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Abstract

As a new generation of cognitive robots
start to enter our lives, it is important to
enable robots to follow human commands
and to learn new actions from human lan-
guage instructions. To address this issue,
this paper presents an approach that ex-
plicitly represents verb semantics through
hypothesis spaces of fluents and automat-
ically acquires these hypothesis spaces by
interacting with humans. The learned hy-
pothesis spaces can be used to automati-
cally plan for lower-level primitive actions
towards physical world interaction. Our
empirical results have shown that the rep-
resentation of a hypothesis space of flu-
ents, combined with the learned hypothe-
sis selection algorithm, outperforms a pre-
vious baseline. In addition, our approach
applies incremental learning, which can
contribute to life-long learning from hu-
mans in the future.

1 Introduction

As a new generation of cognitive robots start to
enter our lives, it is important to enable robots
to follow human commands (Tellex et al., 2014;
Thomason et al., 2015) and to learn new actions
from human language instructions (Cantrell et al.,
2012; Mohan et al., 2013). To achieve such a
capability, one of the fundamental challenges is
to link higher-level concepts expressed by human
language to lower-level primitive actions the robot
is familiar with. While grounding language to
perception (Gorniak and Roy, 2007; Chen and
Mooney, 2011; Kim and Mooney, 2012; Artzi and
Zettlemoyer, 2013; Tellex et al., 2014; Liu et al.,
2014; Liu and Chai, 2015) has received much at-
tention in recent years, less work has addressed

grounding language to robotic action. Actions are
often expressed by verbs or verb phrases. Most
semantic representations for verbs are based on ar-
gument frames (e.g., thematic roles which capture
participants of an action). For example, suppose a
human directs a robot to “fill the cup with milk”.
The robot will need to first create a semantic rep-
resentation for the verb “fill” where “the cup” and
“milk” are grounded to the respective objects in
the environment (Yang et al., 2016). Suppose the
robot is successful in this first step, it still may not
be able to execute the action “fill” as it does not
know how this higher-level action corresponds to
its lower-level primitive actions.

In robotic systems, operations usually consist of
multiple segments of lower-level primitive actions
(e.g., move to, open gripper, and close gripper)
which are executed both sequentially and con-
currently. Task scheduling provides the order or
schedule for executions of different segments of
actions and action planning provides the plan for
executing each individual segment. Primitive ac-
tions are often predefined in terms of how they
change the state of the physical world. Given
a goal, task scheduling and action planning will
derive a sequence of primitive actions that can
change the initial environment to the goal state.
The goal state of the physical world becomes a
driving force for robot actions. Thus, beyond se-
mantic frames, modeling verb semantics through
their effects on the state of the world may provide
a link to connect higher-level language and lower-
level primitive actions.

Motivated by this perspective, we have devel-
oped an approach where each verb is explicitly
represented by a hypothesis space of fluents (i.e.,
desired goal states) of the physical world, which is
incrementally acquired and updated through inter-
acting with humans. More specifically, given a hu-
man command, if there is no knowledge about the
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corresponding verb (i.e., no existing hypothesis
space for that verb), the robot will initiate a learn-
ing process by asking human partners to demon-
strate the sequence of actions that is necessary to
accomplish this command. Based on this demon-
stration, a hypothesis space of fluents for that verb
frame will be automatically acquired. If there is an
existing hypothesis space for the verb, the robot
will select the best hypothesis that is most rele-
vant to the current situation and plan for the se-
quence of lower-level actions. Based on the out-
come of the actions (e.g., whether it has success-
fully executed the command), the corresponding
hypothesis space will be updated. Through this
fashion, a hypothesis space for each encountered
verb frame is incrementally acquired and updated
through continuous interactions with human part-
ners. In this paper, to focus our effort on repre-
sentations and learning algorithms, we adopted an
existing benchmark dataset (Misra et al., 2015) to
simulate the incremental learning process and in-
teraction with humans.

Compared to previous works (She et al., 2014b;
Misra et al., 2015), our approach has three unique
characteristics. First, rather than a single goal state
associated with a verb, our approach captures a
space of hypotheses which can potentially account
for a wider range of novel situations when the verb
is applied. Second, given a new situation, our
approach can automatically identify the best hy-
pothesis that fits the current situation and plan for
lower-level actions accordingly. Third, through in-
cremental learning and acquisition, our approach
has a potential to contribute to life-long learning
from humans. This paper provides details on the
hypothesis space representation, the induction and
inference algorithms, as well as experiments and
evaluation results.

2 Related Work

Our work here is motivated by previous linguistic
studies on verbs, action modeling in AI, and recent
advances in grounding language to actions.

Previous linguistic studies (Hovav and Levin,
2008; Hovav and Levin, 2010) propose action
verbs can be divided into two types: manner
verbs that “specify as part of their meaning a man-
ner of carrying out an action” (e.g., nibble, rub,
laugh, run, swim), and result verbs that “specify
the coming about of a result state” (e.g., clean,
cover, empty, fill, chop, cut, open, enter). Re-

cent work has shown that explicitly modeling re-
sulting change of state for action verbs can im-
prove grounded language understanding (Gao et
al., 2016). Motivated by these studies, this paper
focuses on result verbs and uses hypothesis spaces
to explicitly represent the result states associated
with these verbs.

In AI literature on action modeling, action
schemas are defined with preconditions and ef-
fects. Thus, representing verb semantics for ac-
tion verbs using resulting states can be connected
to the agent’s underlying planning modules. Dif-
ferent from earlier works in the planning com-
munity that learn action models from example
plans (Wang, 1995; Yang et al., 2007) and from
interactions (Gil, 1994), our goal here is to explore
the representation of verb semantics and its acqui-
sition through language and action.

There has been some work in the robotics com-
munity to translate natural language to robotic
operations (Kress-Gazit et al., 2007; Jia et al.,
2014; Sung et al., 2014; Spangenberg and Hen-
rich, 2015), but not for the purpose of learning
new actions. To support action learning, previ-
ously we have developed a system where the robot
can acquire the meaning of a new verb (e.g., stack)
by following human’s step-by-step language in-
structions (She et al., 2014a; She et al., 2014b).
By performing the actions at each step, the robot
is able to acquire the desired goal state associ-
ated with the new verb. Our empirical results
have shown that representing acquired verbs by
resulting states allow the robot to plan for prim-
itive actions in novel situations. Moreover, recent
work (Misra et al., 2014; Misra et al., 2015) has
presented an algorithm for grounding higher-level
commands such as “microwave the cup” to lower-
level robot operations, where each verb lexicon is
represented as the desired resulting states. Their
empirical evaluations once again have shown the
advantage of representing verbs as desired states
in robotic systems. Different from these previous
works, we represent verb semantics through a hy-
pothesis space of fluents (rather than a single hy-
pothesis). In addition, we present an incremen-
tal learning approach for inducing the hypothesis
space and selecting the best hypothesis.

3 An Incremental Learning Framework

An overview of our incremental learning frame-
work is shown in Figure 1. Given a language
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Figure 1: An incremental process of verb acquisi-
tion (i.e. learning) and application (i.e. inference).

command Li (e.g. “fill the cup with water.”) and
an environment Ei (e.g. a simulated environment
shown in Figure 1), the goal is to identify a se-
quence of lower-level robotic actions to perform
the command. Similar to previous works (Pasula
et al., 2007; Mouro et al., 2012), the environment
Ei is represented by a conjunction of grounded
state fluents, where each fluent describes either
the property of an object or relations (e.g. spa-
tial) between objects. The language command Li

is first translated to an intermediate representation
of grounded verb frame vi through semantic pars-
ing and referential grounding (e.g. for “fill the
cup”, the argument the cup is grounded to Cup1
in the scene). The system knowledge of each verb
frame (e.g., fill(x)) is represented by a Hy-
pothesis Space H, where each hypothesis (i.e. a
node) is a description of possible fluents - or, in
other words, resulting states - that are attributed to
executing the verb command. Given a verb frame
vi and an environment Ei, a Hypothesis Selector
will choose an optimal hypothesis from space H
to describe the expected resulting state of execut-
ing vi in Ei. Given this goal state and the cur-
rent environment, a symbolic planner such as the
STRIPS planner (Fikes and Nilsson, 1971) is used
to generate an action sequence for the agent to ex-
ecute. If the action sequence correctly performs
the command (e.g. as evaluated by a human part-
ner), the hypothesis selector will be updated with
the success of its prediction. On the other hand,
if the action has never been encountered (i.e., the
system has no knowledge about this verb and thus
the corresponding space is empty) or the predicted
action sequence is incorrect, the human partner
will provide an action sequence ~Ai that can cor-
rectly perform command vi in the current environ-
ment. Using ~Ai as the ground truth information,

Figure 2: An example hypothesis space for the
verb frame fill(x). The bottom node captures
the state changes after executing the fill command
in the environment. Anchored by the bottom node,
the hypothesis space is generated in a bottom-up
fashion. Each node represents a potential goal
state. The highlighted nodes are pruned during in-
duction, as they are not consistent with the bottom
node.

the system will not only update the hypothesis se-
lector, but will also update the existing space of
vi. The updated hypothesis space is treated as sys-
tem knowledge of vi, which will be used in future
interaction. Through this procedure, a hypothe-
sis space for each verb frame vi is continually and
incrementally updated through human-robot inter-
action.

4 State Hypothesis Space

To bridge human language and robotic actions,
previous works have studied representing the se-
mantics of a verb with a single resulting state (She
et al., 2014b; Misra et al., 2015). One problem
of this representation is that when the verb is ap-
plied in a new situation, if any part of the result-
ing state cannot be satisfied, the symbolic planner
will not be able to generate a plan for lower-level
actions to execute this verb command. The plan-
ner is also not able to determine whether the failed
part of state representation is even necessary. In
fact, this effect is similar to the over-fitting prob-
lem. For example, given a sequence of actions
of performing fill(x), the induced hypothe-
sis could be “Has(x,Water) ∧ Grasping(x) ∧
In(x, o1)∧¬(On(x, o2))”, where x is a graspable
object (e.g. a cup or bowl), o1 is any type of sink,
and o2 is any table. However, during inference,
when applied to a new situation that does not have
any type of sink or table, this hypothesis will not
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Figure 3: A training instance {Ei, vi, ~Ai} for hypothesis space induction. E ′
i is the resulting environment

of executing ~Ai in Ei. The change of state in E ′
i compared to Ei is highlighted in bold. Different heuristics

generate different Base Hypotheses as shown at the bottom.

be applicable. Nevertheless, the first two terms
Has(x,Water) ∧ Grasping(x) may already be
sufficient to generate a plan for completing the
verb command.

To handle this over-fitting problem, we propose
a hierarchical hypothesis space to represent verb
semantics, as shown in Figure 2. The space is or-
ganized based on a specific-to-general hierarchi-
cal structure. Formally, a hypothesis space H for
a verb frame is defined as: 〈N,E〉, where each
ni ∈ N is a hypothesis node and each eij ∈ E
is a directed edge pointing from parent ni to child
nj , meaning node nj is more general than ni and
has one less constraint.

In Figure 2, the bottom hypothesis (n1) is
Has(x,Water) ∧ Grasping(x) ∧ In(x, o1) ∧
¬(On(x, o2)). A hypothesis ni represents a con-
junction of parameterized state fluents lk:

ni := ∧ lk, and lk := [¬] predk(xk1 [, xk2 ])

A fluent lk is composed of a predicate (e.g. object
status: Has, or spatial relation: On) and a set of
argument variables. It can be positive or negative.
Take the bottom node in Figure 2 as an example, it
contains four fluents including one negative term
(i.e. ¬(On(x, o2))) and three positive terms. Dur-
ing inference, the parameters will be grounded to
the environment to check whether this hypothesis
is applicable.

5 Hypothesis Space Induction

Given an initial environment Ei, a language com-
mand which contains the verb frame vi, and a cor-
responding action sequence ~Ai, {Ei, vi, ~Ai} forms
a training instance for hypothesis space induction.
First, based on different heuristics, a base hypoth-
esis is generated by comparing the state difference
between the final and the initial environment. Sec-
ond, a hypothesis spaceH is induced on top of this

Base Hypothesis in a bottom-up fashion. And dur-
ing induction some nodes are pruned. Third, if the
system has existing knowledge for the same verb
frame (i.e. an existing hypothesis spaceHt for the
same verb frame), this newly induced space will
be merged with previous knowledge. Next we ex-
plain each step in detail.

5.1 Base Hypothesis Induction
One key concept in the space induction is the Base
Hypothesis (e.g. the bottom node in Figure 2),
which provides a foundation for building a space.
As shown in Figure 3, given a verb frame vi and
a working environment Ei, the action sequence
~Ai given by a human will change the initial en-

vironment Ei to a final environment E ′
i . The state

changes are highlighted in Figure 3. Suppose a
state change can be described by n fluents. Then
the first question is which of these n fluents should
be included in the base hypothesis. To gain some
understanding on what would be a good represen-
tation, we applied different heuristics of choosing
fluents to form a base hypothesis as shown in Fig-
ure 3:

• H1argonly: only includes the changed states
associated with the argument objects speci-
fied in the frame (e.g., in Figure 3, Kettle1
is the only argument).

• H2manip: includes the changed states of all
the objects that have been manipulated in the
action sequence taught by the human.

• H3argrelated: includes the changed states of
all the objects related to the argument ob-
jects in the final environment. An object o
is considered as “related to” an argument ob-
ject if there is a state fluent that includes both
o and an argument object in one predicate.
(e.g. Stove is related to the argument object
Kettle1 through On(Kettle1, Stove)).
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Input: A Base Hypothesis h
Initialization: Set initial space H : 〈N, E〉 with N:[h]

and E:[ ],
Set a set of temporary hypotheses T :[h]

while T is not empty do
Pop an element t from T

Generate children [t(0),...,t(k)] from t by removing
each single fluent
foreach i = 0 ... k do

if t(i) is consistent with t then
Append t(i) to T ;
Add t(i) to N if not already in;
Add link t → t(i) to E if not already in;

else
Prune t(i) and any node that can be
generalized from t(i)

end
end

end
Output: Hypothesis space H

Algorithm 1: A single hypothesis space induc-
tion algorithm. H is a space initialized with a
base hypothesis and an empty set of links. T is a
temporary container of candidate hypotheses.

• H4all: includes all the fluents whose values
are changed from Ei to E ′

i (e.g. all the four
highlighted state fluents in E ′

i).

5.2 Single Space Induction
First we define the consistency between two hy-
potheses:

Definition. Hypotheses h1 and h2 are consistent,
if and only if the action sequence ~A1 generated
from a symbolic planner based on goal state h1 is
exactly the same as the action sequence ~A2 gener-
ated based on goal state h2.

Given a base hypothesis, the space induction
process is a while-loop generalizing hypotheses
in a bottom-up fashion, which stops when no hy-
potheses can be further generalized. As shown
in Algorithm 1, a hypothesis node t can firstly
be generalized to a set of immediate children
[t(0),...,t(k)] by removing a single fluent from t.
For example, the base hypothesis n1 in Figure 2
is composed of 4 fluents, such that 4 immediate
children nodes can potentially be generated. If a
child node t(i) is consistent with its parent t (i.e.
determined based on the consistency defined pre-
viously), node t(i) and a link t → t(i) are added
to the space H. The node t(i) is also added to a
temporary hypothesis container waiting to be fur-
ther generalized. On the other hand, some children
hypotheses can be inconsistent with their parents.
For example, the gray node (n2) in Figure 2 is a

child node that is inconsistent with its parent (n1).
As n2 does not explicitly specify Has(x,Water)
as part of its goal state, the symbolic planner gen-
erates less steps to achieve goal state n2 than goal
state n1. This implies that the semantics of achiev-
ing n2 may be different than those for achieving
n1. Such hypotheses that are inconsistent with
their parents are pruned. In addition, if t(i) is in-
consistent with its parent t, any children of t(i) are
also inconsistent with t (e.g. children of n2 in Fig-
ure 2 are also gray nodes, meaning they are incon-
sistent with the base hypothesis). Through prun-
ing, the size of entire space can be greatly reduced.

In the resulting hypothesis space, every single
hypothesis is consistent with the base hypothesis.
By only keeping consistent hypotheses via prun-
ing, we can remove fluents that are not representa-
tive of the main goal associated with the verb.

5.3 Space Merging

If the robot has existing knowledge (i.e. hypoth-
esis space Ht) for a verb frame, the induced hy-
pothesis spaceH from a new instance of the same
verb will be merged with the existing space Ht.
Currently, a new space Ht+1 is generated where
the nodes of Ht+1 are the union of H and Ht,
and links in Ht+1 are generated by checking the
parent-child relationship between nodes. In future
work, more space merging operations will be ex-
plored, and human feedback will be incorporated
into the induction process.

6 Hypothesis Selection

Hypothesis selection is applied when the agent in-
tends to execute a command. Given a verb frame
extracted from the language command, the agent
will first select the best hypothesis (describing the
goal state) from the existing knowledge base, and
then apply a symbolic planner to generate an ac-
tion sequence to achieve the goal. In our frame-
work, the model of selecting the best hypothesis
is incrementally learned throughout continuous in-
teraction with humans. More specifically, given
a correct action sequence (whether performed by
the robot or provided by the human), a regression
model is trained to capture the fitness of a hypoth-
esis given a particular situation.

Inference: Given a verb frame vi and a working
environment Ei, the goal of inference is to esti-
mate how well each hypothesis hk from a space
Ht describes the expected result of performing vi
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in Ei. The best fit hypothesis will be used as the
goal state to generate the action sequence. Specif-
ically, the “goodness” of describing command vi

with hypothesis hk in environment Ei is formu-
lated as follows:

f(hk | vi; Ei;Ht) = W T ·Φ(hk, vi, Ei,Ht) (1)

where Φ(hk, vi, Ei,Ht) is a feature vector captur-
ing multiple aspects of relations between hk, vi, Ei
and Ht as shown in Table 1; and W captures
the weight associated with each feature. Exam-
ple global features include whether the candidate
goal hk is in the top level of entire space Ht and
whether hk has the highest frequency. Example
local features include if most of the fluents in hk

are already satisfied in current scene Ei (as this hk

is unlikely to be a desired goal state). The features
also include whether the same verb frame vi has
been performed in a similar scene during previous
interactions, as the corresponding hypotheses in-
duced during that experience are more likely to be
relevant and are thus preferred.

Parameter Estimation: Given an action se-
quence ~Ai that illustrates how to correctly perform
command vi in environment Ei during interaction,
the model weights will be incrementally updated
with1:

Wt+1 = Wt − η(α
∂R(Wt)
∂Wt

+
∂L(Jki, fki)

∂Wt
)

where fki := f(hk|vi; Ei;Ht) is defined in Equa-
tion 1. Jki is the dependent variable the model
should approximate, where Jki := J(si, hk) is the
Jaccard Index (details in Section 7) between hy-
pothesis hk and a set of changed states si (i.e. the
changed states of executing the illustration action
sequence ~Ai in current environment). L(Jki, fki)
is a squared loss function. αR(Wt) is the penalty
term, and η is the constant learning rate.

7 Experiment Setup

Dataset Description. To evaluate our approach,
we applied the dataset made available by (Misra
et al., 2015). To support incremental learning,
each utterance from every original paragraph is ex-
tracted so that each command/utterance only con-
tains one verb and its arguments. The correspond-
ing initial environment and an action sequence

1The SGD regressor in the scikit-learn (Pedregosa et al.,
2011) is used to perform the linear regression with L2 regu-
larization.

Features on candidate hypothesis hk and the space Ht

1. If hk belongs to the top level of Ht.
2. If hk has the highest frequency in Ht.

Features on hk and current situation Ei

3. Portion of fluents in hk that are already satisfied by Ei.
4. Portion of non-argument objects in hk. Examples of
non-argument objects are o1 and o2 in Figure 2.

Features on relations between a testing verb frame vi

and previous interaction experience
5. Whether the same verb frame vi has been executed
previously with the same argument objects.
6. Similarities between noun phrase descriptions used in
current command and commands from interaction history.

Table 1: Current features used for incremental
learning of the regression model. The first two
are binary features and the rest are real-valued fea-
tures.

taught by a human for each command are also ex-
tracted. An example is shown in Figure 3, where
Li is a language command, Ei is the initial work-
ing environment, and ~Ai is a sequence of primitive
actions to complete the command given by the hu-
man. In the original data, some sentences are not
aligned with any actions, and thus cannot be used
for either the learning or the evaluation. Remov-
ing these unaligned sentences resulted in a total
of 991 data instances, including 165 different verb
frames.

Among the 991 data instances, 793 were used
for incremental learning (i.e., space induction and
hypothesis selector learning). Specifically, given a
command, if the robot correctly predicts an action
sequence2, this correct prediction is used to update
the hypothesis selector. Otherwise, the agent will
require a correct action sequence from the human,
which is used for hypothesis space induction as
well as updating the hypothesis selector.

The hypothesis spaces and regression based se-
lectors acquired at each run were evaluated on the
other 20% (198) testing instances. Specifically, for
each testing instance, the induced space and the
hypothesis selector were applied to identify a de-
sired goal state. Then a symbolic planner3 was ap-
plied to predict an action sequence ~A(p) based on
this predicted goal state. We then compared ~A(p)

with the ground truth action sequence ~A(g) using
the following two metrics.

• IED (Instruction Edit Distance) measures
2Currently, a prediction is considered correct if the pre-

dicted result (c(p)) is similar to a human labeled action se-
quence (c(g)) (i.e., SJI(c(g), c(p)) > 0.5).

3The symbolic planner implemented by (Rintanen, 2012)
was utilized to generate action sequences.
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(a) IED results for different configurations (b) SJI results for different configurations

Figure 4: The overall performance on the testing set with different configurations in generating the base
hypothesis and in hypothesis selection. Each configuration runs five times by randomly shuffling the
order of learning instances, and the averaged performance is reported. The result from Misra2015 is
shown as a line. Results that are statistically significant better than Misra2015 are marked with ∗ (paired
t-test, p< 0.05).

similarity between the ground truth action se-
quence ~A(g) and the predicted sequence ~A(p).
Specifically, the edit distance d between two
action sequences ~A(g) and ~A(p) is first cal-
culated. Then d is rescaled as IED = 1 −
d/max( ~A(g), ~A(p)), such that IED ranges
from 0 to 1 and a larger IED means the two
sequences are more similar.

• SJI (State Jaccard Index). Because different
action sequences could lead to a same goal
state, we also use Jaccard Index to check the
overlap between the changed states. Specif-
ically, executing the ground truth action se-
quence ~A(g) in the initial scene Ei results in
a final environment E ′

i . Suppose the changed
states between Ei and E ′

i is c(g). For the pre-
dicted action sequence, we can calculate an-
other set of changed states c(p). The Jac-
card Index between c(g) and c(p) is evaluated,
which also ranges from 0 to 1 and a larger
SJI means the predicted state changes are
more similar to the ground truth.

Configurations. We also compared the results
of using the regression based selector to select a
hypothesis (i.e., RegressionBased) with the fol-
lowing different strategies for selecting the hy-
pothesis:

• Misra2015: The state of the art system re-
ported in (Misra et al., 2015) on the com-
mand/utterance level evaluation4.

4We applied the same system described in (Misra et al.,
2015) to predict action sequences. The only difference is here
we report the performance at the command level, not at the
paragraph level.

• MemoryBased: Given the induced space,
only the base hypotheses hks from each
learning instances are used. Because these
hks don’t have any relaxation, they represent
purely learning from memorization.

• MostGeneral: In this case, only those hy-
potheses from the top level of the hypothesis
space are used, which contain the least num-
ber of fluents. These nodes are the most re-
laxed hypotheses in the space.

• MostFrequent: In this setting, the hypothe-
ses that are most frequently observed in the
learning instances are used.

8 Results

8.1 Overall performance

The results of the overall performance across
different configurations are shown in Figure 4.
For both of the IED and SJI (i.e. Figure 4(a)
and Figure 4(b)), the hypothesis spaces with the
regression model based hypothesis selector al-
ways achieve the best performance across different
configurations, and outperforms the previous ap-
proach (Misra et al., 2015). For different base hy-
pothesis induction strategies, the H4all consider-
ing all the changed states achieves the best perfor-
mance across all configurations. This is because
H4all keeps all of the state change information
compared with other heuristics. The performance
ofH2manip is similar toH4all. The reason is that,
when all the manipulated objects are considered,
the resulted set of changed states will cover most
of the fluents in H4all. On the other dimension,
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(a) Use regression based selector to select hypothesis,
and compare each base hypothesis induction heuristics.

(b) Induce the base hypothesis with H4all, and compare
different hypothesis selection strategies.

Figure 5: Incremental learning results. The spaces and regression models acquired at different incremen-
tal learning cycles are evaluated on testing set. The averaged Jaccard Index is reported.

the regression based hypothesis selector achieves
the best performance and the MemoryBased strat-
egy has the lowest performance. Results for Most-
General and MostFrequent are between the regres-
sion based selector and MemoryBased.

8.2 Incremental Learning Results

Figure 5 presents the incremental learning results
on the testing set. To better present the results, we
show the performance based on each learning cy-
cle of 40 instances. The averaged Jaccard Index
(SJI) is reported. Specifically, Figure 5(a) shows
the results of configurations comparing different
base hypothesis induction heuristics using regres-
sion model based hypothesis selection. After us-
ing 200 out of 840 (23.8%) learning instances, all
the four curves achieve more than 80% of the over-
all performance. For example, for the heuristic
H4all, the final average Jaccard Index is 0.418.
When 200 instances are used, the score is 0.340
(0.340/0.418≈81%). The same number holds for
the other heuristics. After 200 instances, H4all

and H2manip consistently achieve better perfor-
mance than H1argonly and H3argrelated. This re-
sult indicates that while change of states mostly af-
fect the arguments of the verbs, other state changes
in the environment cannot be ignored. Modeling
them actually leads to better performance. Using
H4all for base hypothesis induction, Figure 5(b)
shows the results of comparing different hypoth-
esis selection strategies. The regression model
based selector always outperforms other selection
strategies.

8.3 Results on Frequently Used Verb Frames

Beside overall evaluation, we have also taken a
closer look at individual verb frames. Most of the

Figure 6: Incremental evaluation for individual
verb frames. Four frequently used verb frames
are examined: place(x, y), put(x, y), take(x),
and turn(x). X-axis is the number of incremen-
tal learning instances, and Y-axis is the averaged
SJI computed with H4all base hypothesis induc-
tion and regression based hypothesis selector.

verb frames in the data have a very low frequency,
which cannot produce statistically significant re-
sults. So we only selected verb frames with fre-
quency larger than 40 in this evaluation. For each
verb frame, 60% data are used for incremental
learning and 40% are for testing. For each frame, a
regression based selector is trained separately. The
resulting SJI curves are shown in Figure 6.

As shown in Figure 6, all the four curves be-
come steady after 8 learning instances are used.
However, while some verb frames have final SJIs
of more than 0.55 (i.e. take(x) and turn(x)), oth-
ers have relatively lower results (e.g. results for
put(x, y) are lower than 0.4). After examining the
learning instances for put(x, y), we found these
data are more noisy than the training data for other
frames. One source of errors is the incorrect ob-
ject grounding results. For example, a problematic
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training instance is “put the pillow on the couch”,
where the object grounding module cannot cor-
rectly ground the “couch” to the target object. As
a result, the changed states of the second argument
(i.e. the “couch”) are incorrectly identified, which
leads to incorrect prediction of desired states dur-
ing inference. Another common error source is
from automated parsing of utterances. The action
frames generated from the parsing results could be
incorrect in the first place, which would contribute
to a hypothesis space for a wrong frame. These
different types of errors are difficult to be recog-
nized by the system itself. This points to the fu-
ture direction of involving humans in a dialogue
to learn a more reliable hypothesis space for verb
semantics.

9 Conclusion

This paper presents an incremental learning ap-
proach that represents and acquires semantics of
action verbs based on state changes of the envi-
ronment. Specifically, we propose a hierarchical
hypothesis space, where each node in the space
describes a possible effect on the world from the
verb. Given a language command, the induced hy-
pothesis space, together with a learned hypothe-
sis selector, can be applied by the agent to plan
for lower-level actions. Our empirical results have
demonstrated a significant improvement in perfor-
mance compared to a previous leading approach.
More importantly, as our approach is based on in-
cremental learning, it can be potentially integrated
in a dialogue system to support life-long learning
from humans. Our future work will extend the
current approach with dialogue modeling to learn
more reliable hypothesis spaces of resulting states
for verb semantics.
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