
tem misinterpreted a rule, swapping the trig-
ger for the action. An example NN swap was
“Backup Pinboard entries to diigo”; an exam-
ple LR swap was “Like a photo on tumblr and
upload it to your flickr photostream .”

• Duplicated. In this case, the system used the
same channel for both trigger and action, de-
spite clear evidence in the language. For in-
stance, the LR model incorrectly used Face-
book as both the trigger and channel in this
recipe: “New photo on Facebook addec to
my Pryv”. The NN model correctly identified
Pryv as the target channel, despite the typo in
the recipe.

• Missed word cue. In many cases there was a
clear “cue word” in the language that should
have forced a correct channel, but the model
picked the wrong one. For instance, in “tweet
# stared youtube video”, the trigger should be
starred YouTube videos, but the NN model
incorrectly selected feeds.

• Missed multi-word cue. Sometimes the
cue was a multi-word phrase, such as “One
Drive”. The NN model tended to miss these
cues.

• Missed inference. In certain cases the cue
was more of a loose inference. Words such
as “payment” and “refund” should tend to
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NN LR
Error type errors errors

Swapped trigger and action 4 4
Duplicated 3 4
Missed word cue 8 8
Missed multi-word cue 2 0
Missed inference 8 0
Related channel 5 8

Grand Total 30 24

Table 4: Count of error cases by type for NN and
LR models, in their default configurations. This
table only counts those instances in the most clean
set (where three or more turkers agree with the
gold program) where exactly one system made an
error.

refer to triggers from the Square payment
provider; the NN seemed to struggle on these
cases.

• Related channel. Often the true channel is
very difficult to pick: should the system use
iOS location or Android location? NN mod-
els seemed to do better on these cases, per-
haps picking up on some latent cues in the
data that were not immediately evident to the
authors.

In general, a slightly more powerful NN model
with access to more relevant data might overcome
some of the issues above.

We also explored correlations with errors and
a number of other criteria, such as text length and
frequency of the channels and functions, but found
no substantial differences. In general, the remain-
ing errors are often plausible given the noisy input.

6 Future Work

We have achieved a new state-of-the-art on this
dataset, though derivation tree accuracy remains
low, around 42%. While some errors are caused
by training data noise and others are due to noisy
test instances, there is still room for improvement.

We believe synthetic data is a promising direc-
tion. Initial attempts show small improvements;
better results may be within reach given more tun-
ing. This may enable gains with recurrent archi-
tectures (e.g., LSTMs).

The networks here rely primarily on word-based
features. Character-based models have resulted in

improved syntactic parsing results (Ballesteros et
al., 2015). We believe that noisy data such as the
If-Then corpus would benefit from character mod-
elings, since the models could be more robust to
spelling errors and variations.

Another important future work direction is to
model the arguments of the If-Then statements.
However, that requires segmenting the arguments
into those that are general across all users, and
those that are specific to the recipe’s author. Likely
this would require further annotation of the data.

7 Conclusion

In this paper, we address a semantic parsing task,
namely translating sentences to If-Then state-
ments. We model the task as structure prediction,
and show improved models using both neural net-
works and logistic regression. We also discussed
various ways to improve generalization and re-
duce overfitting, including adding synthetic train-
ing data by paraphrasing sentences, using multiple
grammars, applying feature selection and ensem-
bling multiple systems. We achieve a new state-of-
the-art with 8% absolute accuracy improvement.
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