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Abstract

In the proposed doctoral work we will de-
sign an end-to-end approach for the chal-
lenging NLP task of text-level discourse
parsing. Instead of depending on mostly
hand-engineered sparse features and in-
dependent components for each subtask,
we propose a unified approach completely
based on deep learning architectures. To
train more expressive representations that
capture communicative functions and se-
mantic roles of discourse units and rela-
tions between them, we will jointly learn
all discourse parsing subtasks at different
layers of our architecture and share their
intermediate representations. By combin-
ing unsupervised training of word embed-
dings with our layer-wise multi-task learn-
ing of higher representations we hope to
reach or even surpass performance of cur-
rent state-of-the-art methods on annotated
English corpora.

1 Introduction

Modern algorithms for natural language process-
ing (NLP) are based on statistical machine learn-
ing and require a computationally convenient rep-
resentation of input data. Unfortunately real-world
plain text is usually represented as an unstruc-
tured sequence of words with complex relations
between them. Therefore it is extremely impor-
tant to discover good representations in the form
of informative text features.

In NLP such features are almost always hand-
engineered sparse features and require expensive
human labor and expert knowledge to construct.
They are usually based on lexicons or features
extracted by other NLP subtasks and have the
form of hand-engineered extraction rules, regular
expressions, lemmatization, part-of-speech (POS)

tags, positions or lengths of arguments, tense
forms, syntactic parse trees, and similar. Although
such features are specific for a given language, do-
main, and task, they work well enough for sim-
ple NLP tasks, like named entity recognition or
POS tagging. Nevertheless, the ability to learn text
features and representations automatically would
have a lot of potential to improve state-of-the-art
performance on more challenging NLP tasks, such
as text-level discourse parsing. This may even be
more important for languages where progress in
NLP is still lacking.

Variants of deep learning architectures have
been shown to provide a different approach to
learning in which latent features are automatically
learned as distributed dense vectors. They man-
aged to represent meaningful relations with word
(Collobert, 2011), POS and dependency tag (Chen
and Manning, 2014), sentence (Guo and Diab,
2012), and document (Socher et al., 2012) embed-
dings and achieved surprising results for a number
of NLP tasks. It has been shown that both unsuper-
vised pre-training (Hinton et al., 2006) and multi-
task learning (Collobert and Weston, 2008) signif-
icantly improve their performance in the absence
of hand-engineered features. This makes them es-
pecially interesting for the problem of text-level
discourse parsing.

2 Text-level discourse parsing

In natural language, a piece of text meant to com-
municate specific information, function, or knowl-
edge (clauses, sentences, or even paragraphs) is
called a discourse. They are often understood
only in relation to other discourse units (at any
level of grouping) and their combination creates a
joint meaning larger than individual unit’s mean-
ing alone (Mann and Thompson, 1988).

Discourse parsing is the task of determining
how these units are related to each other (like
in Figure 1) and plays a central role in a num-
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ber of high-impact natural language processing
(NLP) applications, including text summarization,
sentence compression, sentiment analysis, and
question-answering. For analyzing different per-
spectives of discourse analysis researchers pro-
posed a number of theoretical frameworks and re-
leased annotated corpora, such as RST Discourse
Treebank (RST-DT) (Carlson et al., 2003) and
Penn Discourse Treebank (PDTB) (Prasad et al.,
2008). Both of these decompose discourse pars-
ing into a few subtasks and, like in most of NLP,
their success depends on expert knowledge of each
subtask and hand-engineering of more powerful
features (Feng and Hirst, 2012; Lin et al., 2014),
representations, and heuristics (Joty et al., 2013;
Prasad et al., 2010).

Despite recent progress in automatic discourse
segmentation and sentence-level parsing (Fisher
and Roark, 2007; Joty et al., 2012; Soricut and
Marcu, 2003), text-level discourse parsing re-
mains a significant challenge (Feng and Hirst,
2012; Ji and Eisenstein, 2014; Lin et al., 2014).
Traditional hand-engineering approaches unfortu-
nately seem to be insufficient, as discourses and
relations between them do not follow any strict
grammar or obvious rules.

Two main theoretical frameworks with English
corpus have been proposed to capture different
rhetorical characteristics, and serve different ap-
plications.

The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) is currently the largest discourse-
annotated corpus, consisting of 2159 articles from
Wall Street Journal. It strives to maintain a
theory-neutral approach by adopting the predicate-
argument view and independence of discourse re-
lations. In it either explicitly or implicitly given
discourse connectives, such as coordinating con-
junction (e.g. "and", "but"), subordinating con-
junction (e.g. "if", "because"), or discourse ad-
verbial (e.g. "however", "also"), combine pairs
of discourse arguments into relations. For PDTB-
style discourse parsing, extracting argument spans
seems to be the most difficult subtask (Lin et al.,
2014), resulting in the best overall performance of
only 34.80% in F1-measure (Kong et al., 2014).

The RST Discourse Treebank (RST-DT) (Carl-
son et al., 2003) follows the theoretical frame-
work of Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988). It contains 385 annotated
documents from the Wall Street Journal with 18

high-level categories and 110 fine-grained rela-
tions. Any coherent text can be represented as
a RST discourse tree structure (like in Figure 1)
whose leaves are minimal non-overlapping text
spans called elementary discourse units. Adja-
cent nodes are joined depending on their discourse
relations to form a tree. In a mono-nuclear dis-
course relation one of the text spans is the nucleus,
which is more salient than the satellite, while in
a multi-nuclear relation all text spans are equally
important for interpretation. Performance of RST-
style discourse parsing is evaluated based on their
ability to locate spans of text that serve as argu-
ments (best 85.7% in F1-measure (Feng and Hirst,
2012)), identify which of the arguments is the nu-
cleus (best 71.1% in F1-measure (Ji and Eisen-
stein, 2014)), and tag the sense and location of dis-
course relations (best 61.6% in F1-measure (Ji and
Eisenstein, 2014)).

3 Related work

Early work on linguistic and computational
discourse analysis produced several theoretical
frameworks and one of the most influential is
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988). In order to automatically build
a hierarchical structure of a text, first approaches
(Marcu, 2000) relied mainly on discourse markers,
hand-engineered rules, and heuristics. Learning-
based approaches were first applied to identify
within-sentence discourse relations (Soricut and
Marcu, 2003), and only later to cross-sentence
text-level relations (Baldridge and Lascarides,
2005). They largely focused on lexical, syntac-
tic, and structural features, but the close rela-
tionship between discourse structure and seman-
tic meaning suggests that this may not be suf-
ficient (Prasad et al., 2008; Subba and Di Eu-
genio, 2009). Further work on discourse pars-
ing focused first on having a binary classifier
for determining whether two adjacent discourse
units should be merged, followed by a multi-class
classifier for determining which discourse rela-
tion should be assigned to the new subtree (Du-
Verle and Prendinger, 2009). Improved results
(Feng and Hirst, 2012) have been achieved by
incorporating rich linguistic features (Hernault et
al., 2010), including lexical semantics, and spe-
cific discourse production rules (Lin et al., 2009).
An alternative approach is based on jointly per-
forming detection and classification in a bottom-
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• [The dollar finished lower yesterday,]e1 [after another session on Wall Street.]e2

• [Concern about the volatile U.S. stock market had faded in recent sessions,]e3 [and traders let
the dollar languish in a narrow range until tomorrow,]e4 [when the preliminary report on U.S.
gross national product is released.]e5

• [But movements in the Dow Jones Industrial Average yesterday put Wall Street back in the
spotlight]e6 [and inspired participants to bid the U.S. unit lower.]e7

Figure 1: An example of seven elementary discourse units (e1-e7), and (mono- or multi-nuclear) relations
between them in an RST discourse tree representation (Feng et al., 2014).

up fashion while distinguishing within-sentence
and cross-sentence relations (Joty et al., 2013) and
improved with discriminative reranking of dis-
course trees using tree kernels (Joty and Moschitti,
2014). It has been shown that constituent- and
dependency-based syntax and features based on
coreference links improve performance (Surdeanu
et al., 2015). The first PDTB-style end-to-end dis-
course parser (Lin et al., 2014) uses a connec-
tive list to identify explicit candidates, followed
by simple features and parse trees to extract ar-
guments and identify discourse relations. Classi-
fying implicit discourse relations can be improved
by combining distributed representations of parse
trees with coreferent entity mentions (Ji and Eisen-
stein, 2015). Extracting discourse arguments has
been attempted by using classic linear word tag-
ging with conditional random fields and global
features (Ghosh et al., 2012), identifying nodes in
constituent subtrees (Lin et al., 2014), and hybrid
merging and pruning of parse trees with integer
linear programming (Kong et al., 2014).

Deep learning architectures consist of multiple
layers of simple learning blocks stacked on each
other and, when well trained, tend to do a bet-
ter job at disentangling the underlying factors of
variation. Beginning with raw data, its represen-
tation is transformed into increasingly higher and

more abstract forms in each layer, until the final
low-dimensional features or representation useful
for a given task is reached. Their success is possi-
ble with breakthroughs and improvements in train-
ing techniques (like AdaGrad or Adam optimiza-
tion, rectifier function, dropout regularization) and
with initialization using unsupervised pre-training
(Hinton et al., 2006; Collobert, 2011) on massive
datasets (such as Wikipedia or Wall Street Jour-
nal). Pre-training helps deep networks to develop
natural abstractions and combined with multi-task
learning (Collobert and Weston, 2008) it can sig-
nificantly improve their performance in the ab-
sence of hand-engineered features.

Classic feed-forward architectures are inappro-
priate for processing text documents, because of
their variable length and natural representation as
a sequence of words. One approach to solve this
is to specify a transition-based processing mech-
anism (Chen and Manning, 2014; Ji and Eisen-
stein, 2014) and train a neural network classifier
to make parsing decisions. Recurrent neural net-
works (RNNs) (Elman, 1990) or their generaliza-
tion, recursive neural networks (Goller and Küch-
ler, 1996), represent a more direct approach by re-
cursively applying the same set of weights over the
sequence (temporal dimension) or structure (tree-
based). Li et al. (Li et al., 2015) have recently
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showed that only some NLP tasks benefit from
recursive models applied on syntactic parse trees
and recurrent models seem to be sufficient for dis-
course parsing. By stacking multiple hidden lay-
ers into a deep RNN makes them represent a tem-
poral hierarchy with multiple layers operating at
different time scales (Hermans and Schrauwen,
2013). Learning to store information over ex-
tended time intervals has been achieved with long
short-term memory (Hochreiter and Schmidhu-
ber, 1997), time delay neural network (Waibel et
al., 1989), or neural Turing machines (Graves et
al., 2014). Bidirectional variants of these mod-
els can incorporate information from preceding
as well as following tokens (Schuster and Pali-
wal, 1997). Recursive neural networks have also
been shown to support different task-specific rep-
resentations, such as matrix-vector representation
of words (Socher et al., 2012) or recurrent neu-
ral tensor networks (Socher et al., 2013). For
our discourse parsing task such deeper models,
that can learn abstract representations on different
time scales, might better model the discourse re-
lations between input vectors and (hopefully) cap-
ture their communicative functions and semantic
meaning.

A few initial attempts of applying representa-
tion learning to our task have already shown sub-
stantial performance improvements over previous
state-of-the-art. Ji and Eisenstein (Ji and Eisen-
stein, 2014) implement a shift-reduce discourse
parser on top of given RST-style discourse units
to simultaneously learn parsing and a discourse-
driven projection of features using support vector
machines with gradient-based updates. Li et al.
(Li, 2014) produce a distributed representation of
RST-style discourse units using recursive convolu-
tion on sentence parse trees and apply a classifier
to determine relations between them. Ji and Eisen-
stein (Ji and Eisenstein, 2014) also improved clas-
sification of PDTB-style implicit discourse rela-
tions by combining distributed representations of
parse trees with coreferent entity mentions.

4 Contribution to science

Because text-level discourse parsing is an impor-
tant, yet still challenging NLP task, it is the focus
of our doctoral dissertation.

Method for text-level discourse parsing.
Instead of depending on mostly hand-engineered
sparse features and independent separately-

developed components for each subtask, we
propose a unified end-to-end approach for text-
level discourse parsing completely based on
deep learning architectures. First each of the
discourse parsing subtasks, such as argument
boundary detection, labeling, discourse relation
identification and sense classification, need to
be formulated in terms of RNNs and similar
derivable learning architectures. To benefit from
their ability to learn intermediate representations
they will be partially stacked on top of each order,
such that the last but one layer (i.e. output layer)
for each subtask is shared with other subtasks.
By placing increasingly more difficult subtasks
at different layers in one deep architecture,
they can benefit from each others intermediate
representations, improve robustness and training
speed. Figure 2 further combines unsupervised
training of word embeddings with our layer-wise
multi-task learning of higher representations
and illustrates our goal of a unified end-to-end
approach for text-level discourse parsing utilizing
different layers of representations.

Figure 2: Illustration of our unified end-to-end ap-
proach for text-level discourse parsing with layer-
wise multi-task learning of higher representations.

5 Work plan

To accomplish this we will, on one hand, need to
find the best deep learning models for each of the
discourse parsing subtasks, suitable architecture,
activation functions, and figure out how to adapt
them to operate on sequential data and with each
other. This includes analyzing deep learning archi-
tectures, identifying their strengths, useful compo-
nents, and their suitability for our NLP task.

Afterwards combine them into one unified deep
learning architecture with shared intermediate rep-
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resentations and unsupervised training of word
embeddings. Developing a prototype for shal-
low discourse parsing will open the door for find
the best initialization procedures, training func-
tions, learning rates, and similar. Shallow PDTB-
style discourse parsing is also a challenge on this
years CoNLL 2015 conference, where adjacent
text spans are not necessarily connected with dis-
course relations to form a tree.

Additionally we will experiment with new and
more expressive representations and structures
(like neural tensor networks) that could capture
communicative functions and semantic roles of
discourse units and relations between them.

Even though our method could be applied to
any plain text, we plan on evaluating it on stan-
dard annotated English corpora. After applying
our approach on at lest one of the corpora, we
intend to qualitatively analyze the identified dis-
course units and relations between them to gain in-
sights about its strengths and weaknesses. On the
other hand, the dataset will allow us to also quan-
titatively compare its performance to current state-
of-the-art methods. The procedure for our method
will begin by pre-training the weights in our deep
architecture on external unlabeled datasets (like
Wikipedia), than jointly train on all discourse pars-
ing subtasks on the training set, use a separate val-
idation set to optimize hyper-parameters, and es-
timate its performance on the test set. For eval-
uation purposes standard evaluation measures for
subtasks based on F1-scores will be used.

6 Conclusion

To increase the generality of our unified end-to-
end approach for text-level discourse parsing, we
will try to depend as little as possible on back-
ground knowledge in the form of hand-engineered
features for a specific language, domain, or task.
By incorporating various improvements in auto-
matic learning of features and representations we
hope to reach or even surpass performance of cur-
rent state-of-the-art methods on annotated English
corpora.
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