
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 737–742,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Constrained Semantic Forests for Improved Discriminative
Semantic Parsing

Wei Lu
Information Systems Technology and Design

Singapore University of Technology and Design
luwei@sutd.edu.sg

Abstract

In this paper, we present a model for
improved discriminative semantic parsing.
The model addresses an important limi-
tation associated with our previous state-
of-the-art discriminative semantic parsing
model – the relaxed hybrid tree model
by introducing our constrained semantic
forests. We show that our model is able to
yield new state-of-the-art results on stan-
dard datasets even with simpler features.
Our system is available for download from
http://statnlp.org/research/sp/.

1 Introduction

This paper addresses the problem of parsing natu-
ral language sentences into their corresponding se-
mantic representations in the form of formal logi-
cal representations. Such a task is also known as
semantic parsing (Kate and Mooney, 2006; Wong
and Mooney, 2007; Lu et al., 2008; Kwiatkowski
et al., 2010).

One state-of-the-art model for semantic pars-
ing is our recently introduced relaxed hybrid tree
model (Lu, 2014), which performs integrated lexi-
con acquisition and semantic parsing within a sin-
gle framework utilizing efficient algorithms for
training and inference. The model allows natural
language phrases to be recursively mapped to se-
mantic units, where certain long-distance depen-
dencies can be captured. It relies on representa-
tions called relaxed hybrid trees that can jointly
represent both the sentences and semantics. The
model is essentially discriminative, and allows
rich features to be incorporated.

Unfortunately, the relaxed hybrid tree model
has an important limitation: it essentially does
not allow certain sentence-semantics pairs to be
jointly encoded using the proposed relaxed hy-
brid tree representations. Thus, the model is un-
able to identify joint representations for certain

sentence-semantics pairs during the training pro-
cess, and is unable to produce desired outputs for
certain inputs during the evaluation process. In
this work, we propose a solution addressing the
above limitation, which makes our model more ro-
bust. Through experiments, we demonstrate that
our improved discriminative model for semantic
parsing, even when simpler features are used, is
able to obtain new state-of-the-art results on stan-
dard datasets.

2 Related Work

Semantic parsing has recently attracted a signif-
icant amount of attention in the community. In
this section, we provide a relatively brief discus-
sion of prior work in semantic parsing. The hy-
brid tree model (Lu et al., 2008) and the Bayesian
tree transducer based model (Jones et al., 2012)
are generative frameworks, which essentially as-
sume natural language and semantics are jointly
generated from an underlying generative process.
Such models are efficient, but are limited in their
predictive power due to the simple independence
assumptions made.

On the other hand, discriminative models are
able to exploit arbitrary features and are usually
able to give better results. Examples of such mod-
els include the WASP system (Wong and Mooney,
2006) which regards the semantic parsing prob-
lem as a statistical machine translation problem,
the UBL system (Kwiatkowski et al., 2010) which
performs CCG-based semantic parsing using a
log-linear model, as well as the relaxed hybrid tree
model (Lu, 2014) which extends the generative
hybrid tree model. This extension results in a dis-
criminative model that incorporates rich features
and allows long-distance dependencies to be cap-
tured. The relaxed hybrid tree model has achieved
the state-of-the-art results on standard benchmark
datasets across different languages.

Performing semantic parsing under other forms
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Figure 1: The semantics-sentence pair (a), an example hybrid tree (b), and an example relaxed hybrid
tree (c).

of supervision is also possible. Clarke et al. (2010)
proposed a model that learns a semantic parser for
answering questions without relying on semantic
annotations. Goldwasser et al. (2011) presented
a confidence-driven approach to semantic parsing
based on self-training. Liang et al. (2013) in-
troduced semantic parsers based on dependency
based semantics (DCS) that map sentences into
their denotations. In this work, we focus on pars-
ing sentences into their formal semantic represen-
tations.

3 Relaxed Hybrid Trees

We briefly discuss our previously proposed re-
laxed hybrid tree model (Lu, 2014) in this section.
The model is a discriminative semantic parsing
model which extends the generative hybrid tree
model (Lu et al., 2008). Both systems are publicly
available1.

Let us use m to denote a complete semantic
representation, n to denote a complete natural lan-
guage sentence, and h to denote a complete latent
structure that jointly represents both m and n. The
model defines the conditional probability for ob-
serving a (m,h) pair for a given natural language
sentence n using a log-linear approach:

PΛ(m,h|n) =
eΛ·Φ(n,m,h)∑

m′,h′∈H(n,m′) eΛ·Φ(n,m′,h′) (1)

where Λ is the set of parameters (weights of fea-
tures) used by the model. Figure 1 (a) gives an
example sentence-semantics pair. A real example
taken from the GeoQuery dataset is shown in Fig-
ure 2.

Note that h is a complete latent structure that
jointly represents a natural language sentence and

1http://statnlp.org/research/sp/

QUERY : answer(RIVER)

RIVER : exclude(RIVER, RIVER)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : (′tn′)

RIVER : river(all)

What rivers do not run through Tennessee ?

Figure 2: An example tree-structured semantic
representation (above) and its corresponding nat-
ural language sentence (below).

its corresponding semantic representation. Typi-
cally, to limit the space of latent structures, certain
assumptions have to be made to h. In our work,
we assume that h must be from a space consisting
of relaxed hybrid tree structures (Lu, 2014).

The relaxed hybrid trees are analogous to the
hybrid trees, which was earlier introduced as a
generative framework. One major distinction be-
tween these two types of representations is that
the relaxed hybrid tree representations are able to
capture unbounded long-distance dependencies in
a principled way. Such dependencies were un-
able to be captured by hybrid tree representations
largely due to their generative settings. Figure 1
gives an example of a hybrid tree and a relaxed
hybrid tree representation encoding the sentence
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 and the se-
mantics ma(mb(mc, md)).

In the hybrid tree structure, each word is strictly
associated with a semantic unit. For example the
word w3 is associated with the semantic unit mb.
In the relaxed hybrid tree, however, each word is
not only directly associated with exactly one se-
mantic unit m, but also indirectly associated with
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Figure 3: (a) Example semantics-sentence pair
that cannot be jointly represented with relaxed hy-
brid trees if pattern X is disallowed. (b) Exam-
ple relaxed hybrid tree that consists of an infinite
number of nodes when pattern X is allowed. (c)
Example hybrid tree jointly representing both the
semantics and the sentence (where pattern X is al-
lowed).

all other semantic units that are predecessors of m.
For example, the word w3 now is directly associ-
ated with mb, but is also indirectly associated with
ma. These indirect associations allow the long-
distance dependencies to be captured.

Both the hybrid tree and relaxed hybrid tree
models define patterns at each level of their latent
structure which specify how the words and child
semantic units are organized at each level. For
example, within the semantic unit ma, we have
a pattern wXw which states that we first have
words that are directly associated with ma, fol-
lowed by some words covered by its first child se-
mantic unit, then another sequence of words di-
rectly associated with ma.

3.1 Limitations
One important difference between the hybrid tree
representations and the relaxed hybrid tree repre-
sentations is the exclusion of the pattern X in the
latter. This ensured relaxed hybrid trees with an
infinite number of nodes were not considered (Lu,
2014) when computing the denominator term of
Equation 1. In relaxed hybrid tree, H(n,m) was
implemented as a packed forest representation for
exponentially many possible relaxed hybrid trees
where pattern X was excluded.

By allowing pattern X, we allow certain seman-
tic units with no natural language word counter-

#Args Patterns
0 w
1 [w]X[w]
2 [w]X[w]Y[w], [w]Y[w]X[w]

Table 1: The patterns allowed for our model. [w]
denotes an optional sequence of natural language
words. E.g., [w]X[w] refers to the following 4
patterns: wX, Xw, wXw, and X (the pattern ex-
cluded by the relaxed hybrid tree model).

part to exist in the joint relaxed hybrid tree repre-
sentation. This may lead to possible relaxed hy-
brid tree representations consisting of an infinite
number of internal nodes (semantic units), as seen
in Figure 3 (b). When pattern X is allowed, both
ma and mb are not directly associated with any
natural language word, so we are able to further
insert arbitrarily many (compatible) semantic units
between the two units ma and mb while the re-
sulting relaxed hybrid tree remains valid. There-
fore we can construct a relaxed hybrid tree repre-
sentation that contains the given natural language
sentence w1 w2 with an infinite number of nodes.
This issue essentially prevents us from comput-
ing the denominator term of Equation 1 since it
involves an infinite number of possible m′ and h′.

To eliminate relaxed hybrid trees consisting of
an infinite number of nodes, pattern X is dis-
allowed in the relaxed hybrid trees model (Lu,
2014). However, disallowing pattern X has led
to other issues. Specifically, for certain semantics-
sentence pairs, it is not possible to find relaxed hy-
brid trees that jointly represent them. In the exam-
ple semantics-sentence pair given in Figure 3 (a),
it is not possible to find any relaxed hybrid tree that
contains both the sentence and the semantics since
each semantic unit which takes one argument must
be associated with at least one word. On the other
hand, it is still possible to find a hybrid tree repre-
sentation for both the sentence and the semantics
where pattern X is allowed (see Figure 3 (c)).

In practice, we can alleviate this issue by ex-
tending the lengths of the sentences. For example,
we can append the special beginning-of-sentence
symbol 〈s〉 and end-of-sentence symbol 〈/s〉 to
all sentences to increase their lengths, allowing
the relaxed hybrid trees to be constructed for cer-
tain sentence-semantics pairs with short sentences.
However, such an approach does not resolve the
theoretical limitation of the model.
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4 Constrained Semantic Forests

To address this limitation, we allow pattern X to
be included when building our new discrimina-
tive semantic parsing model. However, as men-
tioned above, doing so will lead to latent struc-
tures (relaxed hybrid tree representations) of infi-
nite heights. To resolve such an issue, we instead
add an additional constraint – limiting the height
of a semantic representation to a fixed constant c,
where c is larger than the maximum height of all
the trees appearing in the training set.

Table 1 summarizes the list of patterns that our
model considers. This is essentially the same as
those considered by the hybrid tree model.

Our new objective function is as follows:

PΛ(m,h|n)

=
eΛ·Φ(n,m,h)∑

m′∈M,h′∈H′(n,m′) eΛ·Φ(n,m′,h′) (2)

where M refers to the set of all possible seman-
tic trees whose heights are less than or equal to c,
and H′(n,m′) refers to the set of possible relaxed
hybrid tree representations where the pattern X is
allowed.

The main challenge now becomes the compu-
tation of the denominator term in Equation 2, as
the set M is still very large. To properly handle
all such semantic trees in an efficient way, we in-
troduce a constrained semantic forest (CSF) rep-
resentation of M here. Such a constrained seman-
tic forest is a packed forest representation of ex-
ponentially many possible unique semantic trees,
where we set the height of the forest to c. By con-
trast, it was not possible in our previous relaxed
hybrid tree model to introduce such a compact
representation over all possible semantic trees. In
our previous model’s implementation, we directly
constructed for each sentence n a different com-
pact representation over all possible relaxed hy-
brid trees containing n.

Setting the maximum height to c effectively
guarantees that all semantic trees contained in
the constrained semantic forest have a height no
greater than c. We then constructed the (exponen-
tially many) relaxed hybrid tree representations
based on the constrained semantic forest M and
each input sentence n. We used a single packed
forest representation to represent all such relaxed
hybrid tree representations. This allows the com-
putation of the denominator to be performed ef-

ficiently using similar dynamic programming al-
gorithms described in (Lu, 2014). Optimization
of the model parameters were done by using L-
BFGS (Liu and Nocedal, 1989), where the gradi-
ents were computed efficiently using an analogous
dynamic programming algorithm.

5 Experiments

Our experiments were conducted on the publicly
available multilingual GeoQuery dataset. Vari-
ous previous works on semantic parsing used this
dataset for evaluations (Wong and Mooney, 2006;
Kate and Mooney, 2006; Lu et al., 2008; Jones
et al., 2012). The dataset consists of 880 natural
language sentences where each sentence is cou-
pled with a formal tree-structured semantic repre-
sentation. The early version of this dataset was
annotated with English only (Wong and Mooney,
2006; Kate and Mooney, 2006), and Jones et al.
(2012) released a version that is annotated with
three additional languages: German, Greek and
Thai. To make our system directly comparable to
previous works, we used the same train/test split
used in those works (Jones et al., 2012; Lu, 2014)
for evaluation. We also followed the standard ap-
proach for evaluating the correctness of an output
semantic representation from our system. Specifi-
cally, we used a standard script to construct Prolog
queries based on the outputs, and used the queries
to retrieve answers from the GeoQuery database.
Following previous works, we regarded an out-
put semantic representation as correct if and only
if it returned the same answers as the gold stan-
dard (Jones et al., 2012; Lu, 2014).

The results of our system as well as those of
several previous systems are given in Table 2.
We compared our system’s performance against
those of several previous works. The WASP sys-
tem (Wong and Mooney, 2006) is based on statis-
tical machine translation technique while the HY-
BRIDTREE+ system (Lu et al., 2008) is based on
the generative hybrid tree model augmented with
a discriminative re-ranking stage where certain
global features are used. UBL-S (Kwiatkowski et
al., 2010) is a CCG-based semantic parsing sys-
tem. TREETRANS (Jones et al., 2012) is the sys-
tem based on tree transducers. RHT (Lu, 2014) is
the discriminative semantic parsing system based
on relaxed hybrid trees.

In practice, we set c (the maximum height of
a semantic representation) to 20 in our experi-
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System
English Thai German Greek

Acc. F Acc. F Acc. F Acc. F
WASP 71.1 77.7 71.4 75.0 65.7 74.9 70.7 78.6
HYBRIDTREE+ 76.8 81.0 73.6 76.7 62.1 68.5 69.3 74.6
UBL-S 82.1 82.1 66.4 66.4 75.0 75.0 73.6 73.7
TREETRANS 79.3 79.3 78.2 78.2 74.6 74.6 75.4 75.4
RHT (all features) 83.6 83.6 79.3 79.3 74.3 74.3 78.2 78.2
This work 86.8 86.8 80.7 80.7 75.7 75.7 79.3 79.3

Table 2: Performance of various works across four different languages. Acc.: accuracy percentage, F:
F1-measure percentage.

ments, which we determined based on the heights
of the semantic trees that appear in the training
data. Results showed that our system consistently
yielded higher results than all the previous sys-
tems, including our state-of-the-art relaxed hybrid
tree system (the full model, when all the features
are used), in terms of both accuracy score and F1-
measure. We would like to highlight two potential
advantages of our new model over the old RHT
model. First, our model is able to handle certain
sentence-semantics pairs which could not be han-
dled by RHT during both training and evaluation
as discussed in Section 3.1. Second, our model
considers the additional pattern X and therefore
has the capability to capture more accurate depen-
dencies between the words and semantic units.

We note that in our experiments we used a small
subset of the features used by our relaxed hy-
brid tree work. Specifically, we did not use any
long-distance features, and also did not use any
character-level features. As we have mentioned
in (Lu, 2014), although the RHT model is able
to capture unbounded long-distance dependencies,
for certain languages such as German such long-
distance features appeared to be detrimental to
the performance of the system (Lu, 2014, Table
4). Here in this work, we only used simple un-
igram features (concatenation of a semantic unit
and an individual word that appears directly below
that unit in the joint representation), pattern fea-
tures (concatenation of a semantic unit and the pat-
tern below that unit) as well as transition features
(concatenation of two semantic units that form a
parent-child relationship) described in (Lu, 2014).
While additional features could potentially lead to
better results, using simpler features would make
our model more compact and more interpretable.
We summarized in Table 3 the number of features
used in both the previous RHT system and our sys-
tem across four different languages. It can be seen
that our system only required about 2-3% of the

System English Thai German Greek
RHT 2.1×106 2.3×106 2.7×106 2.6×106

This work 5.4×104 5.2×104 7.5×104 6.9×104

Table 3: Number of features involved for both
the RHT system and our new system using con-
strained semantic forests, across four different lan-
guages.

features used in the previous system.
We also note that the training time for our

model is longer than that of the relaxed hybrid tree
model since the space for H′(n,m′) is now much
larger than the space for H(n,m′). In practice,
to make the overall training process faster, we im-
plemented a parallel version of the original RHT
algorithm.

6 Conclusion

In this work, we presented an improved discrim-
inative approach to semantic parsing. Our ap-
proach does not have the theoretical limitation
associated with our previous state-of-the-art ap-
proach. We demonstrated through experiments
that our new model was able to yield new state-
of-the-art results on a standard dataset across four
different languages, even though simpler features
were used. Since our new model involves simpler
features, including unigram features defined over
individual semantic unit – word pairs, we believe
our new model would aid the joint modeling of
both distributional and logical semantics (Lewis
and Steedman, 2013) within a single framework.
We plan to explore this avenue in the future.
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