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Abstract

Question answering requires access to a
knowledge base to check facts and rea-
son about information. Knowledge in the
form of natural language text is easy to ac-
quire, but difficult for automated reason-
ing. Highly-structured knowledge bases
can facilitate reasoning, but are difficult to
acquire. In this paper we explore tables
as a semi-structured formalism that pro-
vides a balanced compromise to this trade-
off. We first use the structure of tables
to guide the construction of a dataset of
over 9000 multiple-choice questions with
rich alignment annotations, easily and ef-
ficiently via crowd-sourcing. We then
use this annotated data to train a semi-
structured feature-driven model for ques-
tion answering that uses tables as a knowl-
edge base. In benchmark evaluations, we
significantly outperform both a strong un-
structured retrieval baseline and a highly-
structured Markov Logic Network model.

1 Introduction

Question answering (QA) has emerged as a prac-
tical research problem for pushing the boundaries
of artificial intelligence (AI). Dedicated projects
and open challenges to the research community in-
clude examples such as Facebook AI Research’s
challenge problems for AI-complete QA (Weston
et al., 2015) and the Allen Institute for AI’s (AI2)
Aristo project (Clark, 2015) along with its recently
completed Kaggle competition1. The reason for
this emergence is the diversity of core language
and reasoning problems that a complex, integrated

1https://www.kaggle.com/c/
the-allen-ai-science-challenge

task like QA exposes: information extraction (Sri-
hari and Li, 1999), semantic modelling (Shen and
Lapata, 2007; Narayanan and Harabagiu, 2004),
logic and reasoning (Moldovan et al., 2003), and
inference (Lin and Pantel, 2001).

Complex tasks such as QA require some form
of knowledge base to store facts about the world
and reason over them. By knowledge base, we
mean any form of knowledge: structured (e.g., ta-
bles, ontologies, rules) or unstructured (e.g., nat-
ural language text). For QA, knowledge has been
harvested and used in a number of different modes
and formalisms: large-scale extracted and curated
knowledge bases (Fader et al., 2014), structured
models such as Markov Logic Networks (Khot et
al., 2015), and simple text corpora in information
retrieval approaches (Tellex et al., 2003).

There is, however, a fundamental trade-off in
the structure and regularity of a formalism and its
ability to be curated, modelled or reasoned with
easily. For example, simple text corpora contain
no structure, and are therefore hard to reason with
in a principled manner. Nevertheless, they are eas-
ily and abundantly available. In contrast, Markov
Logic Networks come with a wealth of theoretical
knowledge connected with their usage in princi-
pled inference. However, they are difficult to in-
duce automatically from text or to build manually.

In this paper we explore tables as semi-
structured knowledge for multiple-choice question
(MCQ) answering. Specifically, we focus on ta-
bles that represent general knowledge facts, with
cells that contain free-form text (Secton 3 details
the nature and semantics of these tables). The
structural properties of tables, along with their
free-form text content represents a semi-structured
balanced compromise in the trade-off between de-
gree of structure and ubiquity. We present two
main contributions, with tables and their structural
properties playing a crucial role in both. First,
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we crowd-source a collection of over 9000 MCQs
with alignment annotations to table elements, us-
ing tables as guidelines in efficient data harvest-
ing. Second, we develop a feature-driven model
that uses these MCQs to perform QA, while fact-
checking and reasoning over tables.

Others have used tables in the context of QA.
Question bank creation for tables has been inves-
tigated (Pasupat and Liang, 2015), but without
structural guidelines or the alignment information
that we propose. Similarly, tables have been used
in QA reasoning (Yin et al., 2015b; Neelakantan
et al., 2015; Sun et al., 2016) but have not explic-
itly attempted to encode all the semantics of ta-
ble structure (see Section 3.1). To the best of our
knowledge, no previous work uses tables for both
creation and reasoning in a connected framework.

We evaluate our model on MCQ answering for
three benchmark datasets. Our results consis-
tently and significantly outperform a strong re-
trieval baseline as well as a Markov Logic network
model (Khot et al., 2015). We thus show the ben-
efits of semi-structured data and models over un-
structured or highly-structured counterparts. We
also validate our curated MCQ dataset and its an-
notations as an effective tool for training QA mod-
els. Finally, we find that our model learns general-
izations that permit inference when exact answers
may not even be contained in the knowledge base.

2 Related Work

Our work with tables, semi-structured knowledge
bases and QA relates to several parallel lines of
research. In terms of dataset creation via crowd-
sourcing, Aydin et al. (2014) harvest MCQs via a
gamified app, although their work does not involve
tables. Pasupat and Liang (2015) use tables from
Wikipedia to construct a set of QA pairs. However
their annotation setup does not impose structural
constraints from tables, and does not collect fine-
grained alignment to table elements.

On the inference side Pasupat and Liang (2015)
also reason over tables to answer questions. Un-
like our approach, they do not require alignments
to table cells. However, they assume knowledge of
the table that contains the answer, a priori – which
we do not. Yin et al. (2015b) and Neelakantan et
al. (2015) also use tables in the context of QA, but
deal with synthetically generated query data. Sun
et al. (2016) perform cell search over web tables
via relational chains, but are more generally inter-

ested in web queries. Clark et al. (2016) combine
different levels of knowledge for QA, including
an integer-linear program for searching over table
cells. None of these other efforts leverage tables
for generation of data.

Our research more generally pertains to natu-
ral language interfaces for databases. Answer-
ing questions in this context refers to executing
queries over relational databases (Cafarella et al.,
2008; Pimplikar and Sarawagi, 2012). Yin et
al. (2015a) consider databases where information
is stored in n-tuples, which are essentially ta-
bles. Also, investigation of the relational structure
of tables is connected with research on database
schema analysis and induction (Venetis et al.,
2011; Syed et al., 2010). Finally, unstructured text
and structured formats links to work on open infor-
mation extraction (Etzioni et al., 2008) and knowl-
edge base population (Ji and Grishman, 2011).

3 Tables as Semi-structured Knowledge
Representation

Tables can be found on the web containing a wide
range of heterogenous data. To focus and fa-
cilitate our work on QA we select a collection
of tables that were specifically designed for the
task. Specifically we use AI2’s Aristo Tablestore2.
However, it should be noted that the contributions
of this paper are not tied to specific tables, as we
provide a general methodology that could equally
be applied to a different set of tables. The struc-
tural properties of this class of tables is further de-
scribed in Section 3.1.

The Aristo Tablestore consists of 65 hand-
crafted tables organized by topic. Some of the
topics are bounded, containing only a fixed num-
ber of facts, such as the possible phase changes of
matter (see Table 1). Other topics are unbounded,
containing a very large or even infinite number of
facts, such as the kind of energy used in perform-
ing an action (the corresponding tables can only
contain a sample subset of these facts). A total
of 3851 facts (one fact per row) are present in the
manually constructed tables. An individual table
has between 2 and 5 content columns.

The target domain for these tables is two 4th
grade science exam datasets. The majority of the
tables were constructed to contain topics and facts

2http://allenai.org/content/data/
AristoTablestore-Nov2015Snapshot.zip
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Phase Change Initial State Final State Form of Energy Transfer
Melting causes a solid to change into a liquid by adding heat

Vaporization causes a liquid to change into a gas by adding heat
Condensation causes a gas to change into a liquid by removing heat
Sublimation causes a solid to change into a gas by adding heat

Table 1: Part of a table concerning phase changes in matter. Rows are facts. Columns without header text
provide filler text, so that each row forms a sentence. In columns with header text, the header describes
the type of entry in the column; the header is a hypernym of the text in the body below.

from the publicly available Regents dataset3. The
rest were targeted at an unreleased dataset called
Monarch. In both cases only the training partition
of each dataset was used to formulate and hand-
craft tables. However, for unbounded topics, addi-
tional facts were added to each table, using science
education text books and websites.

3.1 Table Semantics and Relations
Part of a table from the Aristo Tablestore is given
as an example in Table 1. The format is semi-
structured: the rows of the table (with the excep-
tion of the header) are a list of sentences, but with
well-defined recurring filler patterns. Together
with the header, these patterns divide the rows into
meaningful columns. This semi-structured data
format is flexible. Since facts are presented as
sentences, the tables can act as a text corpus for
information retrieval. At the same time the struc-
ture can be used – as we do – to focus on specific
nuggets of information. The flexibility of these ta-
bles allows us to compare our table-based system
to an information retrieval baseline.

Such tables have some interesting structural se-
mantics, which we will leverage throughout the
paper. A row in a table corresponds to a fact4.
The cells in a row correspond to concepts, enti-
ties, or processes that participate in this fact. A
content column5 corresponds to a group of con-
cepts, entities, or processes that are the same type.
The header cell of the column is an abstract de-
scription of the type. We may view the head as
a hypernym and the cells in the column below as
co-hyponyms of the head. The header row defines
a generalization of which the rows in the table are
specific instances.

This structure is directly relevant to multiple-
choice QA. Facts (rows) form the basis for creat-

3http://allenai.org/content/data/
Regents.zip

4Also predicates, or more generally frames with typed ar-
guments.

5Different from filler columns, which only contain a re-
curring pattern, and no information in their header cells.

ing or answering questions, while instances of a
type (columns) act as the choices of an MCQ. We
use these observations both for crowd-sourcing
MCQ creation as well as for designing features to
answer MCQs with tables.

4 Crowd-sourcing Multiple-choice
Questions from Tables

We use Amazon’s Mechanical Turk (MTurk) ser-
vice to generate MCQs by imposing constraints
derived from the structure of the tables. These
constraints help annotators create questions with
scaffolding information, and lead to consistent
quality in the generated output. An additional ben-
efit of this format is the alignment information,
linking cells in the tables to the MCQs generated
by the Turkers. The alignment information is gen-
erated as a by-product of making the MCQs.

We present Turkers with a table such as the one
in Figure 1. Given this table, we choose a target
cell to be the correct answer for a new MCQ; for
example, the red cell in Figure 1. First, Turkers
create a question by using information from the
rest of the row containing the target (i.e., the blue
cells in Figure 1), such that the target is its cor-
rect answer. Then they select the cells in the row
that they used to construct the question. Follow-
ing this, they construct four succinct choices for
the question, one of which is the correct answer
and the other three are distractors. Distractors are
formed from other cells in the column containing
the target (i.e. yellow cells in Figure 1). If there
are insufficient unique cells in the column Turk-
ers create their own. Annotators can rephrase and
shuffle the contents of cells as required.

In addition to an MCQ, we obtain alignment
information with no extra effort from annotators.
We know which table, row, and column contains
the answer, and thus we know which header cells
might be relevant to the question. We also know
the cells of a row that were used to construct a
question.
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Figure 1: Example table from MTurk annotation task illustrating constraints. We ask Turkers to construct
questions from blue cells, such that the red cell is the correct answer, and yellow cells form distractors.

Task Avg. Time (s) $/hour % Reject
Rewrite 345 2.61 48
Paraphrase 662 1.36 49
Add choice 291 2.47 24
Write new 187 5.78 38
TabMCQ 72 5.00 2

Table 2: Comparison of different ways of generat-
ing MCQs with MTurk.

What is the orbital event with
the longest day and the shortest night?
A) Summer solstice
B) Winter solstice
C) Spring equinox
D) Fall equinox
Steel is a/an of electricity
A) Separator
B) Isolator
C) Insulator
D) Conductor

Table 3: Examples of MCQs generated by MTurk.
Correct answer choices are in bold.

4.1 The TabMCQ Dataset

We created a HIT (the MTurk acronym for Hu-
man Intelligence Task) for every non-filler cell
(see Section 3) from each one of the 65 manually
constructed tables of the Aristo Tablestore. We
paid annotators 10 cents per MCQ, and asked for
1 annotation per HIT for most tables. For an initial
set of four tables which we used in a pilot study,
we asked for three annotations per HIT6. We re-
quired Turkers to have a HIT approval rating of
95% or higher, with a minimum of at least 500
HITs approved. We restricted the demographics
of our workers to the US.

Table 2 compares our method with other studies
conducted at AI2 to generate MCQs. These meth-
ods attempt to generate new MCQs from existing

6The goal was to obtain diversity in the MCQs created for
a target cell. The results were not sufficiently conclusive to
warrant a threefold increase in the cost of creation.

ones, or write them from scratch, but do not in-
volve tables in any way. Our annotation procedure
leads to faster data creation, with consistent out-
put quality that resulted in the lowest percentage
of rejected HITs. Manual inspection of the gener-
ated output also revealed that questions are of con-
sistently good quality. They are good enough for
training machine learning models and many are
good enough as evaluation data for QA. A sample
of generated MCQs is presented in Table 3.

We implemented some simple checks to eval-
uate the data before approving HITs. These in-
cluded things like checking whether an MCQ has
at least three choices and whether choices are re-
peated. We had to further prune our data to dis-
card some MCQs due to corrupted data or badly
constructed MCQs. A total of 159 MCQs were
lost through the cleanup. In the end our com-
plete data consists of 9092 MCQs, which is – to
the best of our knowledge – orders of magnitude
larger than any existing collection of science exam
style MCQs available for research. These MCQs
also come with alignment information to tables,
rows, columns and cells. The dataset, bundled to-
gether with the Aristo Tablestore, can be freely
downloaded7.

5 Solving MCQs with Table Cell Search

Consider the MCQ “What is the process by which
water is changed from a liquid to a gas?” with
choices “melting, sublimation, vaporization, con-
densation”, and the table given in Figure 1. Find-
ing the correct answer amounts to finding a cell in
the table that is most relevant to a candidate QA
pair. In other words, a relevant cell should confirm
the assertion made by a particular QA pair.

By applying the reasoning used to create MCQs
7http://ai2-website.s3.amazonaws.com/

data/TabMCQ_v_1.0.zip
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(see Section 4) in the inverse direction, finding
these relevant cells becomes the task of finding an
intersection between rows and columns of interest.
Consider the table in Figure 1: assuming we have
some way of aligning a question to a row (blue
cells) and choices to a column (yellow cells), then
the relevant cell is at the intersection of the two
(the red cell). This alignment is precisely what we
get as a by-product of the annotation task we setup
in Section 4 to harvest MCQs.

We can thus featurize connections between
MCQs and elements of tables and use the align-
ment data to train a model over the features. This
is outlined in the next section, describing our Fea-
ture Rich Table Embedding Solver (FRETS).

5.1 Model and Training Objective

Let Q = {q1, ..., qN} denote a set of MCQs, and
An = {a1

n, ..., a
k
n} be the set of candidate answer

choices for a given question qn. Let the set of ta-
bles be defined as T = {T1, ..., TM}. Given a ta-
ble Tm, let tijm be the cell in that table correspond-
ing to the ith row and jth column.

We define a log-linear model that scores every
cell tijm of every table in our collection according
to a set of discrete weighted features, for a given
QA pair. We have the following:

log p(tijm|qn, ak
n;An, T ) =∑

d

λdfd(qn, ak
n, t

ij
m;An, T )− logZ (1)

Here λd are weights and fd(qn, ak
n, t

ij
m;An, T ) are

features. These features should ideally leverage
both structure and content of tables to assign high
scores to relevant cells, while assigning low scores
to irrelevant cells. Z is the partition function, de-
fined as follows:

Z =∑
m,i,j

exp

(∑
d

λdfd(qn, ak
n, t

ij
m;An, T )

)
(2)

Z normalizes the scores associated with every cell
over all the cells in all the tables to yield a prob-
ability distribution. During inference the partition
term logZ can be ignored, making scoring cells of
every table for a given QA pair efficient.

These scores translate to a solution for an MCQ.
Every QA pair produces a hypothetical fact, and
as noted in Section 3.1, the row of a table is in

essence a fact. Relevant cells (if they exist) should
confirm the hypothetical fact asserted by a given
QA pair. During inference, we assign the score of
the highest scoring row (or the most likely fact)
to a hypothetical QA pair. Then the correct solu-
tion to the MCQ is simply the answer choice as-
sociated with the QA pair that was assigned the
highest score. Mathematically, this is expressed as
follows:

a∗n = arg max
ak

n

max
m,i∑

j

∑
d

λdfd(qn, ak
n, t

ij
m;An, T ) (3)

5.1.1 Training

Since FRETS is a log-linear model, training in-
volves optimizing a set of weights λd. As train-
ing data, we use alignment information between
MCQs and table elements (see Section 4.1). The
predictor value that we try to maximize with our
model is an alignment score that is closest to the
true alignments in the training data. True align-
ments to table cells for a given QA pair are es-
sentially indicator values but we convert them to
numerical scores as follows8. For a correct QA
hypothesis we assign a score of 1.0 to cells whose
row and column and both aligned to the MCQ
(i.e. cells that exactly answer the question), 0.5
to cells whose row but not column is aligned in
some way to the question (i.e. cells that were used
to construct the question), and 0.0 otherwise. For
an incorrect QA hypothesis we assign a score of
0.1 to random cells from tables that contain no
alignments to the QA (so all except one), with a
probability of 1%, while all other cells are scored
0.0. The intuition behind this scoring scheme is
to guide the model to pick relevant cells for cor-
rect answers, while encouraging it to pick faulty
evidence with low scores for incorrect answers.

Given these scores assigned to all cells of all ta-
bles for all QA pairs in the training set, suitably
normalized to a probability distribution over ta-
bles for a given QA pair, we can then proceed to
train our model. We use cross-entropy, which min-
imizes the following loss:

8On training data, we experimented with a few different
scoring heuristics and found that these ones worked well.
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Level Feature Description Intuition S-Var Cmpct

Table Table score Ratio of words in t to q+a Topical consistency ♦
†TF-IDF table score Same but TF-IDF weights Topical consistency ♦  
Row-question score Ratio of words in r to q Question align ♦  

Row Row-question w/o focus score Ratio of words in r to q-(af+qf) Question align ♦
Header-question score Ratio of words in h to q Prototype align ♦
Column overlap Ratio of elements in c and A Choices align ♦  

Column Header answer-type match Ratio of words in ch to af Choices hypernym align ♦  
Header question-type match Ratio of words in ch to qf Question hypernym align ♦
†Cell salience Salience of s to q+a QA hypothesis assert ♦  

Cell †Cell answer-type entailment Entailment score between s and af Hypernym-hyponym align  
Cell answer-type similarity Avg. vector sim between s and af Hypernym-hyponym sim.

Table 4: Summary of features. For a question (q) and answer (a) we compute scores for elements
of tables: whole tables (t), rows (r), header rows (h), columns (c), column headers (ch) and cells (s).
Answer-focus (af) and question-focus (qf) terms added where appropriate. Features marked ♦ denote
soft-matching variants, marked with while those marked with a † are described in further detail in Sec-
tion 5.2. Finally, features denote those that received high weights during training with all features, and
were subsequently selected to form a compact FRETS model.

L(~λ) =
∑
qn

ak
n∈An

∑
m,i,j

p(t∗ijm |qn, ak
n; T )·

log p(tijm|qn, ak
n;An, T ) (4)

Here p(t∗ijm |qn, ak
n; T ) is the normalized probabil-

ity of the true alignment scores.
While this is an indirect way to train our model

to pick the best answer, in our pilot experiments
it worked better than direct maximum likelihood
or ranking with hinge loss, achieving a training
accuracy of almost 85%. Our experimental re-
sults on the test suite, presented in the next section,
also support the empirical effectiveness of this ap-
proach.

5.2 Features

The features we use are summarized in Ta-
ble 4. These features compute statistics be-
tween question-answer pairs and different struc-
tural components of tables. While the features are
weighted and summed for each cell individually,
they can capture more global properties such as
scores associated with tables, rows or columns in
which the specific cell is contained. Features are
divided into four broad categories based on the
level of granularity at which they operate. In what
follows we give some details of Table 4 that re-
quire further elaboration.

5.2.1 Soft matching
Many of the features that we implement are based
on string overlap between bags of words. How-
ever, since the tables are defined statically in terms

of a fixed vocabulary (which may not necessarily
match words contained in an MCQ), these over-
lap features will often fail. We therefore soften
the constraint imposed by hard word overlap by
a more forgiving soft variant. More specifically
we introduce a word-embedding based soft match-
ing overlap variant for every feature in the table
marked with ♦. The soft variant targets high recall
while the hard variant aims at providing high pre-
cision. We thus effectively have almost twice the
number of features listed.

Mathematically, let a hard overlap feature de-
fine a score |S1 ∩ S2| / |S1| between two bags of
words S1 and S2. We can define the denominator
S1 here, without loss of generality. Then, a corre-
sponding word-embedding soft overlap feature is
given by this formula:

1
|S1|

∑
wi∈S1

max
wj∈S2

sim( ~wi, ~wj) (5)

Intuitively, rather than matching a word to its exact
string match in another set, we instead match it to
its most similar word, discounted by the score of
that similarity.

5.2.2 Question parsing
We parse questions to find the desired answer-
type and, in rarer cases, question-type words. For
example, in the question “What form of energy
is required to convert water from a liquid to a
gas?”, the type of the answer we are expecting is
a “form of energy”. Generally, this answer-type
corresponds to a hypernym of the answer choices,
and can help find relevant information in the table,
specifically related to columns.
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By carefully studying the kinds of question pat-
terns in our data, we implemented a rule-based
parser that finds answer-types from queries. This
parser uses a set of hand-coded regular expres-
sions over phrasal chunks. The parser is designed
to have high accuracy, so that we only produce an
output for answer-types in high confidence situa-
tions. In addition to producing answer-types, in
some rarer cases we also detect hypernyms for
parts of the questions. We call this set of words
question-type words. Together, the question-type
and answer-type words are denoted as focus words
in the question.

5.2.3 TF-IDF weighting

TF-IDF scores for weighting terms are pre-
computed for all words in all the tables. We do
this by treating every table as a unique document.
At run-time we discount scores by table length as
well as length of the QA pair under consideration
to avoid disproportionately assigning high scores
to large tables or long MCQs.

5.2.4 Salience

The salience of a string for a particular QA pair
is an estimate of how relevant it is to the hypoth-
esis formed from that QA pair. It is computed by
taking words in the question, pairing them with
words in an answer choice and then computing
PMI statistics between these pairs from a large
corpus. A high salience score indicates words that
are particularly relevant for a given QA pair hy-
pothesis.

5.2.5 Entailment

To calculate the entailment score between two
strings, we use several features, such as overlap,
paraphrase probability, lexical entailment likeli-
hood, and ontological relatedness, computed with
n-grams of varying lengths.

5.2.6 Normalization

All the features in Table 4 produce numerical
scores, but the range of these scores vary to some
extent. To make our final model more robust, we
normalize all feature scores to have a range be-
tween 0.0 and 1.0. We do this by finding the maxi-
mum and minimum values for any given feature on
a training set. Subsequently, instead of using the
raw feature value of a feature fd, we instead re-
place it with (fd −min fd) / (max fd −min fd).

6 Experimental Results

We train FRETS (Section 5) on the TabMCQ
dataset (Section 4) using adaptive gradient descent
with an L2 penalty of 1.0 and a mini-batch size
of 500 training instances. We train two variants:
one consisting of all the features from Table 4,
the other – a compact model – consisting of the
most important features (above a threshold) from
the first model by feature-weight. These features
are noted by  in the final column of Table 4.

We run experiments on three 4th grade science
exam MCQ datasets: the publicly available Re-
gents dataset, the larger but unreleased dataset
called Monarch, and a third even larger public
dataset of Elementary School Science Questions
(ESSQ)9. For the first two datasets we use the test
splits only, since the training sets were directly
studied to construct the Aristo Tablestore, which
was in turn used to generate our TabMCQ training
data. On ESSQ we use all the questions since they
are independent of the tables. The Regents test set
consists of 129 MCQs, the Monarch test set of 250
MCQs, and ESSQ of 855 MCQs.

Since we are investigating semi-structured mod-
els, we compare against two baselines. The first
is an unstructured information retrieval method,
which uses the Lucene search engine. To ap-
ply Lucene to the tables, we ignore their struc-
ture and simply use rows as plain-text sentences.
The score for top retrieved hits are used to rank
the different choices of MCQs. The second base-
line is the highly-structured Markov-logic Net-
work (MLN) model from Khot et al. (2015) as re-
ported in Clark et al. (2016), who use the model as
a baseline10. Note that Clark et al. (2016) achieve
a score of 71.3 on Regents Test, which is higher
than FRETS’ scores (see Table 5), but their results
are not comparable to ours because they use an
ensemble of algorithms. In contrast, we use a sin-
gle algorithm with a much smaller collection of
knowledge. FRETS rivals the best individual al-
gorithm from their work.

We primarily use the tables from the Aristo Ta-
blestore as knowledge base data in three different
settings: with only tables constructed for Regents
(40 tables), with only supplementary tables con-
structed for Monarch (25 tables), and with all ta-

9http://aristo-public-data.s3.
amazonaws.com/AI2-Elementary-NDMC-Feb2016.
zip

10We do not re-implement the MLN, and therefore only
cite results from previous work on part of our test suite.
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Model Data Regents Test Monarch Test ESSQ

Lucene

Regents Tables 37.5 32.6 36.9
Monarch Tables 28.4 27.3 27.7
Regents+Monarch Tables 34.8 35.3 37.3
Waterloo Corpus 55.4 51.8 54.4

MLN 47.5(Khot et al., 2015)
Regents Tables 60.7 47.2 51.0

FRETS Monarch Tables 56.0 45.6 48.4
(Compact) Regents+Monarch Tables 59.9 47.6 50.7

Regents Tables 59.1 52.8 54.4
FRETS Monarch Tables 52.9 49.8 49.5

Regents+Monarch Tables 59.1 52.4 54.9

Table 5: Evaluation results on three benchmark datasets using different sets of tables as knowledge bases.
Best results on a dataset are highlighted in bold.

bles together (all 65 tables; see Section 3). For the
Lucene baseline we also experiment with several
orders of magnitude more data by indexing over
the 5 × 1010 words Waterloo corpus compiled by
Charles Clarke at the University of Waterloo. Data
is not a variable for MLN, since we directly cite
results from Clark et al. (2016).

The word vectors we used in soft matching fea-
ture variants (i.e., ♦ features from Table 4) for
all our experiments were trained on 300 million
words of Newswire English from the monolingual
section of the WMT-2011 shared task data. These
vectors were improved post-training by retrofitting
(Faruqui et al., 2014) them to PPDB (Ganitkevitch
et al., 2013).

The results of these experiments is presented in
Table 5. All numbers are reported in percentage
accuracy. We perform statistical significance test-
ing on these results using Fisher’s exact test with a
p-value of 0.05 and report them in our discussions.

First, FRETS – in both full and compact form
– consistently outperforms the baselines, often by
large margins. For Lucene, the improvements over
all but the Waterloo corpus baseline are statisti-
cally significant. Thus FRETS is able to capital-
ize on data more effectively and rival an unstruc-
tured model with access to orders of magnitude
more data. For MLN, the improvements are sta-
tistically significant in the case of Regents and Re-
gents+Monarch tables. FRETS is thus performing
better than a highly structured model while mak-
ing use of a much simpler data formalism.

Our models are able to effectively generalize.
With Monarch tables, the Lucene baseline is lit-
tle better than random (25%). But with the same
knowledge base data, FRETS is competitive and
sometimes scores higher than the best Lucene or
MLN models (although this difference is statisti-

Model REG MON ESSQ
FRETS 59.1 52.4 54.9
w/o tab features 59.1 47.6 52.8
w/o row features 49.0 40.4 44.3
w/o col features 59.9 47.2 53.1
w/o cell features 25.7 25.0 24.9
w/o ♦ features 62.2 47.5 53.3

Table 6: Ablation study on FRETS, removing
groups of features based on level of granularity. ♦
refers to the soft matching features from Table 4.
Best results on a dataset are highlighted in bold.

cally insignificant). These results indicate that our
models are able to effectively capture both con-
tent and structure, reasoning approximately (and
effectively) when the knowledge base may not
even contain the relevant information to answer
a question. The Monarch tables themselves seem
to add little value, since results for Regents tables
by themselves are just as good or better than Re-
gents+Monarch tables. This is not a problem with
FRETS, since the same phenomenon is witnessed
with the Lucene baseline. It is noteworthy, how-
ever, that our models do not suffer from the addi-
tion of more tables, showing that our search pro-
cedure over table cells is robust.

Finally, dropping some features in the compact
model doesn’t always hurt performance, in com-
parison with the full model. This indicates that
potentially higher scores are possible by a prin-
cipled and detailed feature selection process. In
these experiments the difference between the two
FRETS models on equivalent data is statistically
insignificant.

6.1 Ablation Study
To evaluate the contribution of different features
we perform an ablation study, by individually re-
moving groups of features from the full FRETS

481



model, and re-training. Evaluation of these partial
models is given in Table 6. In this experiment we
use all tables as knowledge base data.

Judging by relative score differential, cell fea-
tures are by far the most important group, fol-
lowed by row features. In both cases the drops
in score are statistically significant. Intuitively,
these results make sense, since row features are
crucial in alignment to questions, while cell fea-
tures capture the most fine-grained properties. It
is less clear which among the other three feature
groups is dominant, since the differences are not
statistically significant. It is possible that cell fea-
tures replicate information of other feature groups.
For example, the cell answer-type entailment fea-
ture indirectly captures the same information as
the header answer-type match feature (a column
feature). Similarly, salience captures weighted
statistics that are roughly equivalent to the coarse-
grained table features. Interestingly, the success of
these fine-grained features would explain our im-
provements over the Lucene baseline in Table 5,
which is incapable of such fine-grained search.

7 Conclusions

We have presented tables as knowledge bases for
question answering. We explored a connected
framework in which tables are first used to guide
the creation of MCQ data with alignment infor-
mation to table elements, then jointly with this
data are used in a feature-driven model to answer
unseen MCQs. A central research question of
this paper was the trade-off between the degree
of structure in a knowledge base and its ability to
be harvested or reasoned with. On three bench-
mark evaluation sets our consistently and signif-
icantly better scores over an unstructured and a
highly-structured baseline strongly suggest that ta-
bles can be considered a balanced compromise in
this trade-off. We also showed that our model is
able to generalize from content to structure, thus
reasoning about questions whose answer may not
even be contained in the knowledge base.

We are releasing our dataset of more than 9000
MCQs and their alignment information, to the re-
search community. We believe it offers interesting
challenges that go beyond the scope of this paper
– such as question parsing, or textual entailment –
and are exciting avenues for future research.
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