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Abstract

Recently, a variety of representation learn-
ing approaches have been developed in
the literature to induce latent generalizable
features across two domains. In this paper,
we extend the standard hidden Markov
models (HMMs) to learn distributed state
representations to improve cross-domain
prediction performance. We reformu-
late the HMMs by mapping each discrete
hidden state to a distributed representa-
tion vector and employ an expectation-
maximization algorithm to jointly learn
distributed state representations and model
parameters. We empirically investigate the
proposed model on cross-domain part-of-
speech tagging and noun-phrase chunking
tasks. The experimental results demon-
strate the effectiveness of the distributed
HMMs on facilitating domain adaptation.

1 Introduction

Domain adaptation aims to obtain an effective pre-
diction model for a particular target domain where
labeled training data is scarce by exploiting la-
beled data from a related source domain. Domain
adaptation is very important in the field of natu-
ral language processing (NLP) as it can reduce the
expensive manual annotation effort in the target
domain. Various NLP tasks have benefited from
domain adaptation techniques, including part-of-
speech tagging (Blitzer et al., 2006; Huang and
Yates, 2010a), chunking (Daumé III, 2007; Huang
and Yates, 2009), named entity recognition (Guo
et al., 2009; Turian et al., 2010), dependency pars-
ing (Dredze et al., 2007; Sagae and Tsujii, 2007)
and semantic role labeling (Dahlmeier and Ng,
2010; Huang and Yates, 2010b).

In a typical domain adaptation scenario of NLP,
the source and target domains contain text data

of different genres (e.g., newswire vs biomedi-
cal (Blitzer et al., 2006)). Under such circum-
stances, the original lexical features may not per-
form well in cross-domain learning since differ-
ent genres of text may use very different vocab-
ularies and produce cross-domain feature distri-
bution divergence and feature sparsity issue. A
number of techniques have been developed in the
literature to tackle the problem of cross-domain
feature divergence and feature sparsity, includ-
ing clustering based word representation learn-
ing methods (Huang and Yates, 2009; Candito et
al., 2011), word embedding based representation
learning methods (Turian et al., 2010; Hovy et
al., 2015) and some other representation learning
methods (Blitzer et al., 2006).

In this paper, we extend the standard hidden
Markov models (HMMs) to perform distributed
state representation learning and induce context-
aware distributed word representations for domain
adaptation. Instead of learning a single discrete
latent state for each observation in a given sen-
tence, we learn a distributed representation vec-
tor. We define a state embedding matrix to map
each latent state value to a low-dimensional dis-
tributed vector and reformulate the three local dis-
tributions of HMMs based on the distributed state
representations. We then simultaneously learn the
state embedding matrix and the model parame-
ters using an expectation-maximization (EM) al-
gorithm. The hidden states of each word in a sen-
tence can be decoded using the standard Viterbi
decoding procedure of HMMs, and its distributed
representation can be obtained by a simple map-
ping with the state embedding matrix. We then
use the context-aware distributed representations
of the words as their augmenting features to per-
form cross-domain part-of-speech (POS) tagging
and noun-phrase (NP) chunking.

The proposed approach is closely related to
the clustering based method (Huang and Yates,
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2009) as we both use latent state representations
as generalizable features. However, they use stan-
dard HMMs to produce discrete hidden state fea-
tures for each observation word, while we induce
distributed state representation vectors. Our dis-
tributed HMMs share similarities with the word
embedding based method (Hovy et al., 2015),
and can be more space-efficient than the stan-
dard HMMs. Moreover, our model can incor-
porate context information into observation fea-
ture vectors to perform representation learning in
a context-aware manner. The distributed state
representations induced by our model hence have
larger representing capacities and generalizing ca-
pabilities for cross-domain learning than standard
HMMs.

2 Related Work

A variety of representation learning approaches
have been developed in the literature to address
NLP domain adaptation problems. The cluster-
ing based word representation learning methods
perform word clustering within the sentence struc-
ture and use word cluster indicators as generaliz-
able features to address domain adaptation prob-
lems. For example, Huang and Yates (2009) used
the discrete hidden state of a word under HMMs
as augmenting features for cross-domain POS tag-
ging and NP chunking. Brown clusters (Brown
et al., 1992), which was used as latent features
for simple in-domain dependency parsing (Koo et
al., 2008), has recently been exploited for out-of-
domain statistical parsing (Candito et al., 2011).

The word embedding based representation
learning methods learn a dense real-valued repre-
sentation vector for each word as latent features
for domain adaptation. Turian et al. (2010) em-
pirically studied using word embeddings learned
from hierarchical log-bilinear models (Mnih and
Geoffrey, 2008) and neural language models (Col-
lobert and Weston, 2008) for cross-domain NER
tasks. Hovy et al. (2015) used the word embed-
dings learned from the Skip-gram Model (SGM)
(Mikolov et al., 2013) to develop a POS tagger for
Twitter data with labeled newswire training data.

Some other representation learning methods
have been developed to tackle NLP cross-domain
problems as well. For example, Blitzer et
al. (2006) proposed a structural correspondence
learning method for POS tagging, which first se-
lects a set of pivot features (occurring frequently in

Figure 1: Hidden Markov models with distributed
state representations (dHMM).

the two domains) and then models the correlations
between pivot features and non-pivot features to
induce generalizable features.

In terms of performing distributed representa-
tion learning for output variables, our proposed
model shares similarity with the structured out-
put representation learning approach developed
by Srikumar and Manning (2014), which extends
the structured support vector machines to simul-
taneously learn the prediction model and the dis-
tributed representations of the output labels. How-
ever, the approach in (Srikumar and Manning,
2014) assumes the training labels (i.e., output val-
ues) are given and performs learning in the stan-
dard supervised in-domain setting, while our pro-
posed distributed HMMs address cross-domain
learning problems by performing unsupervised
representation learning. There are also a few
works that extended standard HMMs in the liter-
ature, including the observable operator models
(Jaeger, 1999), and the spectral learning method
(Stratos et al., 2013). But none of them performs
representation learning to address cross-domain
adaptation problems.

3 Proposed Model

In this paper, we propose a novel distributed hid-
den Markov model (dHMM) for representation
learning over sequence data. This model ex-
tends the hidden Markov models (Rabiner and
Juang, 1986) to learn distributed state representa-
tions. Similar as HMMs, a dHMM (shown in Fig-
ure 1) is a two-layer generative graphical model,
which generates a sequence of observations from
a sequence of latent state variables using Markov
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properties. Let O = {o1,o2, . . . ,oT } be the se-
quence of observations with length T , where each
observation ot ∈ Rd is a d-dimensional feature
vector. Let S = {s1, s2, . . . , sT } be the sequence
of T hidden states, where each hidden state st has
a discrete state value from a total H hidden states
H = {1, 2, . . . ,H}. Besides, we assume that
there is a low-dimensional distributed representa-
tion vector associated with each hidden state. Let
M ∈ RH×m be the state embedding matrix where
the i-th rowMi: denotes them-dimensional repre-
sentation vector for the i-th state. Previous works
have demonstrated the usefulness of discrete hid-
den states induced from a HMM on addressing
feature sparsity in domain adaptation (Huang and
Yates, 2009). However, expressing a semantic
word by a single discrete state value is too re-
strictive, as it has been shown in the literature
that words have many different features in a multi-
dimensional space where they could be separately
characterized as number, POS tag, gender, tense,
voice and other aspects (Sag and Wasow, 1999;
Huang et al., 2011). Our proposed model aims
to overcome this inherent drawback of standard
HMMs on learning word representations. Given
a set of observation sequences in two domains, the
dHMM induces a distributed representation vector
with continuous real values for each observation
word as generalizable features, which has the ca-
pacity of capturing multi-aspect latent characteris-
tics of the word clusters.

3.1 Model Formulation

To build the dHMMs, we reformulate the standard
HMMs by defining three main local distributions
based on the distributed state representations, i.e.,
the initial state distribution, the state transition dis-
tribution, and the observation emission distribu-
tion. Below we introduce them by using Θ to de-
note the set of parameters involved and using 1 to
denote a column vector with all 1s.

First we use the following multinomial distribu-
tion as the initial state distribution,

P (s1; Θ) = φ(s1)>λ,

where φ(st) ∈ {0, 1}H is a one-hot vector with a
single 1 value at its st-th entry, and λ ∈ RH is the
parameter vector such that λ ≥ 0 and λ>1 = 1.

We then define a multinomial logistic regression

model for the state transition distribution,

P (st+1|st; Θ) =
exp

{
φ(st+1)>WM>φ(st)

}
Z(st; Θ)

where W ∈ RH×m is the regression parameter
matrix and Z(st; Θ) is the normalization term.

Finally, we assume the observation vector is
generated from a multivariate Gaussian distribu-
tion, i.e., ot ∼ N

(
φ(st)>MQ,σId

)
, and use the

following model for the emission distribution,

P (ot|st; Θ) =
exp

{−1
2σ κ(st,ot)κ(st,ot)>

}
(2π)d/2σd/2

,

with κ(st,ot) = φ(st)>MQ − o>t , where Q ∈
Rm×d and σ ∈ R are the model parameters. Dif-
ferent from the standard HMMs which have dis-
crete hidden states and discrete observations, the
multivariate Gaussian model here generates each
observation ot as a d-dimensional continuous fea-
ture vector. This type of emission distribution pro-
vides us the flexibility to incorporate local context
information or statistical global information for in-
ducing distributed state representations. For ex-
ample, we can use the concatenation of the one-hot
word vectors within a sliding window around the
target word as the observation vector. Moreover,
we can also use the globally preprocessed continu-
ous word vectors as the observation vectors, which
we will describe later in our experiments.

The standard HMMs (Rabiner and Juang, 1986)
use conditional probability tables for the state tran-
sition distribution, which grows quadratically with
respect to the number of hidden states, and the
emission distribution, which grows linearly with
respect to the observed vocabulary size that is
usually very large in NLP tasks. Instead, the
dHMMs can significantly reduce the sizes of these
conditional probability tables by introducing the
low-dimensional state embedding vectors, and the
dHMM is much more efficient in terms of mem-
ory storage. In fact, the complexity of dHMMs
can be independent of the vocabulary size by us-
ing flexible observation features. We represent the
dHMM parameter set as Θ = {M ∈ RH×m,W ∈
RH×m, Q ∈ Rm×d, σ ∈ R, λ ∈ [0, 1]H}, where
m is a small constant.

3.2 Model Training

Given a data set of N observed sequences
{O1, . . . , On, . . . , ON}, its regularized log-
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Table 1: Test performance for cross-domain POS tagging and NP chunking.

Systems
POS Tagging (Accuracy (%)) NP Chunking (F1-score)
All Words OOV Words All NPs OOV NPs

Baseline 88.3 67.3 0.86 0.74
SGM (Hovy et al., 2015) 89.0 71.4 0.88 0.78
HMM (Huang and Yates, 2009) 90.5 75.2 0.91 0.85
dHMM 91.1 76.0 0.93 0.88

likelihood can be written as follows

L(Θ)=
∑
n

logP (On; Θ)− η
2
R(W,Q,M) (1)

where the regularization function is defined
with Frobenius norms such as R(W,Q,M) =
‖W‖2F + ‖Q‖2F + ‖M‖2F . Moreover, each log-
likelihood term has the following lower bound

logP (On; Θ) = log
∑
Sn

P (On, Sn; Θ)

≥ logP (On; Θ)−KL(Q(Sn)||P (Sn|On; Θ)) (2)

whereQ(Sn) is any valid distribution over the hid-
den state variables Sn and KL(.||.) denotes the
Kullback-Leibler divergence. LetF(Q,Θ) denote
the regularized lower bound function obtained by
plugging the lower bound (2) back into the ob-
jective function (1). We then perform training
by using an expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) that iteratively max-
imizes F(Q,Θ) to reach a local optimal solution.
We first randomly initialize the model parame-
ters while enforcing λ to be in the feasible region
(λ ≥ 0, λ>1 = 1). In the (k+1)-th iteration, given
{Q(k),Θ(k)}, we then sequentially update Q with
an E-step (3) and update Θ with a M-step (4).

Q(k+1) = arg max
Q

F(Q,Θ(k)) (3)

Θ(k+1) = arg max
Θ

F(Q(k+1),Θ) (4)

3.3 Domain Adaptation with Distributed
State Representations

We use all training data from the two domains
to train dHMMs for local optimal model pa-
rameters Θ∗ = {M∗,W ∗, Q∗, σ∗, λ∗}. We
then infer the latent state sequence S∗ =
{s∗1, s∗2, . . . , s∗T } using the standard Viterbi algo-
rithm (Rabiner and Juang, 1986) for each la-
beled source training sentence and each target
test sentence. The corresponding distributed

state representation vectors can be obtained as
{M∗>φ(s∗1),M∗>φ(s∗2), . . . ,M∗>φ(s∗T )}. We
then train a supervised NLP system (e.g., POS tag-
ging or NP chunking) on the labeled source train-
ing sentences using the distributed state represen-
tations as augmenting input features and perform
prediction on the augmented test sentences.

4 Experiments

We conducted experiments on cross-domain part-
of-speech (POS) tagging and noun-phrase (NP)
chunking tasks. We used the same experimen-
tal datasets as in (Huang and Yates, 2009) for
cross-domain POS tagging from Wall Street Jour-
nal (WSJ) domain (Marcus et al., 1993) to MED-
LINE domain (PennBioIE, 2005) and for cross-
domain NP chunking from CoNLL shared task
dataset (Tjong et al., 2000) to Open American Na-
tional Corpus (OANC) (Reppen et al., 2005).

4.1 Representation Learning
We first built a unified vocabulary with all the data
in the two domains. We then conducted latent
semantic analysis (LSA) over the sentence-word
frequency matrix to get a low-dimensional repre-
sentation vector for each word. We used a sliding
window with size 3 to construct the d-dimensional
feature vector (d = 1500) for each observation in
a given sentence. We used η = 0.5, set the number
of hidden statesH to be 80 and the dimensionality
m = 20. We used all the labeled and unlabeled
training data in the two domains to train dHMMs.

4.2 Test Results
We used the induced distributed state representa-
tions of each observation as augmenting features
to train conditional random fields (CRF) with the
CRFSuite package (Okazaki, 2007) on the labeled
source sentences and perform prediction on the
target test sentences. We compared with the fol-
lowing systems: a Baseline system without repre-
sentation learning, a SGM based word embedding
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system (Hovy et al., 2015), and a discrete hidden
state based clustering system (Huang and Yates,
2009). We used the word id and orthographic fea-
tures as the baseline features for POS tagging and
added POS tags for NP chunking. We reported
the POS tagging accuracy for all words and out-
of-vocabulary (OOV) words (which appear less
than three times in the labeled source training sen-
tences), and NP chunking F1 scores for all NPs
and only OOV NPs (whose beginning word is an
OOV word) in Table 1.

We can see that the Baseline method per-
forms poorly on both tasks especially on the OOV
words/NPs, which shows that the original lexical
based features are not sufficient to develop a ro-
bust POS tagger/NP chunker for the target domain
with labeled source training sentences. By us-
ing unlabeled training sentences from the two do-
mains, all representation learning approaches in-
crease the cross-domain test performance, espe-
cially on the OOV words/NPs. These improve-
ments over the Baseline method demonstrate that
the induced latent features do alleviate feature
sparsity issue across the two domains and help the
trained NLP system generalize well in the target
domain. Between these representation learning
approaches, the proposed distributed state repre-
sentation learning method outperforms both of the
word embedding based and discrete HMM hidden
state based systems. This suggests that by learn-
ing distributed representations in a context-aware
manner, dHMMs can effectively bridge domain
divergence.

4.3 Sensitivity Analysis over the
Dimensionality of State Embeddings

We also conducted experiments to investigate how
does the dimensionality of the distributed state
representations, m, in our proposed approach af-
fect cross-domain test performance given a fixed
state number H = 80. We tested a number of
different m values from {10, 20, 30, 40} and used
the same experimental setting as before for eachm
value. The POS tagging accuracy on all words of
the test sentences and the chunking F1 score on all
NPs with different m values are reported in Fig-
ure 2. We can see that the performance of both
POS tagging and NP chunking has notable im-
provements with m increasing from 10 to 20. The
POS tagging performance improves very slightly
from m = 20 to m = 30 and is very stable from
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Figure 2: Cross-domain test performance with re-
spect to different dimensionality values (m) of the
hidden state representation vectors.

m = 30 to m = 40. The NP chunking perfor-
mance is very stable from m = 20 to m = 40.
These results suggest that the distributed state rep-
resentation vectors only need to have a succinct
length to capture useful information. The pro-
posed distributed HMMs are not sensitive to the
dimensionality of the state embeddings as long as
m reaches a reasonable small value.

5 Conclusion

In this paper, we extended the standard HMMs
to learn distributed state representations and fa-
cilitate cross-domain sequence predictions. We
mapped each state variable to a distributed rep-
resentation vector and simultaneously learned the
state embedding matrix and the model parameters
with an EM algorithm. The experimental results
on cross-domain POS tagging and NP chunking
tasks demonstrated the effectiveness of the pro-
posed approach for domain adaptation. In the
future, we plan to apply this approach to other
cross-domain prediction tasks such as named en-
tity recognition or semantic role labeling. We also
plan to extend our method to learn cross-lingual
representations with auxiliary resources such as
bilingual dictionaries or parallel sentences.

Acknowledgments

This research was supported in part by NSF grant
IIS-1065397.

528



References
J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain

adaptation with structural correspondence learning.
In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

P. Brown, P. deSouza, R. Mercer, V. Pietra, and J. Lai.
1992. Class-based n-gram models of natural lan-
guage. Compututal Linguistics, 18(4):467–479.

M. Candito, E. Anguiano, and D. Seddah. 2011. A
word clustering approach to domain adaptation: Ef-
fective parsing of biomedical texts. In Proc. of the
Inter. Conference on Parsing Technologies (IWPT).

R. Collobert and J. Weston. 2008. A unified archi-
tecture for natural language processing: deep neural
networks with multitask learning. In Proc. of the In-
ter. Conference on Machine Learning (ICML).

D. Dahlmeier and H. Ng. 2010. Domain adaptation
for semantic role labeling in the biomedical domain.
Bioinformatics, 26(8):1098–1104.
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