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Abstract

Training a high-accuracy dependency
parser requires a large treebank. How-
ever, these are costly and time-consuming
to build. We propose a learning method
that needs less data, based on the observa-
tion that there are underlying shared struc-
tures across languages. We exploit cues
from a different source language in order
to guide the learning process. Our model
saves at least half of the annotation effort
to reach the same accuracy compared with
using the purely supervised method.

1 Introduction

Dependency parsing is a crucial component of
many natural language processing systems, for
tasks such as text classification (Özgür and
Güngör, 2010), statistical machine translation (Xu
et al., 2009), relation extraction (Bunescu and
Mooney, 2005), and question answering (Cui et
al., 2005). Supervised approaches to dependency
parsing have been successful for languages where
relatively large treebanks are available (McDonald
et al., 2005). However, for many languages, anno-
tated treebanks are not available. They are costly
to create, requiring careful design, testing and
subsequent refinement of annotation guidelines,
along with assessment and management of annota-
tor quality (Böhmová et al., 2001). The Universal
Treebank Annotation Guidelines aim at providing
unified annotation for many languages enabling
cross-lingual comparison (Nivre et al., 2015). This
project provides a starting point for developing a
treebank for resource-poor languages. However, a
mature parser requires a large treebank for train-
ing, and this is still extremely costly to create. In-
stead, we present a method that exploits shared
structure across languages to achieve a more accu-
rate parser. Structural information from the source

resource-rich language is incorporated as a prior
in the supervised training of a resource-poor tar-
get language parser using a small treebank. When
compared with a supervised model, the gain is as
high as 8.7%1 on average when trained on just
1,000 tokens. As we add more training data, the
gains persist, though they are more modest. Even
at 15,000 tokens we observe a 2.9% improvement.

There are two main approaches for building
dependency parsers for resource-poor languages:
delexicalized parsing and projection (Täckström et
al., 2013). The delexicalized approach was pro-
posed by Zeman et al. (2008). A parser is built
without any lexical features, and trained on a tree-
bank in a resource-rich source language. It is
then applied directly to parse sentences in the tar-
get resource-poor languages. Delexicalized pars-
ing relies on the fact that identical part-of-speech
(POS) inventories are highly informative of de-
pendency relations, enough to make up for cross-
lingual syntactic divergence.

In contrast, projection approaches use parallel
data to project source language dependency rela-
tions to the target language (Hwa et al., 2005).
McDonald et al. (2011) and Ma and Xia (2014) ex-
ploit both delexicalized parsing and parallel data.
They use parallel data to constrain the model
which is usually initialized by the English delexi-
calized parser.

In summary, existing work generally starts with
a delexicalized parser and uses parallel data to im-
prove it. In this paper, we start with a source lan-
guage parser and refine it with help from depen-
dency annotations instead of parallel data. This
choice means our method can be applied in cases
where linguists are dependency-annotating small
amounts of field data, such as in Karuk, a nearly-
extinct language of Northwest California (Garrett
et al., 2013).

1We use absolute values herein.
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Figure 1: Neural Network Parser Architecture from Chen and Manning (2014) (left). Our model (left
and right) with soft parameter sharing between the source and target language shown with dashed lines.

2 Supervised Neural Network Parser

In this section we review the parsing model which
we use for both the source language and target lan-
guage parsers. It is based on the work of Chen
and Manning (2014). This parser can take advan-
tage of target language monolingual data through
word embeddings, data which is usually available
for resource-poor languages. Chen and Manning’s
parser also achieved state-of-the-art monolingual
parsing performance. They built a transition-based
dependency parser (Nivre, 2006) using a neural-
network. The neural network classifier decides
which transition is applied for each configuration.

The architecture of the parser is illustrated in
Figure 1 (left), where each layer is fully connected
to the layer above. For each configuration, the se-
lected list of words, POS tags and labels from the
Stack, Queue and Arcs are extracted. Each word,
POS or label is mapped to a low-dimension vec-
tor representation (embedding) through the Map-
ping Layer. This layer simply concatenates the
embeddings which are then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model
is Eword, Epos, Elabels for the mapping layer, W1

for the cubic hidden layer and W2 for the softmax
output layer.

3 Cross-lingual parser

Our model takes advantage of underlying structure
shared between languages. Given the source lan-
guage parsing structure as in Figure 1 (left), the
set of parameters Eword will be different for the
target language parser shown in Figure 1 (right)
but we hypothesize that Epos, Earc,W1 and W2

can be shared as indicated with dashed lines. In
particular we expect this to be the case when lan-
guages use the same POS tagset and arc label sets,

as we presume herein. This assumption is moti-
vated by the development of unified annotation for
many languages (Nivre et al., 2015; Petrov et al.,
2012; McDonald et al., 2013).

To allow parameter sharing between languages
we could jointly train the parser on the source
and target language simultaneously. However,
we leave this for future work. Here we take an
alternative approach, namely regularization in a
similar vein to Duong et al. (2014). First we
train a lexicalized neural network parser on the
source resource-rich language (English), as de-
scribed in Section 2. The learned parameters are
Een

word, E
en
pos, E

en
arc,W

en
1 ,W en

2 . Second, we incor-
porate English parameters as a prior for the tar-
get language training. This is straightforward
when we use the same architecture, such as a
neural network parser, for the target language.
All we need to do is modify the learning objec-
tive function so that it includes the regularization
part. However, we don’t want to regularize the
part related to Een

word since it will be very differ-
ent between source and target language. Letting
W1 = (Wword

1 ,W pos
1 ,W arc

1 ), the learning objec-
tive over training data D = {x(i), y(i)}Ni=1, be-
comes:2

L =
N∑

i=1

logP (y(i)|x(i))− λ1

2

[
‖W pos

1 −W en:pos
1 ‖2F

+ ‖W arc
1 −W en:arc

1 ‖2F + ‖W2 −W en
2 ‖2F

]
− λ2

2

[
‖Epos − Een

pos‖2F + ‖Earc − Een
arc‖2F

]
(1)

This is applicable where we use the same POS
2All other parameters, i.e. Wword

1 and Eword, are regu-
larized using a zero-mean Gaussian regularization term, with
weight λ = 10−8, as was done in the original paper.
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Train Dev Test Total

cs 1173.3 159.3 173.9 1506.5
de 269.6 12.4 16.6 298.6
en 204.6 25.1 25.1 254.8
es 382.4 41.7 8.5 432.6
fi 162.7 9.2 9.1 181.0
fr 354.7 38.9 7.1 400.7
ga 16.7 3.2 3.8 23.7
hu 20.8 3.0 2.7 26.5
it 194.1 10.5 10.2 214.8
sv 66.6 9.8 20.4 96.8

Table 1: Number of tokens (× 1,000) for each lan-
guage in the Universal Dependency Treebank col-
lection.

tagset and arc label annotation for the source and
target language. The same POS tagset is required
so that the source language parser has similar
structure with the target language parser. The re-
quirement of same arc label annotation is mainly
needed for evaluation using the Labelled Attach-
ment Score (LAS).3 We fit two separate regular-
ization sensitivity parameters, λ1 and λ2, since
they correspond to different parts of the model. λ1

is used for the shared (universal) part, while λ2

is used for the language specific parts. Together
λ1 and λ2 control the contribution of the source
language parser towards the target resource-poor
model. In the extreme case where λ1 and λ2 are
large, the target model parameters are tied to the
source model, except for the word embeddings
Eword. In the opposite case, where they are small,
the target language parser is similar to the purely
supervised model. We expect that the best values
fall between these extremes. We use stochastic
gradient descent to optimize this objective func-
tion with respect to W1,W2, Eword, Epos, Earc.

4 Experiments

In this part we want to see how much our cross-
lingual model helps to improve the supervised
model, for various data sizes.

4.1 Dataset

We experimented with the Universal Depen-
dency Treebank collection V1.0 (Nivre et al.,
2015) which contains treebanks for 10 languages.4

3However, same arc-label set also informs some informa-
tion about the structure.

4Czech (cs), German (de), English (en), Spanish (es),
Finnish (fi), French (fr), Irish (ga), Hungarian (hu), Italian

These treebanks have many desirable properties
for our model: the dependency types and coarse
POS are the same across languages. This removes
the need for mapping the source and target lan-
guage tagsets to a common tagset. Moreover, the
dependency types are also common across lan-
guages allowing LAS evaluation. Table 1 shows
the dataset size of each language in the collection.
Some languages have over 400k tokens such as cs,
fr and es, meanwhile, hu and ga have only around
25k tokens.

4.2 Monolingual Word Embeddings
We initialize the target language word embeddings
Eword of our neural network cross-lingual model
with pre-trained embeddings. This is an advantage
since we can incorporate monolingual data which
is usually available for resource-poor languages.
We collect monolingual data for each language
from the Machine Translation Workshop (WMT)
data,5 Europarl (Koehn, 2005) and EU Bookshop
Corpus (Skadiņš et al., 2014). The size of mono-
lingual data also varies significantly. There are
languages such as English and German with more
than 400 million words, whereas, Irish only has
4 million. We use the skip-gram model from
word2vec to induce 50-dimension word embed-
dings (Mikolov et al., 2013).

4.3 Coarse vs Fine-Grain POS
Our model uses the source language parser as the
prior for the target language parser. The require-
ment is that the source and target should use the
same POS tagset. It is clear that information will
be lost when using the coarser shared-POS tagset.
Here, we simply want to quantify this loss. We
run the supervised neural network parser on the
coarse-grained Universal POS (UPOS) tagset, and
the language-specific fine-grained POS tagset for
languages where both are available in the Univer-
sal Dependency Treebank.6 Table 2 shows the
average LAS for coarse- and fine-grained POS
tagsets with various data sizes. For the smaller
dataset, using the coarse-grained POS tagset per-
formed better. Even when we used all the data,
the coarse-grained POS tagset still performed rea-
sonably well, approaching the performance ob-
tained using the fine-grained POS tagset. Thus, the
choice of the coarse-grained Universal POS tagset

(it), Swedish (sv)
5http://www.statmt.org/wmt14/
6Czech, English, Finnish, Irish, Italian, and Swedish
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Tokens Coarse UPOS Fine POS

1k 46.8 42.3
3k 54.3 52.4
5k 56.9 55.8
10k 59.9 59.8
15k 61.5 61.4
All 74.7 75.2

Table 2: Average LAS for supervised learning us-
ing the modified version of the Universal POS
tagset and the fine-grained POS tagset across vari-
ous training data sizes.

instead of the original POS tagset is relevant, given
that we assume there will only be a small tree-
bank in the target language. Moreover, even when
we have a bigger treebank, using the UPOS tagset
does not hurt the performance much.7

4.4 Tuning regularization sensitivity

As shown in equation 1, λ1 and λ2 control the
contribution of the source language parser toward
the target language parser. We tune these parame-
ters separately using development data. Firstly, we
tune λ1 by fixing λ2 = 0.1. The reason for choos-
ing such a large value of 0.1 is that we expect the
POS and arc label embeddings to be fairly simi-
lar across languages. Figure 2 shows the average
LAS for all 9 languages (except English) on dif-
ferent data sizes using different values of λ1. We
observed that λ1 = 0.001 gives the optimum value
on the development data consistently across differ-
ent data sizes. We compare the performance at two
extreme values of λ1. For small data size, at 1k to-
kens, λ1 = 100 is better than when λ1 = 10−8.
This shows that when trained using a small data
set, the source language parser is more accurate
than the supervised model. However, at 3k tokens,
the supervised model is starting to perform better.

We now fix λ1 = 0.001 to tune λ2 in the same
range as λ1. However, the average LAS didn’t
change much for different values of λ2. It ap-
pears that λ2 has very little effect on parsing accu-
racy. This is understandable since λ2 affects only a
small number of parameters (POS and arc embed-
dings). Thus, we choose λ1 = 0.001 and λ2 = 0.1
for our experiments.

7This is because UPOS generalizes better, and when ag-
gregating with lexical information, it has similar distinguish-
ing power compared with the fine-grained POS tagset.
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Figure 2: Sensitivity of regularization parameter
λ1 against the average LAS measured on all 9 lan-
guages (except English) on the development set
for various data sizes (tokens)

4.5 Learning Curve

We choose English as our source language to build
different target parsers for each language in the
Universal Dependency Treebank collection. We
train the supervised neural network parser as men-
tioned in Section 2 on the Universal Dependency
English treebank using UPOS tagset. The UAS
and LAS for the English parser is 85.2% and
82.9% respectively, when evaluated on the English
test set. We use the English parser as the prior for
our cross-lingual model, as described in Section 3.
Figure 3 shows the learning curve for both the
supervised neural network parser and our cross-
lingual model with respect to our implemention
of McDonald et al.’s (2011) delexicalized parser,
i.e. their basic model which uses no parallel data
and no target language supervision. Overall, both
the supervised model and the cross-lingual model
are much better than this baseline. For small data
sizes, our cross-lingual model is superior when
compared with the supervised model, giving as
much as an 8.7% improvement. This improvement
lessens as the size of training data increases. This
is to be expected, because the supervised model
becomes stronger as the size of training data in-
creases, while the contribution of the source lan-
guage parser is reduced. However, at 15k tokens
we still observed a 2.9% average improvement,
demonstrating the robustness of our cross-lingual
model. Using our model also reduced the standard
deviation ranges on each data point from 12% to
7%.

Using our cross-lingual model can save the an-
notation effort that is required in order to reach
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Figure 3: Learning curve for cross-lingual model
and supervised model with respect to the baseline
delexicalized parser from McDonald et al. (2011):
the x-axis is the size of data (number of tokens);
the y-axis is the average LAS measured on 9 lan-
guages (except English).

the same accuracy compared with the supervised
model. For example, we only need 1k tokens
in order to surpass the supervised model perfor-
mance on 3k tokens, and we only need 5k tokens
to match the supervised model trained on 10k to-
kens. The error rate reduction is from 15.8% down
to 6.5% for training data sizes from 1k to 15k to-
kens. However, when we use all the training data,
the supervised model is slightly better.

5 Conclusions

Thanks to the availability of the Universal Depen-
dency Treebank, creating a treebank for a target
resource-poor language has becoming easier. This
fact motivates the work reported here, where we
assume that only a tiny treebank is available in the
target language. We tried to make the most out
of the target language treebank by incorporating
a source-language parser as a prior in learning a
neural network parser. Our results show that we
can achieve a more accurate parser using the same
training data. In future work, we would like to
investigate joint training on the source and target
languages.
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Anne Abeillé, editor, Treebanks: Building and Us-
ing Syntactically Annotated Corpora, pages 103–
127. Kluwer Academic Publishers.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages
724–731, Stroudsburg, PA, USA. ACL.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. ACL.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and
Tat-Seng Chua. 2005. Question answering passage
retrieval using dependency relations. In Proceed-
ings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’05, pages 400–407, New
York, NY, USA. ACM.

Long Duong, Trevor Cohn, Karin Verspoor, Steven
Bird, and Paul Cook. 2014. What can we get from
1000 tokens? a case study of multilingual pos tag-
ging for resource-poor languages. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 886–897,
Doha, Qatar. ACL.

Andrew Garrett, Clare Sandy, Erik Maier, Line
Mikkelsen, and Patrick Davidson. 2013. Develop-
ing the Karuk Treebank. Fieldwork Forum, Depart-
ment of Linguistics, UC Berkeley.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11:311–325.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
the Tenth Machine Translation Summit (MT Summit
X), pages 79–86, Phuket, Thailand.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1337–1348. Association for Compu-
tational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 91–98, Stroudsburg, PA,
USA. ACL.

849



Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’11, pages 62–72.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
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berg, Jan Hajič, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missilä, Simonetta
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Levent Özgür and Tunga Güngör. 2010. Text classifi-
cation with the support of pruned dependency pat-
terns. Pattern Recognition Letters, 31(12):1598–
1607.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istan-
bul, Turkey.
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