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Abstract

Cognitive science researchers have em-
phasized the importance of ordering a
complex task into a sequence of easy to
hard problems. Such an ordering provides
an easier path to learning and increases
the speed of acquisition of the task com-
pared to conventional learning. Recent
works in machine learning have explored
a curriculum learning approach called self-
paced learning which orders data samples
on the easiness scale so that easy sam-
ples can be introduced to the learning algo-
rithm first and harder samples can be intro-
duced successively. We introduce a num-
ber of heuristics that improve upon self-
paced learning. Then, we argue that incor-
porating easy, yet, a diverse set of samples
can further improve learning. We compare
these curriculum learning proposals in the
context of four non-convex models for QA
and show that they lead to real improve-
ments in each of them.

1 Introduction

A key challenge in building an intelligent agent is
in modeling the incrementality and the cumulative
nature of human learning (Skinner, 1958; Peter-
son, 2004; Krueger and Dayan, 2009). Children
typically learn grade by grade, progressing from
simple concepts to more complex ones. Given a
complex set of concepts, it is often the case that
some concepts are easier than others. Some con-
cepts can even be prerequisite to learning other
concepts. Hence, evolving a useful curriculum
where easy concepts are presented first and more
complex concepts are gradually introduced can be
beneficial for learning.

We explore methods for learning a curriculum

in the context of non-convex models for question
answering. Curriculum learning (CL) (Bengio et
al., 2009) and self-paced learning (SPL) (Kumar
et al., 2010) have been recently introduced in ma-
chine learning literature. However, their useful-
ness in the context of NLP tasks such as QA has
not been studied so far. The main challenge in
learning a curriculum is that it requires the identifi-
cation of easy and hard concepts in the given train-
ing dataset. However, in real-world applications,
such a ranking of training samples is difficult to
obtain. Furthermore, a human judgement of ‘eas-
iness’ of a task might not correlate with what is
easy for the algorithm in the feature and hypothe-
sis space employed for the given application. SPL
combines the selection of the curriculum and the
learning task in a single objective. The easiness of
a question in self-paced learning is defined by its
local loss. We propose and study other heuristics
that define a measure of easiness and learn the cur-
riculum by selecting samples using this measure.
These heuristics are similar to those used in active
learning, but with one key difference. In curricu-
lum learning, all the training examples and labels
are already known, which is not the case in active
learning. Our experiments show that these heuris-
tics work well in practice.

While the strategy of learning from easy ques-
tions first and then gradually handling harder ques-
tions is supported by many cognitive scientists,
others (Cantor, 1946) argue that it is also important
to expose the learning to diverse (even if some-
times harder) examples. We argue that the right
curriculum should not only be arranged in the in-
creasing order of difficulty but also introduce the
learner to sufficient number of diverse examples
that are sufficiently dissimilar from what has al-
ready been introduced to the learning process. We
showed that the above heuristics when coupled
with diversity lead to significant improvements.
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We provide empirical evaluation on four QA
models: (a) an alignment-based approach (Sachan
et al., 2015) for machine comprehension – a
reading comprehension task (Richardson et al.,
2013) with a set of questions and associated texts,
(b) an alignment-based approach (Sachan et al.,
2016) for a multiple-choice elementary science
test (Clark and Etzioni, 2016), (c) QANTA (Iyyer
et al., 2014) – a recursive neural network for an-
swering quiz bowl questions, and (d) memory net-
works (Weston et al., 2014) – a recurrent neural
network with a long-term memory component for
answering 20 pre-defined tasks for machine com-
prehension. We show value in our approaches for
curriculum learning on all these settings.
Our paper has the following contributions:

1. In our knowledge, this is the first application
of curriculum learning to the task of QA and
one of the first in NLP. We hope to make the
NLP and ML communities aware of the ben-
efits of CL for non-convex optimization.

2. We perform an in-depth analysis of SPL, and
propose heuristics which offer significant im-
provements over SPL; the state-of-the-art in
curriculum learning.

3. We stress on diversity of questions in the
curriculum during learning and propose a
method that learns a curriculum while cap-
turing diversity to gain more improvements.

2 Problem Setting for QA

For each question qi ∈ Q, letAi = {ai1, . . . , aim}
be the set of candidate answers to the question. Let
a∗i be the correct answer. The candidate answers
may be pre-defined, as in multiple-choice QA, or
may be undefined but easy to extract with a high
degree of confidence (e.g., by using a pre-existing
system). We want to learn a function f : (q,K)→
a that, given a question qi and background knowl-
edge K (texts/resources required to answer the
question), outputs an answer âi ∈ Ai. We con-
sider a scoring function Sw(q, a;K) (with model
parameters w) and a prediction rule fw(qi) =
âi = arg max

aij∈Ai
Sw(qi, aij ;K). Let ∆(âi, a∗i ) be

the cost of giving a wrong answer. We consider
the empirical risk minimization (ERM) framework
given a loss function L and a regularizer Ω:

min
w

∑
qi∈Q

Lw(a∗i , fw(qi);K) + Ω(w) (1)

3 QA Models

The field of QA is quite rich. Solutions proposed
have ranged from various IR based approaches
that treat this as a problem of retrieval from ex-
isting knowledge bases or perform inference using
a large corpus of unstructured texts by learning a
similarity between the question and a set of can-
didate answers (Yih et al., 2013). A comprehen-
sive review of QA is out of scope of this paper.
So we point the interested readers to Jurafsky and
Martin (2000), chapter 28 for a more comprehen-
sive review. In this paper, we will explore curricu-
lum learning in the context of non-convex models
for QA. The models will be (1) latent structural
SVM (Yu and Joachims, 2009) based solutions
for standardized question-answering tests and (2)
deep learning models (Iyyer et al., 2014; Weston
et al., 2014) for QA.

Recently, researchers have proposed standard-
ized tests as ‘drivers for progress in AI’ (Clark
and Etzioni, 2016). Some example standardized
tests are reading comprehensions (Richardson et
al., 2013), algebra word problems (Kushman et
al., 2014), geometry problems (Seo et al., 2014),
entrance exams (Fujita et al., 2014; Arai and Mat-
suzaki, 2014), etc. These tests are usually in the
form of question-answers and focus on elemen-
tary learning. The idea of learning the curriculum
could be especially useful in the context of stan-
dardized tests. Standardized tests (Clark and Et-
zioni, 2016) are implicitly incremental in nature,
covering various levels of difficulty. Thus they
are rich sources of data for building systems that
learn incrementally. These datasets can also help
us understand the shaping hypothesis as we can
use them to verify if easier questions are indeed
getting picked by our incremental learning algo-
rithm before harder questions.

On the other hand, deep learning models (Le-
Cun et al., 2015) have recently shown good per-
formance in many standard NLP and vision tasks,
including QA. These models usually learn repre-
sentations of data and the QA model jointly. The
models use a cascade of many layers of nonlinear
processing units, leading to a highly non-convex
model and a large parameter space. This renders
these models susceptible to local-minima. Hence,
the idea of learning the curricula is also very use-
ful in the context of deep-learning models, as the
technique of processing questions in the increas-
ing order of difficulty often leads to better minima
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Text: … Natural greenhouse gases include carbon dioxide, methane, water vapor, and ozone ... CFCs and !
some other man-made compounds are also greenhouse gases … 

 
 
 
 

Hypothesis: The important greenhouse gases are Carbon dioxide , Methane, Ozone and CFC 
 

Q: What are the important greenhouse gases?  !  A: Carbon dioxide, Methane, Ozone and CFC 

Figure 1: Alignment structure for an example question from
the science QA dataset. The question and answer candidate
are combined to generate a hypothesis sentence. Then align-
ments (shown by red lines) are found between the hypothesis
and the appropriate snippet in the texts.

(as shown in our results).

3.1 Alignment Based Models

Alignment based models for QA (Yih et al., 2013;
Sachan et al., 2015; Sachan et al., 2016) cast QA
as a textual entailment problem by converting each
question-answer candidate pair (qi, aij) into a hy-
pothesis statement hij . For example, the ques-
tion “What are the important greenhouse gases?”
and answer candidate “Carbon dioxide, Methane,
Ozone and CFC” in Figure 1 can be combined to
achieve a hypothesis “The important greenhouse
gases are Carbon dioxide , Methane, Ozone and
CFC.”. A set of question matching/rewriting rules
are used to achieve this transformation. These
rules match the question into one of a large set
of pre-defined templates and apply a unique trans-
formation to the question and answer candidate to
achieve the hypothesis statement. For each ques-
tion qi, the QA task thereby reduces to picking
the hypothesis ĥi that has the highest likelihood
among the set of hypotheses hi = {hi1, . . . , him}
generated for that question of being entailed by a
body of relevant texts. The body of relevant texts
can vary for each instance of the QA task. For
example, it could be just the passage in a reading
comprehension task, or a set of science textbooks
in the science QA task. Let h∗i ∈ hi be the correct
hypothesis. The model considers the quality of
word alignment from a hypothesis hij (formed by
combining question-answer candidates (qi, aij))
to snippets in the textbooks as a proxy for the ev-
idence. The alignment depends on: (a) snippet
from the relevant texts chosen to be aligned to the
hypothesis and (b) word alignment from the hy-
pothesis to the snippet. The snippet from the texts
to be aligned to the hypothesis is determined by
picking a subset of sentences in the texts. Then
each hypothesis word is aligned to a unique word
in the snippet. See Figure 1 for an illustration. The
choice of snippets composed with the word align-
ment is latent. Let zij represent the latent structure

for the question-answer candidate pair (qi, ai,j).
A natural solution is to treat QA as a problem of
ranking the hypothesis set hi such that the correct
hypothesis is at the top of this ranking. Hence, a
scoring function Sw(h, z) is learnt such that the
score given to the correct hypothesis h∗i and the
corresponding latent structure z∗i is higher than the
score given to any other hypothesis and its corre-
sponding latent structure. In fact, in a max-margin
fashion, the model learns the scoring function such
that Sw(h∗i , z

∗
i ) > Sw(hij , zij) + ∆(h∗i , hij)− ξi

for all hj ∈ h \ h∗ for some slack ξi. This can be
formulated as the following optimization problem:

min
||w||

1

2
||w||22 + C

∑
i

ξi

s.t. Sw(h∗i , z
∗
i ) ≥ max

zij
Sw(hij , zij) + ∆(h∗i , hij)− ξi

It is intuitive to use 0-1 cost, i.e. ∆(h∗i , hij) =
1(h∗i 6= hij) If the scoring function is convex then
this objective is in concave-convex form and can
be minimized by the concave-convex program-
ming procedure (CCCP) (Yuille and Rangarajan,
2003). The scoring function is assumed to be lin-
ear: Sw(h, z) = wTψ(h, z). Here, ψ(h, z) is
a task-dependent feature map (see Sachan et al.
(2015) and Sachan et al. (2016) for details).

3.2 Deep Learning Models

We briefly review two neural network models for
QA – Iyyer et al. (2014) and Weston et al. (2014).
QANTA: QANTA (Iyyer et al., 2014) answers
quiz bowl questions using a dependency tree struc-
tured recursive neural network. It combines pre-
dictions across sentences to produce a question an-
swering neural network with trans-sentential av-
eraging. The model is optimized using AdaGrad
(Duchi et al., 2011). In quiz bowl, questions typ-
ically consist of four to six sentences and are as-
sociated with factoid answers. Every sentence in
the question is guaranteed to contain clues that
uniquely identify its answer, even without the con-
text of previous sentences1. Recently, QANTA
had beaten the well-known Jeopardy! star Ken
Jennings at an exhibition quiz bowl contest.
Memory Networks: Memory networks (Weston
et al., 2014) are essentially recurrent neural net-
works with a long-term memory component. The
memory can be read and written to, and can be
used for prediction. The memory can be seen as

1Refer to Figure 1 in (Iyyer et al., 2014) for an example
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acting like a dynamic knowledge base. The model
is trained using a margin ranking loss and stochas-
tic gradient descent. It was evaluated on a set of
synthetic QA tasks. For each task, a set of state-
ments were generated by a simulation of 4 char-
acters, 3 objects and 5 rooms using an automated
grammar with characters moving around, picking
up and dropping objects are given, followed by a
question whose answer is typically a single word2.

4 Curriculum Learning

Studies in cognitive science (Skinner, 1958; Pe-
terson, 2004; Krueger and Dayan, 2009) have
shown that humans learn much better when the
training examples are not randomly presented but
organized in increasing order of difficulty. The
idea of shaping, which consists of training a ma-
chine learning algorithm with a curriculum was
first introduced by (Elman, 1993) in the context
of grammatical structure learning using a recur-
rent connectionist network. This idea also lent
support for the much debated Newport’s “less
is more” hypothesis (Goldowsky and Newport,
1993; Newport, 1990) that child language acqui-
sition is aided, rather than hindered, by limited
cognitive resources. Curriculum learning (Ben-
gio et al., 2009) is a recent idea in machine learn-
ing, where a curriculum is designed by ranking
samples based on manually curated difficulty mea-
sures. These measurements are usually not known
in real-world scenarios, and are hard to elicit from
humans.

4.1 Self-paced Learning

Self-paced learning (SPL) (Kumar et al., 2010;
Jiang et al., 2014a; Jiang et al., 2015) reformu-
lates curriculum learning as an optimization prob-
lem by jointly modeling the curriculum and the
task at hand. Let v ∈ [0, 1]|Q| be the weight
vector that models the weight of the sample ques-
tions in the curriculum. The SPL model includes
a weighted loss term on all samples and an ad-
ditional self-paced regularizer imposed on sample
weights v. SPL formulation for the ERM frame-
work described in eq 1 can be rewritten as:

min
w,v∈[0,1]|Q|

∑
qi∈Q

viLw(a∗i , fw(qi);K) + g(vi, λ)

+Ω(w)

2Refer to Table 1 in (Weston et al., 2015) for examples

The problem usually has closed-form solution
with respect to v (described later; lets call the
solution v∗(λ;L) for now). g(v, λ) is usually
called the self-paced regularizer with the “age”
or “pace” parameter λ. g is convex with re-
spect to v ∈ [0, 1]|Q|. Furthermore, v(λ;L) is
monotonically decreasing with respect to L, and
limL→0 v∗(λ;L) = 1 and limL→∞ v∗(λ;L) = 0.
This means that the model inclines to select easy
samples (with smaller losses) in favor of complex
samples (with larger losses). Finally, v∗(λ;L) is
monotonically increasing with respect to λ, and
limλ→0 v∗(λ;L) = 0 and limλ→∞ v∗(λ;L) ≤ 1.
This means that when the model “ages” (i.e. the
age parameter λ gets larger), it tends to incorpo-
rate more, probably complex samples to train a
‘mature’ model.

Four popular self-paced regularizers in the lit-
erature (Kumar et al., 2010; Jiang et al., 2014a;
Zhao et al., 2015) are hard, soft logarithmic, soft
linear and mixture. These SP-regularizers, sum-
marized with corresponding closed form solutions
for v are shown in Table 1. Hard weighting is usu-
ally less appropriate as it cannot discriminate the
importance of samples. However, soft weighting
assigns real-valued weights and reflects the latent
importance of samples in training. The soft linear
regularizer linearly weighs samples with respect to
their losses and the soft logarithmic penalizes the
weight logarithmically. Mixture weighting com-
bines both hard and soft weighting schemes. We
can solve the model in the SPL regime by itera-
tively updating v (closed form solution for v is
shown in Table 1) and w (by CCCP, AdaGrad or
SGD), and gradually increasing the age parameter
λ to let harder and harder problems in.

Since its inception, variations of SPL such as
self-paced re-ranking (Jiang et al., 2014a), self-
paced learning with diversity (Jiang et al., 2014b),
self-paced multiple-instance learning (Zhang et
al., 2015) and self-paced curriculum learning
(Jiang et al., 2015) have been proposed. The tech-
niques have been shown to be useful in some com-
puter vision tasks (Lee and Grauman, 2011; Ku-
mar et al., 2011; Tang et al., 2012; Supancic and
Ramanan, 2013; Jiang et al., 2014a). SPL is dif-
ferent from active learning (Settles, 1995) in the
sense that the training examples (and labels) are
already provided and the solution only orders the
examples to achieve a better solution. On the other
hand, active learning tries to interactively query
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Regularizer g(v;λ) v∗(λ;L)

Hard −λv
{

1, if L ≤ λ
0, o/w

Soft Linear λ( 1
2
v2 − v)

{ −L
λ

+ 1, if L ≤ λ
0, otherwise

Soft Logarithmic
∑
qi∈Q

(
(1− λ)vi − (1−λ)vi

log(1−λ)

) {
log(L+1−λ)
log(1−λ)

, if L ≤ λ
0, o/w

Mixed γ2

v+ γ
λ


1, if L ≤

(
λγ
λ+γ

)2

0, if L ≥ λ2

γ
(

1√
L
− 1

λ

)
, o/w

Table 1: Various SP-regularizers for SPL.

the user (or another information source) to achieve
a better model with few queries. Curriculum learn-
ing is also related to teaching dimension (Khan et
al., 2011) which studies the strategies that humans
follow as they teach a target concept to a robot
by assuming a teaching goal of minimizing the
learner’s expected generalization error at each it-
eration. One can also think of curriculum learning
as an approach for achieving a better local opti-
mum in non-convex problems.

5 Improved Curriculum Learning
Heuristics

SPL selects questions based on the local loss
term of the question. This is not the only way
to define ‘easiness’ of the question. Hence, we
suggest some other heuristics for selecting the
order of questions to be presented to our learning
algorithm. The heuristics select the next question
qi ∈ Q \ Q0 given the current model (M) and
the set of questions already presented for learning
(Q0). We assume access to a minimization oracle
(CCCP/AdaGrad/SGD) for the QA models. We
explore the following heuristics:
1) Greedy Optimal (GO): The simplest and
greedy optimal heuristic (Schohn and Cohn,
2000) would be to pick a question qi ∈ Q \ Q0

which has the minimum expected effect on the
model. The expected effect on adding qi can be
written as:∑
aij∈Ai

p(a∗i = aij)
∑

qj∈Q0∪qi
E
[
Lw(a∗j , fw(qj);K)

]
.

p(a∗i = aij) can be estimated by normalizing

Sw(q, a;K).
∑

qj∈Q0∪qi
E
[
Lw(a∗j , fw(qj);K)

]
can

be estimated by retraining the model on Q0 ∪ qi.
2) Change in Objective (CiO): Choose the
question qi ∈ Q \ Q0 that causes the smallest
increase in the objective. If there are multiple
questions with the smallest increase in objective,

pick one of them randomly.
3) Mini-max (M2): Chooses question qi ∈ Q\Q0

that minimizes the regularized expected risk when
including the question with the answer candidate
aij that yields the maximum error.
q̂i = arg min

qi∈Q\Q0

max
aij∈Ai

Lw(aij , fw(qi);K)

4) Expected Change in Objective (ECiO): In
this greedy heuristic, we pick a question qi ∈
Q \ Q0 which has the minimum expected effect
on the model. The expected effect can be writ-
ten as

∑
aij∈Ai

p(a∗i = aij)×E [Lw(a∗i , fw(qi);K)].

Here, p(a∗i = aij) can be achieved by normalizing
Sw(q, a;K) and E [Lw(a∗i , fw(qi);K)] can be es-
timated by running inference for qi.
4) Change in Objective-Expected Change in
Objective (CiO - ECiO): We pick a question
qi ∈ Q \ Q0 which has the minimum value of
the difference between the change in objective and
the expected change in objective. Intuitively, the
difference represents how much the model is sur-
prised to see this new question.
5) Correctly Answered (CA): Pick a question
qi ∈ Q \ Q0 which is answered by the model
M with the minimum cost ∆(âi, a∗i ). If there are
multiple questions with minimum cost, pick one
of them randomly.
6) Farthest from Decision Boundary (FfDB):
This heuristic applies for latent structural SVMs
only. Here, we choose the question qi ∈ Q \
Q0 whose predicted answer âi is farthest from
the decision boundary: max

z∗
wTφ(qi, a∗, z∗,K) =

max
ẑ
wTφ(q, â, ẑ,K) + ∆(â, a∗).

5.1 Timing Considerations:

A key consideration in applying the above heuris-
tics is efficiency as the QA models considered (la-
tent structural SVM and deep learning) are compu-
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tationally expensive. Among our selection strate-
gies, GO and CiO require updating the model, M2,
ECiO, CA and FfDB require performing inference
on the candiate questions, while CiO - ECiO re-
quires both retraining as well as inference. Con-
sequently, M2, ECiO, CA and FfDB are most effi-
cient. We can also gain considerable speed-up by
picking questions in batches. This results in sig-
nificant speed-up with small loss in accuracy. We
will discuss the batch question selection setup in
more detail in our experiments.

5.2 Smarter Selection Strategies:

We further describe some improvements to the
above selection strategies:
1) Ensemble Strategy: In this strategy, we com-
bine all of the above heuristics into an ensemble.
The ensemble computes the ratio of the score of
the suggested question pick and the average score
over remainingQ\Q0 questions for all the heuris-
tics and picks the question with the highest ratio.
As we will see in our results, this ensemble works
well in practice.
2) Importance-Weighting (IW): Importance
weighting is a common technique in active learn-
ing literature (Tong and Koller, 2002; Beygelz-
imer et al., 2009; Beygelzimer et al., 2010), which
mitigates the problem that if we query questions
actively instead of selecting them uniformly at
random, the training (and test) question sets are
no longer independent and identically distributed
(i.i.d.). In other words, the training set will have
a sample selection bias that can impair prediction
performance. To mitigate this, we propose to sam-
ple questions from a biased sample distribution
D̃. To achieve D̃, we introduce the weighted loss
L̃w(a, fw(q);K) = w̃(q, a) × Lw(a, fw(q);K)
where w̃(q, a) is the weighting function w̃(q, a) =
pD(q,a)
p
D̃

(q,a) which represents how likely it is to observe

(q, a) under D compared to D̃. In this setting, we
can show that the generalization error under D̃ is
the same as that under D:

E
(q,a)∼D̃

[
L̃w(a, fw(q);K)

]
=
∫

(q,a)
p
D̃

(q, a)
pD(q, a)
p
D̃

(q, a)
Lw(a, fw(q);K)d(q, a)

=
∫

(q,a)
pD(q, a)Lw(a, fw(q);K)d(q, a)

= E(q,a)∼D [Lw(a, fw(q);K)]

Thus, given appropriate weights w̃(q, a), we mod-
ify our loss-function in order to compute an un-
biased estimator of the generalization error. Each
question-answer is assigned with a non-negative
weight. For latent structural SVMs, one can mini-
mize the weighted loss by simply multiplying the
corresponding regularization parameter Ci with a
corresponding term. In neural networks, this is
simply achieved by multiplying the gradients with
the corresponding weights. The weights can be
set by an appropriate heuristic, e.g. proportional
to distance from the decision boundary.

5.3 Incorporating Diversity with Explore
and Exploit (E&E):

The strategy of learning from easy questions first
and then gradually handling harder questions is in-
tuitive as it helps the learning process. Yet, it has
one key deficiency. Under curriculum learning, by
focusing on easy questions first, our learning al-
gorithm is usually not exposed to a diverse set of
questions. This is particularly a problem for deep-
learning approaches that learn representations dur-
ing the process of learning. Hence, when a harder
question arrives, it is usually hard for the learner
to adjust to this new question as the current repre-
sentation may not be appropriate for the new level
of difficulty. This motivates our E&E strategy.

The explore and exploit strategy ensures that
while we still select easy questions first, we
also want to make our selection as diverse
as possible. We define a measure for di-
versity as the angle between the hyperplanes
that the question samples induce in feature
space: ∠(φ(qi, a∗i , z

∗
i ,K), φ(qi′ , a∗i′ , z

∗
i′ ,K)) =

Cosine−1
( |φ(qi,a

∗
i ,z
∗
i ,K)φ(qi′ ,a∗i′ ,z

∗
i′ ,K)|

||φ(qi,a∗i ,z
∗
i ,K)||||φ(qi′ ,a∗i′ ,z

∗
i′ ,K)||

)
. The

E&E solution picks the question which optimizes
a convex combination of the curriculum learning
objective and the sum of angles between the can-
didate question pick and questions inQ0. The con-
vex combination is tuned on the development set.

6 Experiments

6.1 Datasets
As described, we study curriculum learning on
four different tasks. The first task is question
answering for reading comprehensions. We use
MCTest-500 dataset (Richardson et al., 2013), a
freely available set of 500 stories (300 train, 50
dev and 150 test) and associated questions to eval-
uate our model. Each story in MCTest has four
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Machine Comprehension Science QA QANTA Memory Networks
No Curriculum (NC) 66.62±0.22 42.77±0.04 70.40±0.07 75.03±0.06

SP
L

Hard 67.36±0.16 43.85±0.18 70.66±0.19 71.01±0.09
Soft Linear 68.04±0.17 43.80±0.22 71.65±0.18 72.33±0.07
Soft Log 68.89±0.16 44.19±0.20 71.92±0.16 73.32±0.09
Mixed 69.47±0.18 44.86±0.20 72.89±0.19 74.28±0.13

H
eu

ri
st

ic
s

CA 66.86±0.06 42.93±0.08 70.78±0.08 70.96±0.04
M2 66.98±0.12 43.19±0.17 71.02±0.18 69.73±0.06
ECiO 67.39±0.14 44.00±0.22 71.66±0.19 71.01±0.07
GO 67.65±0.12 44.35±0.15 71.94±0.17 71.28±0.06
CiO 68.20±0.10 44.56±0.12 72.61±0.14 71.98±0.06
FfDB 68.32±0.11 44.78±0.13 - -
CiO-ECiO 68.65±0.13 44.97±0.11 73.34±0.10 73.22±0.05

H
eu

r+
+ Ensemble 69.26±0.08 45.48±0.07 74.11±0.07 74.24±0.04

+IW 69.86±0.10 45.86±0.12 75.02±0.15 74.55±0.05
+E&E 69.93±0.13 46.57±0.17 76.24±0.15 77.64±0.11
+IW+E&E 70.16±0.14 46.68±0.19 76.89±0.18 77.85±0.09

SP
L

+E
&

E Hard 68.03±0.17 44.50±0.20 72.34±0.19 74.43±0.06
Soft Linear 68.51±0.19 44.43±0.21 73.16±0.19 75.74±0.07
Soft Log 69.27±0.18 44.92±0.20 73.47±0.18 76.63±0.10
Mixed 69.89±0.21 45.58±0.21 74.39±0.21 77.12±0.15

Table 2: Accuracy on the test set obtained on the four experiments, comparing results when no curriculum (NC) was learnt,
when we use self-paced learning (SPL) with four variations of SP-regularizers, the six heuristics and four improvements pro-
posed by us. Each cell reports the mean±se (standard error) accuracy over 10 repetitions of each experimental configuration.

multiple-choice questions, each with four answer
choices. Each question has exactly one correct an-
swer. The second task is science question answer-
ing. We use a mix of 855 third, fourth and fifth
grade science questions derived from a variety of
regional and state science exams3 for training and
evaluating our model. We used publicly available
science textbooks available through ck12.org and
Simple English Wikipedia4 as texts required to an-
swer the questions. The model retrieves a section
from the textbook or a Wikipedia page (using a
lucene index on the sections and Wikipedia pages)
by querying for the hypothesis hij and then align-
ing the hypothesis to snippets in the document.
For QANTA (Iyyer et al., 2014), we use ques-
tions from quiz bowl tournaments for training as
in Iyyer et al. (2014). The dataset contains 20,407
questions with 2347 answers. For each answer in
the dataset, its corresponding Wikipedia page is
also provided. Finally, for memory networks (We-
ston et al., 2014), we use the synthetic QA tasks
defined in Weston et al. (2015) (version 1.1 of the
dataset). There are 20 different types of tasks that
probe different forms of reasoning and deduction.
Each task consists of a set of statements, followed
by a question whose answer is typically a single
word or a set of words. We report mean accuracy

3http://aristo-public-data.s3.amazonaws.com/AI2-
Elementary-NDMC-Feb2016.zip

4https://dumps.wikimedia.org/simplewiki/20151102/

across these 20 tasks.

6.2 Results

We implemented and compared the six selection
heuristics (§5) with the suggested improvements
(§5.2) and self-paced learning (§4) with the ex-
plore and exploit extension for both alignment
based models (§3.1) and two deep learning models
(§3.2). We use accuracy (proportion of test ques-
tions correctly answered) as our evaluation metric.
In all our experiments, we begin with zero training
data (random initialization). For alignment based
models, we select 1 percent of training set ques-
tions after every epoch (an epoch is defined as a
single pass through the current training set by the
optimization oracle) and add them to the training
set based on the selection strategy. For deep learn-
ing models, we discovered that the learning was a
lot slower so we added 0.1 percent of new training
set questions after every epoch. Hyper parameters
of the alignment based models and the deep learn-
ing models were fixed to the corresponding values
proposed in their corresponding papers (pre-tuned
for the optimization oracle on a held-out develop-
ment set). All the results reported in this paper are
averaged over 10 runs of each experiment.

Table 5.3 reports test accuracies obtained on all
the QA tasks, comparing the aforementioned pro-
posals against corresponding models when cur-
riculum learning is not used. We can observe from
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Figure 2: Relative change in parameters*10−x where x = 2
for machine comprehension and science QA, 4 for QANTA
and memory networks when CL is used.

these results that variants of SPL (and E&E) as
well as the heuristics (and improvements) lead to
improvements in the final test accuracy for both
alignment-based models and QANTA.

The surprising ineffectiveness of the heuris-
tics and SPL for memory networks essentially
boils down to the abrupt restructure of mem-
ory the model has to do for curriculum learn-
ing. We provide support for this argument in
Figure 2 which plots the net relative change
in all the parameters W until convergence(

1
No. of parameters

∞∑
e:epoch=1

||We+1−We||1
||We||1

)
for each

of the four tasks on the model Ensemble+E&E
against the linear interpolant used to tune the ex-
plore and exploit combination. As the interpolant
grows from 0 to 1, more and more diverse ques-
tions get selected. We can observe that the change
in parameters decreases as more diverse questions
are selected for all the four tasks. Furthermore,
once we bring in diversity (change the interpolant
from 0 to 0.1), the relative change in parameters
drops sharply for both neural network approaches.
The drop is sharpest for memory networks. Easier
examples usually require less memory than hard
examples. Memory networks have no incentive to
utilize only a fraction of its state for easy exam-
ples. They simply use the entire memory capacity.
This implies that harder examples appearing later
require a restructuring of all memory patterns. The
network needs to change its memory representa-
tion every time in order to free space and accom-
modate the harder example. This process of mem-
ory pattern restructuring is difficult to achieve, so
it could be the reason for the relatively poor per-

formance of naive curriculum learning and SPL
strategies. However, as we can see from the pre-
vious results, the explore and exploit strategy of
mixing in some harder examples avoids the prob-
lem of having to abruptly restructure memory pat-
terns. The extra samples of all difficulties prevent
the network from utilizing all the memory on the
easy examples, thus eliminating the need to re-
structure memory patterns.

From Table 5.3 , we can observe that the choice
of the SP-regularizer is important. The soft regu-
larizers perform better than the hard regularizer.
The mixed regularizer (with mixture weighting)
performs even better. We can also observe that all
the heuristics work as well as SPL, despite being
a lot simpler. The heuristics arranged in increas-
ing order of performance are: CA, M2, ECiO, GO,
CiO, FfDB and CiO-ECiO,. The differences be-
tween the heuristics are larger for alignment-based
models and smaller for deep learning models. The
ECiO heuristic has very similar performance to
SPL with hard SP-regularizer. This is understand-
able as SPL also selects ‘easy’ questions based
on their expected objective value. The Ensemble
is a significant improvement over the individual
heuristics. Importance weighting (IW) and the ex-
plore and exploit strategies (E&E) provide further
improvements. E&E is crucial to making curricu-
lum learning work for deep learning approaches
as described before. Motivated by the success of
E&E, we also extended it to SPL5 by tuning a
convex combination as before. E&E provides im-
provements across all the experiments for all the
SPL experiments. While, the strategy is more im-
portant for memory networks, it leads to improve-
ments on all the tasks.

In order to understand the curriculum learning
process and to test the hypothesis that the proce-
dure indeed selects easy questions first, succes-
sively moving on to harder questions, we plot the
number of questions of grade 3, 4 and 5 picked by
SPL, Ensemble and Ensemble+E&E against the
epoch number in Figure 3. We can observe that
all the three methods pick more questions from
grade 3 initially, successively moving on to more
and more grade 4 questions and finally more grade
5 questions. Both Ensemble and Ensemble+E&E
are more aggressive at learning this curriculum
than SPL. Ensemble becomes too aggressive so

5This is different from Jiang et al. (2014c) which encour-
ages diversity in samples across groups. On the other hand,
we encourage diversity in feature space.
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E&E, initially increases the number of grade 4 and
grade 5 questions received by the learner, thereby
incorporating diversity in learning.

In order to further the claim that curriculum
learning follows the principal of learning sim-
pler concepts first and then learning successively
harder and harder concepts, we plot the test accu-
racy on grade 3, 4 and 5 questions with curriculum
learning (CL) – i.e. Ensemble+E&E and without
curriculum learning (NC) against the epoch num-
ber in Figure 4. Here, we can see that the test ac-
curacy increases for questions in all three grade
levels. With curriculum learning, the accuracy on
grade 3 questions rises sharply in the beginning.
This rise is sharper than the case when curricu-
lum learning is not used. Grade 3 test accuracy for
curriculum learning then saturates (saturates ear-
lier compared to the case when curriculum learn-
ing is not used). The improvements due to cur-
riculum learning for grade 4 questions mainly oc-
cur in epochs 30-140. The final epochs of cur-
riculum learning see greater gain in test accuracy

for grade 5 questions over the case when curricu-
lum learning is not used. All these experiments
together support the intuition of curriculum learn-
ing. The models indeed pick and learn from easier
questions first and successively learn from harder
and harder questions. We also tried variants of
our models where we used curriculum learning on
grade 3 questions, followed by grade 4 and grade 5
questions. However, this did not lead to significant
improvements. Perhaps, this is because questions
that are easy for humans may not always corre-
spond to what is easy for our algorithms. Char-
acterizing what is easy for algorithms and how it
relates to what is easy for humans is an interesting
question for future research.

7 Conclusion

Curriculum learning is inspired by the way hu-
mans acquire knowledge and skills: by mastering
simple concepts first, and progressing through in-
formation with increasing difficulty to grasp more
complex topics. We studied self-paced learning,
an approach for curriculum learning that expresses
the difficulty of a data sample in terms of the value
of the objective function and builds the curriculum
via a joint optimization framework. We proposed
a number of heuristics, an ensemble, and several
improvements for selecting the curriculum that
improves upon self-paced learning. We stressed
on another important aspect of human learning –
diversity, that requires that the right curriculum
should not only arrange the data samples in in-
creasing order of difficulty but should also intro-
duce the learner to a small number of samples
that are sufficiently dissimilar to the samples that
have already been introduced to the learning pro-
cess. We showed that our heuristics when coupled
with diversity lead to significant improvements in
a number of question answering tasks. The ap-
proach is quite general and we hope that this paper
will encourage more NLP researchers to explore
curriculum learning in their own works.
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