
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 194–204,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Idiom Token Classification using Sentential Distributed Semantics

Giancarlo D. Salton and Robert J. Ross and John D. Kelleher
Applied Intelligence Research Centre

School of Computing
Dublin Institute of Technology

Ireland
giancarlo.salton@mydit.ie {robert.ross,john.d.kelleher}@dit.ie

Abstract

Idiom token classification is the task of
deciding for a set of potentially idiomatic
phrases whether each occurrence of a
phrase is a literal or idiomatic usage of
the phrase. In this work we explore the
use of Skip-Thought Vectors to create dis-
tributed representations that encode fea-
tures that are predictive with respect to id-
iom token classification. We show that
classifiers using these representations have
competitive performance compared with
the state of the art in idiom token classifi-
cation. Importantly, however, our models
use only the sentence containing the tar-
get phrase as input and are thus less de-
pendent on a potentially inaccurate or in-
complete model of discourse context. We
further demonstrate the feasibility of using
these representations to train a competitive
general idiom token classifier.

1 Introduction

Idioms are a class of multiword expressions
(MWEs) whose meaning cannot be derived from
their individual constituents (Sporleder et al.,
2010). Idioms often present idiosyncratic be-
haviour such as violating selection restrictions or
changing the default semantic roles of syntac-
tic categories (Sporleder and Li, 2009). Conse-
quently, they present many challenges for Natu-
ral Language Processing (NLP) systems. For ex-
ample, in Statistical Machine Translation (SMT)
it has been shown that translations of sentences
containing idioms receive lower scores than trans-
lations of sentences that do not contain idioms
(Salton et al., 2014).

Idioms are pervasive across almost all lan-
guages and text genres and as a result broad cov-

erage NLP systems must explicitly handle idioms
(Villavicencio et al., 2005). A complicating factor,
however, is that many idiomatic expressions can
be used both literally or figuratively. In general,
idiomatic usages are more frequent, but for some
expressions the literal meaning may be more com-
mon (Li and Sporleder, 2010a). As a result, there
are two fundamental tasks in NLP idiom process-
ing: idiom type classification is the task of identi-
fying expressions that have possible idiomatic in-
terpretations and idiom token classification is the
task of distinguishing between idiomatic and lit-
eral usages of potentially idiomatic phrases (Fazly
et al., 2009). In this paper we focus on this second
task, idiom token classification.

Previous work on idiom token classification,
such as (Sporleder and Li, 2009) and (Peng et
al., 2014), often frame the problem in terms of
modelling the global lexical context. For exam-
ple, these models try to capture the fact that the id-
iomatic expression break the ice is likely to have a
literal meaning in a context containing words such
as cold, frozen or water and an idiomatic meaning
in a context containing words such as meet or dis-
cuss (Li and Sporleder, 2010a). Frequently these
global lexical models create a different idiom to-
ken classifier for each phrase. However, a number
of papers on idiom type and token classification
have pointed to a range of other features that could
be useful for idiom token classification; including
local syntactic and lexical patterns (Fazly et al.,
2009) and cue words (Li and Sporleder, 2010a).
However, in most cases these non-global features
are specific to a particular phrase. So a key chal-
lenge is to identify from a range of features which
features are the correct features to use for idiom
token classification for a specific expression.

Meanwhile, in recent years there has been an
explosion in the use of neural networks for learn-
ing distributed representations for language (e.g.,

194



Socher et al. (2013), Kalchbrenner et al. (2014)
and Kim (2014)). These representations are au-
tomatically trained from data and can simultane-
ously encode multiple linguistics features. For ex-
ample, word embeddings can encode gender dis-
tinctions and plural-singular distinctions (Mikolov
et al., 2013b) and the representations generated in
sequence to sequence mappings have been shown
to be sensitive to word order (Sutskever et al.,
2014). The recent development of Skip-Thought
Vectors (or Sent2Vec) (Kiros et al., 2015) has pro-
vided an approach to learn distributed representa-
tions of sentences in an unsupervised manner.

In this paper we explore whether the repre-
sentations generated by Sent2Vec encodes fea-
tures that are useful for idiom token classification.
This question is particularly interesting because
the Sent2Vec based models only use the sentence
containing the phrase as input whereas the base-
lines systems use full the paragraph surrounding
the sentence. We further investigate the construc-
tion of a “general” classifier that can predict if a
sentence contains literal or idiomatic language (in-
dependent of the expression) using just the dis-
tributed representation of the sentence. This ap-
proach contrasts with previous work that has pri-
marily adopted a “per expression” classifier ap-
proach and has been based on more elaborate con-
text features, such as discourse and lexical cohe-
sion between and sentence and the larger context.
We show that our method needs less contextual
information than the state-of-the-art method and
achieves competitive results, making it an impor-
tant contribution to a range of applications that do
not have access to a full discourse context. We
proceed by introducing that previous work in more
detail.

2 Previous Work

One of the earliest works on idiom token classi-
fication was on Japanese idioms (Hashimoto and
Kawahara, 2008). This work used a set of features,
commonly used in Word Sense Disambiguation
(WSD) research, that were defined over the text
surrounding a phrase, as well as a number of idiom
specific features, which were in turn used to train
an SVM classifier based on a corpus of sentences
tagged as either containing an idiomatic usage or
a literal usage of a phrase. Their results indicated
that the WSD features worked well on idiom token
classification but that their idioms specific features

did not help on the task.

Focusing on idiom token classification in En-
glish, Fazly et al. (2009) developed the concept of
a canonical form (defined in terms of local syn-
tactic and lexical patterns) and argued that for
each idiom there is a distinct canonical form (or
small set of forms) that mark idiomatic usages
of a phrase. Meanwhile Sporleder and Li (2009)
proposed a model based on how strongly an ex-
pression is linked to the overall cohesive structure
of the discourse. Strong links result in a literal
classification, otherwise an idiomatic classifica-
tion is returned. In related work, Li and Sporleder
(2010a) experimented with a range of features
for idiom token classification models, including:
global lexical context, discourse cohesion, syntac-
tic structures based on dependency parsing, and
local lexical features such as cue words, occurring
just before or after a phrase. An example of a local
lexical feature is when the word between occurs
directly after break the ice; here this could mark
an idiomatic usage of the phrase: it helped to break
the ice between Joe and Olivia. The results of this
work indicated that features based on global lex-
ical context and discourse cohesion were the best
features to use for idiom token classification. The
inclusion of syntactic structures in the feature set
provided a boost to the performance of the model
trained on global lexical context and discourse co-
hesion. Interestingly, unlike the majority of pre-
vious work on idiom token classification Li and
Sporleder (2010a) also investigated building gen-
eral models that could work across multiple ex-
pressions. Again they found that global lexical
context and discourse cohesion were the best fea-
tures in their experiments.

Continuing work on this topic, Li and Sporleder
(2010b) present research based on the assumption
that literal and figurative language are generated
by two different Gaussians. The model represen-
tation is based on semantic relatedness features
similar to those used earlier in (Sporleder and Li,
2009). A Gaussian Mixture Model was trained us-
ing an Expectation Maximization method with the
classification of instances performed by choosing
the category which maximises the probability of
fitting either of the Gaussian components. Li and
Sporleder (2010b)’s results confirmed the findings
from previous work that figurative language ex-
hibits less cohesion with the surrounding context
then literal language.

195



More recently, Feldman and Peng (2013) de-
scribes an approach to idiom token identification
that frames the problem as one of outlier detec-
tion. The intuition behind this work is that be-
cause idiomatic usages of phrases have weak co-
hesion with the surrounding context they are se-
mantically distant from local topics. As a result,
phrases that are semantic outliers with respect to
the context are likely to be idioms. Feldman and
Peng (2013) explore two different approaches to
outlier detection based on principle component
analysis (PCA) and linear discriminant analysis
(LDA) respectively. Building on this work, Peng
et al. (2014) assume that phrases within a given
text segment (e.g., a paragraph) that are seman-
tically similar to the main topic of discussion in
the segment are likely to be literal usages. They
use Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) to extract a topic representation, defined as a
topic term document matrix, of each text segment
within a corpus. They then trained a number of
models that classify a phrase in a given text seg-
ment as a literal or idiomatic usage by using the
topic term document matrix to project the phrase
into a topic space representation and label outliers
within the topic space as idiomatic. To the best of
our knowledge, Peng et al. (2014) is currently the
best performing approach to idiom token classifi-
cation and we use their models as our baseline1.

3 Skip-Thought Vectors

While idiom token classification based on long
range contexts, such as is explored in a number
of the models outlined in the previous section,
generally achieve good performance, an NLP sys-
tem may not always have access to the surround-
ing context, or may indeed find it challenging to
construct a reliable interpretation of that context.
Moreover, the construction of classifiers for each
individual idiom case is resource intensive, and we
argue fails to easily scale to under-resourced lan-
guages. In light of this, in our work we are ex-
ploring the potential of distributed compositional
semantic models to produce reliable estimates of
idiom token classification.

Skip-Thought Vectors (Sent2Vec) (Kiros et al.,

1However, it is not possible for us to reproduce their re-
sults directly as they “apply the (modified) Google stop list
before extracting the topics” (Peng et al., 2014, p. 2023) and,
to date, we do not have access to the modified list. So in
our experiments we compare our results with the results they
report on the same data.

2015) are a recent prominent example of such
distributed models. Skip-Thought Vectors are an
application of the Encoder/Decoder framework
(Sutskever et al., 2014), a popular architecture for
NMT (Bahdanau et al., 2015) based on recurrent
neural networks (RNN). The encoder takes an in-
put sentence and maps it into a distributed repre-
sentation (a vector of real numbers). The decoder
is a language model that is conditioned on the dis-
tributed representation and, in Sent2Vec, is used to
“predict” the sentences surrounding the input sen-
tence. Consequently, the Sent2Vec encoder learns
(among other things) to encode information about
the context of an input sentence without the need
of explicit access to it. Figure 1 presents the archi-
tecture of Sent2Vec.

More formally, assume a given tuple (si−1, si,
si+1) where si is the input sentence, si−1 is the
previous sentence to si and si+1 is the next sen-
tence to si. Let wt

i denote the t-th word for si and
xt

i denote its word embedding. We follow Kiros
et al. (2015) and describe the model in three parts:
encoder, decoder and objective function.

Encoder. Given the sentence si of length N ,
let w1

i , . . . , w
N
i denote the words in si. At each

timestep t, the encoder (in this case an RNN with
Gated Recurrent Units - GRUs (Cho et al., 2014))
produces a hidden state ht

i that represents the se-
quence w1

i , . . . , w
t
i . Therefore, hN

i represents the
full sentence. Each hN

i is produced by iterating
the following equations (without the subscript i):

rt = σ(We
rx

t + Ue
rh

t−1) (1)

zt = σ(We
zx

t + Ue
zh

t−1) (2)

h̃t = tanh(Wext + Ue(rt � ht−1)) (3)

ht = (1− zt)� ht−1 + zt � h̃t (4)

where rt is the reset gate, zt is the update gate,
h̃t is the proposed update state at time t and �
denotes a component-wise product.

Decoder. The decoder is essentially a neural
language model conditioned on the input sentence
representation hN

i . However, two RNNs are used
(one for the sentence si−1 and the other for the
sentence si+1) with different parameters except
the embedding matrix (E), and a new set of ma-
trices (Cr, Cz and C) are introduced to condition
the GRU on hN

i . Let ht
i+1 denote the hidden state

of the decoder of the sentence si+1 at time t. De-

196



Figure 1: Picture representing the Encoder/Decoder architecture used in the Sent2Vec as shown in Kiros
et al. (2015). The gray circles represent the Encoder unfolded in time, the red and the green circles
represent the Decoder for the previous and the next sentences respectively also unfolded in time. In this
example, the input sentence presented to the Encoder is I could see the cat on the steps. The previous
sentence is I got back home and the next sentence is This was strange. Unattached arrows are connected
to the encoder output (which is the last gray circle).

coding si+1 requires iterating the following equa-
tions:

rt = σ(Wd
rx

t + Ud
rh

t−1 + CrhN
i ) (5)

zt = σ(Wd
zx

t + Ud
zh

t−1 + CzhN
i ) (6)

h̃t = tanh(Wdxt + Ud(rt � ht−1) + ChN
i )
(7)

ht
i+1 = (1− zt)� ht−1 + zt � h̃t (8)

where rt is the reset gate, zt is the update gate,
h̃t is the proposed update state at time t and �
denotes a component-wise product. An analogous
computation is required to decode si−1.

Given ht
i+1, the probability of the word wt

i+1

conditioned on the previous w<t
i+1 words and the

encoded representation produced by the encoder
(hN

i ) is:

P (wt
i+1|w<t

i+1, h
N
i ) ∝ exp(Ewt

i+1
ht

i+1) (9)

where Ewt
i+1

denotes the embedding for the word
wt

i+1. An analogous computation is performed to
find the probability of si−1.

Objective. Given the tuple (si−1, si, si+1),
the objective is to optimize the sum of the log-
probabilities of the next (si+1) and previous
(si−1) sentences given the distributed representa-
tion (hN

i ) of si:∑
logP (wt

i+1|w<t
i+1, h

N
i ) + P (wt

i−1|w<t
i−1, h

N
i )

(10)

where the total objective is summed over all train-
ing tuples (si−1, si, si+1).

The utility of Sent2Vec is that it is possible to
infer properties of the surrounding context only
from the input sentence. Therefore, we can as-
sume that the Sent2Vec distributed representation
is also carrying information regarding its context
(without the need to explicitly access it). Follow-
ing that intuition, we can train a supervised clas-
sifier only using the labelled sentences containing
examples of idiomatic or literal language use with-
out modelling long windows of context or using
methods to extract topic representations.

4 Experiments

In the following we describe a study that eval-
uates the predictiveness of the distributed repre-
sentations generated by Sent2Vec for idiom token
classifier. We first evaluate these representations
using a “per expression” study design (i.e., one
classifier per expression) and compare our results
to those of Peng et al. (2014) who applied multi-
paragraphs contexts to generate best results. We
also experiment with a “general” classifier trained
and tested on a set of mixed expressions.

4.1 Dataset

In order to make our results comparable with
(Peng et al., 2014) we used the same VNC-Tokens
dataset (Cook et al., 2008) that they used in their
experiments. The dataset used is a collection of
sentences containing 53 different Verb Noun Con-
structions2 (VNCs) extracted from the British Na-
tional Corpus (BNC) (Burnard, 2007). In total,
the VNC-Token dataset has 2984 sentences where
each sample sentence is labelled with one of three
labels: I (idiomatic); L (literal); or Q (unknown).

2This verb-noun constructions can be used either idiomat-
ically or literally.

197



Of the 56 VNCs in the dataset 28 of these expres-
sions have a reasonably balanced representation
(with similar numbers of idiomatic and literal oc-
currences in the corpus) and the other 28 expres-
sions have a skewed representation (with one class
much more common then the other). Following
the approach taken by (Peng et al., 2014), in this
study we use the “balanced” part of the dataset
and considered only those sentences labelled as
“I” and “L” (1205 sentences - 749 labelled as “I”
and 456 labelled as “L”).

Peng et al. (2014) reported the precision,
recall and f1-score of their models on 4 of
the expressions from the balanced section of
dataset: BlowWhistle; MakeScene; LoseHead;
and TakeHeart. So, our first experiment is de-
signed to compare our models with these baseline
systems on a “per-expression” basis. For this ex-
periment we built a training and test set for each of
these expressions by randomly sampling expres-
sions following the same distributions presented
in Peng et al. (2014). In Table 1 we present those
distribution and the split into training and test sets.
The numbers in parentheses denote the number of
samples labelled as “I”.

Expression Samples Train Size Test Size
BlowWhistle 78 (27) 40 (20) 38 (7)
LoseHead 40 (21) 30 (15) 10 (6)
MakeScene 50 (30) 30 (15) 20 (15)
TakeHeart 81 (61) 30 (15) 51 (46)

Table 1: The sizes of the samples for each expres-
sion and the split into training and test set. The
numbers in parentheses indicates the number of id-
iomatic labels within the set. We follow the same
split as described in Peng et al. (2014).

While we wish to base our comparison on the
work of Peng et al. (2014) as it is the current
state of the art, this is not without its own chal-
lenges. In particular we see the choice of these
4 expression as a somewhat random decision as
other expressions could also be selected for the
evaluation with similar ratios to those described
in Table 1. Moreover, the choosen expressions are
all semi-compositional and do not consider fully
non-compositional expressions (although we be-
lieve the task of classifying non-compositional ex-
pressions would be easier for any method aimed
at idiom token classification as these expressions
are high-fixed) .A better evaluation would con-
sider all the 28 expressions of the balanced part
of the VNC-tokens dataset. In addition, we also

see this choice of training and test splits as some-
what arbitrary. For two of the expressions the
test set contain samples in a way that one of the
classes outnumber the other by a great amount: for
BlowWhistle, the literal class contains roughly 4
times more samples than the idiomatic class; and
for TakeHeart the idiomatic class contains roughly
9 times more samples than the literal class. Our
concerns with these very skewed test set ratios is
that it is very easy when applying a per expres-
sion approach (i.e., a separate model for each ex-
pression) for a model to achieve good performance
(in terms of precision, recall, ad f1) if the positive
class is the majority class in the test set. However,
despite these concerns, in our first experiment in
order to facilitate comparison with the prior art we
follow the expression selections and training/test
splits described in Peng et al. (2014).

Studies on the characteristics of distributed se-
mantic representations of words have shown that
similar words tend to be represented by points that
are close to each other in the semantic feature
space (e.g. Mikolov et al. (2013a)). Inspired by
these results we designed a second experiment to
test whether the Sent2Vec representations would
cluster idiomatic sentences in one part of the fea-
ture space and literal sentences in another part of
the space. For this experiment we used the entire
“balanced” part of the VNC-tokens dataset to train
and test our “general” (multi-expression) models.
In this experiment we wanted the data to reflect,
as much as possible, the real distribution of the id-
iomatic and literal usages of each expression. So,
in constructing our training and test set we tried
to maintain for each expression the same ratio of
idiomatic and literal examples across the training
and test set. To create the training and test sets, we
split the dataset into roughly 75% for training (917
samples) and 25% for testing (288 samples). We
randomly sample the expressions ensuring that the
ratio of idiomatic to literal expressions of each ex-
pression were maintained across both sets. In Ta-
ble 2 we show the expressions used and their split
into training and testing. The numbers in paren-
theses are the number of samples labelled as “I”.

4.2 Sent2Vec Models

To encode the sentences into their distributed rep-
resentations we used the code and models made
available3 by Kiros et al. (2015). Using their

3https://github.com/ryankiros/skip-thoughts

198



Expression Samples Train Size Test Size
BlowTop 28 (23) 21 (18) 7 (5)
BlowTrumpet 29 (19) 21 (14) 8 (5)
BlowWhistle 78 (27) 59 (20) 19 (7)
CutFigure 43 (36) 33 (28) 10 (8)
FindFoot 53 (48) 39 (36) 14 (12)
GetNod 26 (23) 19 (17) 7 (6)
GetSack 50 (43) 40 (34) 10 (9)
GetWind 28 (13) 20 (9) 8 (4)
HaveWord 91 (80) 69 (61) 22 (19)
HitRoad 32 (25) 24 (19) 8 (6)
HitRoof 18 (11) 14 (9) 4 (2)
HitWall 63 (7) 50 (6) 13 (1)
HoldFire 23 (7) 19 (5) 4 (2)
KickHeel 39 (31) 30 (23) 9 (8)
LoseHead 40 (21) 29 (15) 11 (6)
LoseThread 20 (18) 16 (15) 4 (3)
MakeFace 41 (27) 31 (21) 10 (6)
MakeHay 17 (9) 12 (6) 5 (3)
MakeHit 14 (5) 9 (3) 5 (2)
MakeMark 85 (72) 66 (56) 19 (16)
MakePile 25 (8) 18 (6) 7 (2)
MakeScene 50 (30) 37 (22) 13 (8)
PullLeg 51 (11) 40 (8) 11 (3)
PullPlug 64 (44) 49 (33) 15 (11)
PullPunch 22 (18) 18 (15) 4 (3)
PullWeight 33 (27) 24 (20) 9 (7)
SeeStar 61 (5) 49 (3) 12 (2)
TakeHeart 81 (61) 61 (45) 20 (16)

Table 2: The sizes of the samples for each expres-
sion and the split into training and test set. The
numbers in parentheses indicates the number of
idiomatic labels within the set.

models it is possible to encode the sentences into
three different formats: uni-skip (which uses a
regular RNN to encode the sentence into a 2400-
dimensional vector); bi-skip (that uses a bidirec-
tional RNN to encode the sentence also into a
2400-dimensional vector); and the comb-skip (a
concatenation of uni-skip and bi-skip which has
4800 dimensions). Their models were trained us-
ing the BookCorpus dataset (Zhu et al., 2015)
and has been tested in several different NLP tasks
as semantic relatedness, paraphrase detection and
image-sentence ranking. Although we experi-
mented with all the three models, in this paper
we only report the results of classifiers trained and
tested using the comb-skip features.

4.3 Classifiers

4.3.1 “Per-expression” models
The idea behind Sent2Vec is similar to those of
word embeddings experiments: sentences contain-
ing similar meanings should be represented by
points close to each other in the feature space. Fol-
lowing this intuition we experiment first with a
similarity based classifier, the K-Nearest Neigh-

bours (k-NN). For the k-NNs we experimented
with k = {2, 3, 5, 10}.

We also experimented with a more advanced
algorithm, namely the Support Vector Machine
(SVM) (Vapnik, 1995). We trained the SVM un-
der three different configurations:

Linear-SVM-PE4. This model used a “linear”
kernel with C = 1.0 on all the classification se-
tups.

Grid-SVM-PE. For this model we performed a
grid search for the best parameters for each expres-
sion. The parameters are: BlowWhiste = { ker-
nel: ’rbf’, C = 100}; LoseHead = { kernel: ’rbf’,
C = 1 }; MakeSene = { kernel: ’rbf’, C = 100 };
TakeHeart = { kernel: ’rbf’, C = 1000 }.

SGD-SVM-PE. This model is a SVM with lin-
ear kernel but trained using stochastic gradient de-
scent (Bottou, 2010). We set the SGD‘s learning
rates (α) using a grid search: BlowWhiste = {α =
0.001 }; LoseHead = {α = 0.01 }; MakeSene =
{α = 0.0001 }; TakeHeart = {α = 0.0001 };
FullDataset = {α = 0.0001 }. We trained these
classifiers for 15 epochs.

4.3.2 “General” models

We consider the task of creating a “general” clas-
sifier that takes an example of any potential idiom
and classifying it into idiomatic or literal usage
more difficult than the “per-expression” classifi-
cation task. Hence we executed this part of the
study with the SVM models only. We trained the
same three types of SVM models used in the “per-
expression” approach but with the following pa-
rameters:

Linear-SVM-GE5. This model used a linear
kernel with C = 1.0 for all the classification sets.

Grid-SVM-GE. For this model we also per-
formed a grid search and set the kernel to “poly-
nomial kernel” of degree = 2 with C = 1000.

SGD-SVM-GE. We also experimented with a
SVM with linear kernel trained using stochastic
gradient descent. We set the SGD‘s learning rate
α = 0.0001 after performing a grid search. We
trained this classifier for 15 epochs.

5 Results and Discussion

We first present the results for the per expression
comparison with Peng et al. (2014) and then in

4PE stands for “per-expression”
5GE stands for “general”.

199



Models BlowWhistle LoseHead MakeScene TakeHeart
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Peng et. al (2014)
FDA-Topics 0.62 0.60 0.61 0.76 0.97 0.85 0.79 0.95 0.86 0.93 0.99 0.96
FDA-Topics+A 0.47 0.44 0.45 0.74 0.93 0.82 0.82 0.69 0.75 0.92 0.98 0.95
FDA-Text 0.65 0.43 0.52 0.72 0.73 0.72 0.79 0.95 0.86 0.46 0.40 0.43
FDA-Text+A 0.45 0.49 0.47 0.67 0.88 0.76 0.80 0.99 0.88 0.47 0.29 0.36
SVMs-Topics 0.07 0.40 0.12 0.60 0.83 0.70 0.46 0.57 0.51 0.90 1.00 0.95
SVMs-Topics+A 0.21 0.54 0.30 0.66 0.77 0.71 0.42 0.29 0.34 0.91 1.00 0.95
SVMs-Text 0.17 0.90 0.29 0.30 0.50 0.38 0.10 0.01 0.02 0.65 0.21 0.32
SVMs-Text+A 0.24 0.87 0.38 0.66 0.85 0.74 0.07 0.01 0.02 0.74 0.13 0.22
Distributed Representations
KNN-2 0.61 0.41 0.49 0.30 0.64 0.41 0.55 0.89 0.68 0.46 0.96 0.62
KNN-3 0.84 0.32 0.46 0.58 0.65 0.61 0.88 0.88 0.88 0.72 0.94 0.81
KNN-5 0.79 0.28 0.41 0.57 0.65 0.61 0.87 0.83 0.85 0.73 0.94 0.82
KNN-10 0.83 0.30 0.44 0.28 0.68 0.40 0.85 0.83 0.84 0.78 0.94 0.85
Linear SVM 0.77 0.50 0.60 0.72 0.84 0.77 0.81 0.91 0.86 0.73 0.96 0.83
Grid SVM 0.80 0.51 0.62 0.83 0.89 0.85 0.80 0.91 0.85 0.72 0.96 0.82
SGD SVM 0.70 0.40 0.51 0.73 0.79 0.76 0.85 0.91 0.88 0.61 0.95 0.74

Table 3: Results in terms of precision (P.), recall (R.) and f1-score (F1) on the four chosen expressions.
The results of (Peng et al., 2014) are those of the multi-paragraphs method. The bold values indicates
the best results for that expression in terms of f1-score.

Section 5.2 we present the results for the “general’
classifier approach.

5.1 Per-Expression Classification

The averaged results over 10 runs in terms of pre-
cision, recall and f1-score are presented in Table
3. When calculating these metrics, we consid-
ered the positive class to be the “I” (idiomatic) la-
bel. We used McNemar‘s test (McNemar, 1947)
to check the statistical significance of our models‘
results and found all our results to be significant at
p < 0.05.

We can see in Table 3 that some of our mod-
els outperform the baselines on 1 expression
(BlowWhistle) and achieved the same f1-scores on
2 expressions (LoseHead and MakeScene). For
theses 3 expressions, our best models generally
had higher precision than the baselines, finding
more idioms on the test sets. In addition, for
MakeScene, 2 of our models achieved the same f1-
scores (KNN-3 and SGD-SVM-PE), although they
have different precision and recall.

The only expression on which a baseline model
outperformed all our models was TakeHeart where
it achieved higher precision, recall and f1-scores.
Nevertheless, this expression had the most imbal-
anced test set, with roughly 9 times more idioms
than literal samples. Therefore, if the baseline la-
bel all the test set samples as idiomatic (including
the literal examples), it would still have the best re-
sults. It is thus worth emphasizing that the choices
of distributions for training and test sets in Peng

et al’s work seems arbitrary and does not reflect
the real distribution of the data in a balanced cor-
pus. Also, Peng et al. (2014) did not provide the
confusion matrices for their models so we cannot
analyse their model behaviour across the classes.

That aside, while our best models share the
same f1-score with the baseline on 2 of the expres-
sions, we believe that our method is more powerful
if we take into account that we do not explicitly ac-
cess the context surrounding our input sentences.
We can also consider that our method is cheaper
than the baseline in the sense that we do not need
to process words other than the words in the input
sentence.

In addition, we note that the SVMs generally
outperform the KNNs, although no single model
perform best across all expressions. Regardless
of the fact that the KNN-3 achieved the same f1-
score as SGD-SVM on MakeScene, the SVM con-
sistently scored higher than the KNNs on all ex-
pressions. This is an interesting finding if we con-
sider that our feature vector is 4800-dimensional
and the SVMs are projecting these features into a
space that has much more than 4800 dimensions
and not incurring into the “curse of dimension-
ality”. Furthermore, other work using Sent2vec
have shown the capabilities of the Sent2Vec rep-
resentations to capture features that are suited to
various NLP tasks where semantics is involved
(e.g., paraphrase detection and semantic related-
ness (Kiros et al., 2015)). These results together
with our findings suggests that the factors in-

200



Expressions Linear-SVM-GE Grid-SVM-GE SGD-SVM-GE
P. R. F1 P. R. F1 P. R. F1

BlowTop 0.91 0.96 0.94 0.91 0.93 0.94 0.80 0.98 0.88
BlowTrumpet 0.98 0.88 0.93 0.98 0.88 0.93 0.89 0.93 0.90
BlowWhistle* 0.84 0.67 0.75 0.84 0.68 0.75 0.67 0.59 0.63
CutFigure 0.91 0.85 0.88 0.89 0.85 0.87 0.86 0.85 0.86
FindFoot 0.96 0.93 0.94 0.97 0.93 0.95 0.85 0.90 0.87
GetNod 0.98 0.91 0.95 0.98 0.91 0.95 0.91 0.91 0.91
GetSack 0.87 0.89 0.88 0.86 0.88 0.87 0.81 0.89 0.84
GetWind 0.86 0.82 0.84 0.92 0.85 0.88 0.69 0.81 0.75
HaveWord 0.99 0.89 0.94 0.99 0.89 0.94 0.95 0.91 0.93
HitRoad 0.86 0.98 0.92 0.89 0.98 0.93 0.83 0.98 0.90
HitRoof 0.88 0.88 0.88 0.92 0.88 0.90 0.80 0.83 0.82
HitWall 0.74 0.58 0.65 0.74 0.58 0.65 0.74 0.45 0.56
HoldFire 1.00 0.63 0.77 1.00 0.63 0.77 0.82 0.67 0.74
KickHeel 0.92 0.96 0.94 0.92 0.99 0.95 0.89 0.92 0.91
LoseHead* 0.78 0.66 0.72 0.75 0.64 0.69 0.75 0.67 0.71
LoseThread 1.00 0.88 0.93 1.00 0.86 0.92 0.81 0.85 0.83
MakeFace 0.70 0.83 0.76 0.69 0.76 0.72 0.62 0.81 0.70
MakeHay 0.81 0.78 0.79 0.81 0.84 0.82 0.73 0.76 0.75
MakeHit 0.10 0.54 0.70 0.10 0.54 0.70 0.85 0.55 0.67
MakeMark 0.99 0.92 0.95 0.98 0.91 0.94 0.93 0.93 0.93
MakePile 0.84 0.67 0.74 0.84 0.70 0.76 0.74 0.70 0.72
MakeScene* 0.92 0.84 0.88 0.92 0.81 0.86 0.78 0.81 0.79
PullLeg 0.79 0.71 0.75 0.82 0.72 0.77 0.75 0.70 0.72
PullPlug 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.92 0.91
PullPunch 0.85 0.87 0.86 0.87 0.87 0.87 0.70 0.85 0.77
PullWeight 1.00 0.96 0.98 1.00 0.96 0.98 0.89 0.93 0.93
SeeStar 0.17 0.13 0.15 0.17 0.13 0.15 0.17 0.17 0.17
TakeHeart* 0.94 0.79 0.86 0.94 0.80 0.86 0.86 0.80 0.83
Total 0.84 0.80 0.83 0.84 0.80 0.83 0.79 0.79 0.78

Table 4: Precision (P.), recall (R.) and f1-scores (F1) calculated on the expressions of the balanced part
of the VNC-Tokens dataset. The expressions marked with * indicate the expressions also evaluated with
the “per-expression” classifiers.

volved in distinguishing between the semantics
of idiomatic and literal language are deeply en-
trenched in language generation and only a high-
dimensional representation can enable a classifier
to make that distinction. This observation also im-
plies that the contribution of each feature (gen-
erated by the distributed representation) is very
small, given the fact that we need that many di-
mensions and the space needed to unpack the com-
ponents of literal and idiomatic language has many
more dimensions than the input space. Therefore,
the current manually engineered features (i.e., the
features used in previous idiom token classifica-
tion) are only capturing a small portion of these
dimensions and assigning more weight to these di-
mensions while other dimensions (not captured)
are not considered (i.e., as they are not considered,
the features represented by these dimensions have
their weight equal to 0)

Another point for consideration is the fact that
the combination of our model with the work of
Peng et al. (2014) may result in a stronger model
on this “per-expression” setting. Nevertheless, as

previously highlighted, it was not possible for us
to directly re-implement their work.

5.2 General Classification
Moving on to the general classification case, we
present the average results (in terms of precision,
recall and f1-score) over 10 runs to our “general”
classifiers on the balanced part of the VNC-Tokens
dataset. Once again, the positive class is assumed
to be the “I” (idiomatic) label and we split the out-
comes per expression. It should be noted that the
“per-expression” evaluation was performed using
a balanced set to train the classifiers while in this
experiment we maintained the ratio of idiomatic to
literal usages for each expression across the train-
ing and test sets. Our motivation for maintaining
this ratio was to simulate the real distribution of
the classes in the corpus.

We present results for the four individual
MWEs used in the per-sentence based evaluation
as well as a set of averages made over all 28 ex-
pression in the “balanced” portion of the dataset.
Referring to the results we first of all note the
overall performance of the “general” classifiers is

201



fairly high with 2 classifiers (Linear-SVM-GE and
Grid-SVM-GE) sharing the same precision, recall
and f1-scores. While averages here are the same
across the two classifiers, it is worth noting that
deviations occured across individual MWE types,
though these deviations balanced out across the
data set. Although not displayed in this table due
to space limitations, it should be noted that all the
3 classifier had a extremely low performance on
SeeStar (f1 = 0.15, 0.15 and 0.17 respectively).

If we compare the performance of the 4 ex-
pressions analysed in the “per-expression” exper-
iment we can observe that all the “general” clas-
sifiers had a better performance over BlowWhis-
tle and the Linear-SVM-GE also performed bet-
ter on MakeScene. Nevertheless we should em-
phasize that the “general” classifier‘s evaluation is
closer to what we would expect in a real data dis-
tribution than the evaluation presented on the “per-
expression” section. This does not invalidate the
evaluation of the latter but when we have access to
a real data distribution it should also be taken into
account when performing a ML evaluation.

In general, the results look promising. It is in-
teresting to see how the classifiers trained on a set
of mixed expressions (“general” classifiers) had a
performance close to the “per-expression” classi-
fiers, even though the latter were trained and tested
on “artificial” training and test sets that do not re-
flect the real data distributions. We believe that
these results indicate that the distributed represen-
tations generated by Sent2Vec are indeed cluster-
ing together sentences within the same class (id-
iomatic or literal) in feature space.

6 Conclusions and Future Work

In this paper we have investigated the use of dis-
tributed compositional semantics in literal and id-
iomatic language classification, more specifically
using Skip-Thought Vectors (Sent2Vec). We fol-
lowed the intuition that the distributed representa-
tions generated by Sent2Vec also include informa-
tion regarding the context where the potential id-
iomatic expression is inserted and therefore is suf-
ficient for distinguishing between idiomatic and
literal language use.

We tested this approach with different Machine
Learning (ML) algorithms (K-Nearest Neighbours
and Support Vector Machines) and compared our
work against a topic model representation that in-
clude the full paragraph or the surrounding para-

graphs where the potential idiom is inserted. We
have shown that using the Sent2Vec representa-
tions our classifiers achieve better results in 3 out
of 4 expressions tested. We have also shown
that our models generally present better precision
and/or recall than the baselines.

We also investigated the capability of Sent2Vec
clustering representations of sentences within the
same class in feature space. We followed the
intuition presented by previous experiments with
distributed representations that words with simi-
lar meaning are clustered together in feature space
and experimented with a “general” classifier that
is trained on a dataset of mixed expressions. We
have shown that the “general” classifier is feasible
but the traditional “per-expression” does achieve
better results in some cases.

In future work we plan to investigate the use of
Sent2Vec to encode larger samples of text - not
only the sentence containing idioms. We also plan
to further analyse the errors made by our “general”
model and investigate the “general” approach on
the skewed part of the VNC-tokens dataset. We
also plan to investigate an end-to-end approach
based on deep learning-based representations to
classify literal and idiomatic language use.

In addition, we also plan to compare our work
to the method of Sporleder et al. (2010) as well
apply our work on the IDX Corpus (Sporleder et
al., 2010) and to other languages. The focus of
these future experiments will be to test how our ap-
proach which is relatively less dependent on NLP
resources compares with these other methods for
idiom token classification.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments and feedback. Gi-
ancarlo D. Salton would like to thank CAPES
(“Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior”) for his Science Without Borders
scholarship, proc n. 9050-13-2.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March.

202



Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
the 19th International Conference on Computational
Statistics (COMPSTAT’2010), pages 177–187.

Lou Burnard. 2007. Reference guide for the british
national corpus (xml edition). Technical report,
http://www.natcorp.ox.ac.uk/.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, October. Association for Com-
putational Linguistics.

Paul Cook, Afsaneh Fazly, and Suzanne Stevenson.
2008. The VNC-Tokens Dataset. In Proceedings
of the LREC Workshop: Towards a Shared Task for
Multiword Expressions (MWE 2008), Marrakech,
Morocco.

Afsanesh Fazly, Paul Cook, and Suzanne Stevenson.
2009. Unsupervised type and token identification of
idiomatic expressions. In Computational Linguis-
tics, volume 35, pages 61–103.

Anna Feldman and Jing Peng. 2013. Automatic
detection of idiomatic clauses. In Proceedings of
the 14th International Conference on Computational
Linguistics and Intelligent Text Processing - Volume
Part I, CICLing’13, pages 435–446.

Chikara Hashimoto and Daisuke Kawahara. 2008.
Construction of an idiom corpus and its application
to idiom identification based on wsd incorporating
idiom-specific features. In Proceedings of the con-
ference on empirical methods in natural language
processing, pages 992–1001. Association for Com-
putational Linguistics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. June.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems
28, pages 3276–3284.

Linlin Li and Caroline Sporleder. 2010a. Linguistic
cues for distinguishing literal and non-literal usages.
In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 683–
691.

Linlin Li and Caroline Sporleder. 2010b. Using gaus-
sian mixture models to detect figurative language in
context. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, HLT ’10, pages 297–300, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In The 2013 Conference of
the North Americal Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 746–751.

Jing Peng, Anna Feldman, and Ekaterina Vylomova.
2014. Classifying idiomatic and literal expres-
sions using topic models and intensity of emotions.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 2019–2027, October.

Giancarlo D. Salton, Robert J. Ross, and John D.
Kelleher. 2014. An Empirical Study of the Im-
pact of Idioms on Phrase Based Statistical Machine
Translation of English to Brazilian-Portuguese. In
Third Workshop on Hybrid Approaches to Transla-
tion (HyTra) at 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

Caroline Sporleder and Linlin Li. 2009. Unsupervised
recognition of literal and non-literal use of idiomatic
expressions. In Proceedings of the 12th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 754–762.

Caroline Sporleder, Linlin Li, Philip Gorinski, and
Xaver Koch. 2010. Idioms in context: The idix
corpus. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC-2010), pages 639–646.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112.

203



Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Aline Villavicencio, Francis Bond, Anna Korhonen,
and Diana McCarthy. 2005. Editorial: Introduction
to the special issue on multiword expressions: Hav-
ing a crack at a hard nut. Comput. Speech Lang.,
19(4):365–377.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and
movies: Towards story-like visual explanations by
watching movies and reading books. arXiv preprint
arXiv:1506.06724.

204


