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Abstract

Log-bilinear language models such as
SkipGram and GloVe have been proven to
capture high quality syntactic and seman-
tic relationships between words in a vector
space. We revisit the relationship between
SkipGram and GloVe models from a ma-
chine learning viewpoint, and show that
these two methods are easily merged into
a unified form. Then, by using the unified
form, we extract the factors of the config-
urations that they use differently. We also
empirically investigate which factor is re-
sponsible for the performance difference
often observed in widely examined word
similarity and analogy tasks.

1 Introduction

Neural-network-inspired word embedding meth-
ods such as Skip-Gram (SkipGram) have been
proven to capture high quality syntactic and se-
mantic relationships between words in a vector
space (Mikolov et al., 2013a). A similar embed-
ding method, called ‘Global Vector (GloVe)’, was
recently proposed. It has demonstrated significant
improvements over SkipGram on the widely used
‘Word Analogy’ and ‘Word Similarity’ benchmark
datasets (Pennington et al., 2014). Unfortunately,
a later deep re-evaluation has revealed that GloVe
does not consistently outperform SkipGram (Levy
et al., 2015); both methods provided basically the
same level of performance, and SkipGram even
seems ‘more robust (not yielding very poor re-
sults)’ than GloVe. Moreover, some other papers,
i.e., (Shi and Liu, 2014), and some researchers
in the community have discussed a relationship,
and/or which is superior, SkipGram or GloVe.

From this background, we revisit the relation-
ship between SkipGram and GloVe from a ma-
chine learning viewpoint. We show that it is nat-

V : set of vocabulary (set of words)
|V| : vocabulary size, or number of words in V
i : index of the input vector, where i ∈ {1, . . . , |V|}
j : index of the output vector, where j ∈ {1, . . . , |V|}
ei : input vector of the i-th word in V
oj : output vector of the j-th word in V

If i = j, then ei and oj are the input and output vec-
tors of the same word in V , respectively.

D : number of dimensions in input and output vectors
mi,j : (i, j)-factor of matrix M
si,j : dot product of input and output vectors, si,j = ei · oj
D : training data, D = {(in, jn)}Nn=1

Ψ(·) : objective function
σ(·) : sigmoid function, σ(x) = 1

1+exp(−x)
ci,j : co-occurrence of the i-th and j-th words in D
D′ : (virtual) negative sampling data
c′i,j : co-occurrence of the i-th and j-th words in D′
k : hyper-parameter of the negative sampling
β(·) : ‘weighting factor’ of loss function
Φ(·) : loss function

Table 1: List of notations used in this paper.

ural to think that these two methods are essen-
tially identical, with the chief difference being
their learning configurations.

The final goal of this paper is to provide a uni-
fied learning framework that encompasses the con-
figurations used in SkipGram and GloVe to gain a
deeper understanding of the behavior of these em-
bedding methods. We also empirically investigate
which learning configuration most clearly eluci-
dates the performance difference often observed in
word similarity and analogy tasks.

2 SkipGram and GloVe

Table 1 shows the notations used in this paper.

2.1 Matrix factorization view of SkipGram
SkipGram can be categorized as one of the
simplest neural language models (Mnih and
Kavukcuoglu, 2013). It generally assigns two dis-
tinct D-dimensional vectors to each word in vo-
cabulary V; one is ‘input vector’, and the other is
‘output vector’1.

1These two vectors are generally referred to as ‘word (or
target) vector’ and ‘context vector’. We use the terms ‘in-
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Roughly speaking, SkipGram models word-to-
word co-occurrences, which are extracted within
the predefined context window size, by the in-
put and output vectors. Recently, SkipGram
has been interpreted as implicitly factorizing the
matrix, where the factors are calculated from
co-occurrence information (Levy and Goldberg,
2014). Let mi,j be the (i, j)-factor of matrix M
to be ‘implicitly’ factorized by SkipGram. Skip-
Gram approximates each mi,j by the inner prod-
uct of the corresponding input and output vectors,
that is:

mi,j ≈ ei · oj , (1)

2.1.1 SkipGram with negative sampling
The primitive training sample for SkipGram is a
pair of a target word and its corresponding con-
text word. Thus, we can represent the training
data of SkipGram as a list of input and output in-
dex pairs, that is, D = {(in, jn)}Nn=1. Thus the
estimation problem of ‘SkipGram with negative
sampling (SGNS)’ is defined as the minimization
problem of objective function Ψ:

Ψ =−
∑

(in,jn)∈D
log
(
σ(ein · ojn)

)
−

∑
(in,jn)∈D′

log
(
1− σ(ein · ojn)

)
,

(2)

where the optimization parameters are ei and oj
for all i and j. Note that we explicitly represent the
negative sampling data D′ (Goldberg and Levy,
2014).

Let us assume that, in a preliminary step, we
count all co-occurrences in D. Then, the SGNS
objective in Eq. 2 can be rewritten as follows by a
simple reformulation:

Ψ =−
∑
i

∑
j

(
ci,j log

(
σ(ei · oj)

)
+c′i,j log

(
1− σ(ei · oj)

))
.

(3)

Here, let us substitute ei · oj in Eq. 3 for si,j ,
and then assume that all si,j are free parameters.
Namely, we can freely select the value of si,j in-
dependent from any other si′,j′ , where i 6= i′ and
j 6= j′, respectively. The partial derivatives of Ψ
with respect to si,j take the following form:

∂si,jΨ =−
(
ci,j
(
1− σ(si,j)

)− c′i,jσ(si,j)
)
.

(4)
put’ and ‘output’ to reduce the ambiguity since ‘word’ and
‘context’ are exchangeable by the definition of model (i.e.,
SkipGram or CBoW).

The minimizer can be obtained when ∂si,jΨ = 0
for all si,j . By using this relation, we can obtain
the following closed form solution:

si,j = log
(
ci,j
c′i,j

)
. (5)

Overall, SGNS approximates the log of the co-
occurrence ratio between ‘real’ training data D
and ‘virtual’ negative sampling data D′ by the in-
ner product of the corresponding input and output
vectors in terms of minimizing the SGNS objec-
tive written in Eq. 2, and Eq. 3 as well. Therefore,
we can obtain the following relation for SGNS:

mi,j = log
(
ci,j
c′i,j

)
≈ ei · oj . (6)

Note that the expectation of c′i,j is kcicj
|D| if the

negative sampling is assumed to follow unigram
probability cj

|D| , and the negative sampling data is
k-times larger than the training dataD, where ci =∑

j ci,j and cj =
∑

i ci,j
2. The above matches

‘shifted PMI’ as described in (Levy and Goldberg,
2014) when we substitute c′i,j for kcicj|D| in Eq. 6,

In addition, the word2vec implementation
uses a smoothing factor α to reduce the selec-
tion of high-occurrence-frequency words during
the negative sampling. The expectation of c′i,j
can then be written as: kci

(cj)
α∑

j′ (cj′ )α
. We refer

to log
(
ci,j

∑
j′ (cj′ )

α

kci(cj)α

)
as ‘α-parameterized shifted

PMI (SPMIk,α)’.

2.2 Matrix factorization view of GloVe
The GloVe objective is defined in the following
form (Pennington et al., 2014):

Ψ =
∑
i

∑
j

β(ci,j)
(
ei · oj − log(ci,j)

)2
, (7)

where β(·) represent a ‘weighting function’. In
particular, β(·) satisfies the relations 0 ≤ β(x) <
∞, and β(x) = 0 if x = 0. For example, the
following weighting function has been introduced
in (Pennington et al., 2014):

β(x) = min
(

1,
(
x/xmax

)γ)
. (8)

This is worth noting here that the original GloVe
introduces two bias terms, bi and bj , and defines

2Every input of the i-th word samples k words. Therefore,
the negative sampling number is kci. Finally, the expectation
can be obtained by multiplying count kci by probability cj

|D| .
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configuration SGNS GloVe
training unit sample-wise co-occurrence
loss function logistic (Eq. 11) squared (Eq. 12)

neg. sampling explicit no sampling
weight. func. β(·) fixed to 1 Eq. 8

fitting function SPMIk,α log(ci,j)
bias none bi and bj

Table 2: Comparison of the different configura-
tions used in SGNS and GloVe.

ei ·oj + bi + bj instead of just ei ·oj in Eq. 7. For
simplicity and ease of discussion, we do not ex-
plicitly introduce bias terms in this paper. This is
because, without loss of generality, we can embed
the effect of the bias terms in the input and output
vectors by introducing two additional dimensions
for all ei and oj , and fixing parameters ei,D+1 = 1
and oj,D+2 = 1.

According to Eq. 7, GloVe can also be viewed
as a matrix factorization method. Different
from SGNS, GloVe approximates the log of co-
occurrences:

mi,j = log(ci,j)≈ ei · oj , (9)

3 Unified Form of SkipGram and GloVe

An examination of the differences between Eqs. 6
and 9 finds that Eq. 6 matches Eq. 9 if c′i,j = 1.
Recall that c′i,j is the number of co-occurrences
of (i, j) in negative sampling data D′. Therefore,
what GloVe approximates is SGNS when the neg-
ative sampling data D′ is constructed as 1 for all
co-occurrences. From the viewpoint of matrix fac-
torization, GloVe can be seen as a special case of
SGNS, in that it utilizes a sort of uniform negative
sampling method.

Our assessment of the original GloVe paper
suggests that the name “Global Vector” mainly
stands for the architecture of the two stage learn-
ing framework. Namely, it first counts all the
co-occurrences in D, and then, it leverages the
gathered co-occurrence information for estimating
(possibly better) parameters. In contrast, the name
“SkipGram” stands mainly for the model type;
how it counts the co-occurrences in D. The key
points of these two methods seems different and
do not conflict. Therefore, it is not surprising to
treat these two similar methods as one method; for
example, SkipGram model with two-stage global
vector learning. The following objective function
is a generalized form that subsumes Eqs. 3 and 7:

Ψ =
∑
i

∑
j

β(ci,j)Φ(ei,oj , ci,j , c′i,j). (10)

hyper-parameter selected value
word2vec glove

context window (W ) 10
sub (Levy et al., 2015) dirty, t = 10−5 –
del (Levy et al., 2015) use 400,000 most frequent words
cds (Levy et al., 2015) α = 3/4 –
w+c (Levy et al., 2015) e + o
weight. func. (γ, xmax) – 3/4, 100
initial learning rate (η) 0.025 0.05
# of neg. sampling (k) 5 –
# of iterations (T ) 5 20
# of threads 56
# of dimensions (D) 300

Table 3: Hyper-parameters in our experiments.

In particular, the original SGNS uses β(ci,j) = 1
for all (i, j), and logistic loss function:

Φ(ei,oj , ci,j , c′i,j) = ci,j log
(
σ(ei · oj)

)
+c′i,j log

(
1− σ(ei · oj)

)
.

(11)
In contrast, GloVe uses a least squared loss func-
tion:

Φ(ei,oj , ci,j , c′i,j) =
(
ei · oj − log

(ci,j
c′i,j

))2
.

(12)
Table 2 lists the factors of each configuration used
differently in SGNS and GloVe.

Note that this unified form also includes
SkipGram with noise contrastive estimation
(SGNCE) (Mnih and Kavukcuoglu, 2013), which
approximatesmi,j = log( ci,jkcj

) in matrix factoriza-
tion view. This paper omits a detailed discussion
of SGNCE for space restrictions.

4 Experiments

Following the series of neural word embedding pa-
pers, our training data is taken from a Wikipedia
dump (Aug. 2014). We tokenized and lowercased
the data yielding about 1.8B tokens.

For the hyper-parameter selection, we mostly
followed the suggestion made in (Levy et al.,
2015). Table 3 summarizes the default values of
hyper-parameters used consistently in all our ex-
periments unless otherwise noted.

4.1 Benchmark datasets for evaluation

We prepared eight word similarity benchmark
datasets (WSimilarity), namely, R&G (Ruben-
stein and Goodenough, 1965), M&C (Miller and
Charles, 1991), WSimS (Agirre et al., 2009),
WSimR (Agirre et al., 2009), MEM (Bruni
et al., 2014), MTurk (Radinsky et al., 2011),
SCWS (Huang et al., 2012), and RARE (Luong
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method time WSimilarity WAnalogy
SGNS (original) 8856 65.4 (65.2, 65.7) 63.0 (62.2, 63.8)
GloVe (original) 8243 57.6 (57.5, 57.9) 64.8 (64.6, 65.0)
w/o bias terms 8027 57.6 (57.5, 57.7) 64.8 (64.5, 65.0)
fitting=SPMIk,α 8332 57.5 (57.2, 57.8) 65.0 (64.8. 65.1)

Table 4: Results: the micro averages of Spear-
man’s rho (WSimilarity) and accuracy (WAnal-
ogy) for all benchmark datasets.

et al., 2013). Moreover, we also prepared three
analogy benchmark datasets (WAnalogy), that is,
GSEM (Mikolov et al., 2013a), GSYN (Mikolov
et al., 2013a), and MSYN (Mikolov et al., 2013b).

4.2 SGNS and GloVe Results

Table 4 shows the training time and performance
results gained from our benchmark data. The col-
umn ‘time’ indicates average elapsed time (sec-
ond) for model learning. All the results are the av-
erage performance of ten runs. This is because
the comparison methods have some randomized
factors, such as initial value (since they are non-
convex optimization problems) and (probabilistic)
sampling method, which significantly impact the
results.

At first, we compared the original SGNS as im-
plemented in the word2vec package3 and the
original GloVe as implemented in the glove
package4. These results are shown in the first and
second rows in Table 4. In our experiments, SGNS
significantly outperformed GloVe in WSimilarity
while GloVe significantly outperformed SGNS in
WAnalogy. As we explained, these two methods
can be easily merged into a unified form. Thus,
there must be some differences in their configura-
tions that yields such a large difference in the re-
sults. Next, we tried to determine the clues as the
differences.

4.3 Impact of incorporating bias terms

The third row (w/o bias terms) in Table 4 shows
the results of the configuration without using the
bias terms in the glove package. A comparison
with the results of the second row, finds no mean-
ingful benefit to using the bias terms. In contrast,
obviously, the elapsed time for model learning is
consistently shorter since we can discard the bias
term update.

3https://code.google.com/p/word2vec/
4http://nlp.stanford.edu/projects/glove/

(a) WSimilarity
method W=2 3 5 10 20
SGNS (original) 64.9 65.1 65.4 65.4 64.9
GloVe (original) 53.6 55.7 57.0 57.6 57.8
w/o harmonic func. 54.6 56.9 57.8 58.2 57.9

(b) WAnalogy
method W=2 3 5 10 20
SGNS (original) 62.8 63.5 63.9 63.0 61.3
GloVe (original) 51.7 58.4 62.3 64.8 66.1
w/o harmonic func. 52.6 58.0 60.5 61.6 60.7

Table 5: Impact of the context window size, and
harmonic function.

W=2 3 5 10 20
(1) 0<ci,j<1 104M 213M 377M 649M 914M
(2) 1≤ci,j 167M 184M 207M 234M 251M
non-zero ci,j 271M 398M 584M 883M 1165M
ratio of (1) 38.5% 53.6% 64.5% 73.5% 78.4%

Table 6: The ratio of entries less than one in co-
occurrence matrix.

4.4 Impact of fitting function

The fourth row (fitting=SPMIk,α) in Table 4 shows
the performance when we substituted the fit-
ting function of GloVe, namely, log(ci,j), for
SPMIk=5,α=3/4 used in SGNS. Clearly, the per-
formance becomes nearly identical to the original
GloVe. Accordingly, the selection of fitting func-
tion has only a small impact.

4.5 Impact of context window size and
harmonic function

Table 5 shows the impact of context window size
W . The results of SGNS seem more stable against
W than those of GloVe.

Additionally, we investigated the impact of the
‘harmonic function’ used in GloVe. The ‘har-
monic function’ uses the inverse of context dis-
tance, i.e., 1/a if the context word is a-word away
from the target word, instead of just count 1 re-
gardless of the distance when calculating the co-
occurrences. Clearly, GloVe without using the
harmonic function shown in the third row of Ta-
ble 5 yielded significantly degraded performance
on WAnalogy, and slight improvement on WSimi-
larity. This fact may imply that the higher WAnal-
ogy performance of GloVe was derived by the ef-
fect of this configuration.

4.6 Link between harmonic function and
negative sampling

This section further discusses a benefit of har-
monic function.

Recall that GloVe does not explicitly consider
‘negative samples’. It fixes c′i,j = 1 for all (i, j)
as shown in Eq. 7. However, the co-occurrence
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count given by using the harmonic function can
take values less than 1, i.e., ci,j = 2/3, if the i-
th word and the j-th word co-occurred twice with
distance 3. As a result, the value of the fitting func-
tion of GloVe becomes log(2/3). Interestingly,
this is essentially equivalent to co-occur 3 times in
the negative sampling data and 2 times in the real
data since the fitting function of the unified form
shown in Eq. 12 is log(ci,j/c′i,j) = log(2/3) when
ci,j = 2 and c′i,j = 3. It is not surprising that rare
co-occurrence words that occur only in long range
contexts may have almost no correlation between
them. Thus treating them as negative samples will
not create a problem in most cases. Therefore, the
harmonic function seems to ‘unexpectedly’ mimic
a kind of a negative sampling method; it is inter-
preted as ‘implicitly’ generating negative data.

Table 6 shows the ratio of the entries ci,j whose
value is less than one in matrix M. Remember
that vocabulary size was 400,000 in our experi-
ments. Thus, we had a total of 400K×400K=160B
elements in M, and most were 0. Here, we con-
sider only non-zero entries. It is clear that longer
context window sizes generated many more en-
tries categorized in 0 < ci,j < 1 by the har-
monic function. One important observation is that
the ratio of 0 < ci,j < 1 is gradually increas-
ing, which offers a similar effect to increasing the
number of negative samples. This can be a rea-
son why GloVe demonstrated consistent improve-
ments in WAnalogy performance as context win-
dow increased since larger negative sampling size
often improves performance (Levy et al., 2015).
Note also that the number of 0 < ci,j < 1 always
becomes 0 in the configuration without the har-
monic function. This is equivalent to using uni-
form negative sampling c′i,j = 1 as described in
Sec. 3. This fact also indicates the importance of
the negative sampling method.

4.7 Impact of weighting function

Table 7 shows the impact of weighting function
used in GloVe, namely, Eq 8. Note that ‘β(·)=1’
column shows the results when we fixed 1 for
all non-zero entries5. This is also clear that the
weighting function Eq 8 with appropriate param-
eters significantly improved the performance of
both WSimilarity and WAnalogy tasks. How-
ever unfortunately, the best parameter values for

5This is equivalent to set 0 to -x-max option in glove
implementation.

(a) WSimilarity
hyper param. β(·)=1 xmax = 1 10 100 10000
γ = 0.75 59.4 60.1 60.9 57.7 49.5
w/o harmonic func. 58.2 58.0 60.7 58.2 56.0
γ = 1.0 (59.4) 60.1 59.4 55.9 36.1
w/o harmonic func. (58.2) 58.3 60.7 57.7 46.7

(b) WAnalogy
hyper param. β(·)=1 xmax = 1 10 100 10000
γ = 0.75 55.7 61.1 64.3 64.8 28.4
w/o harmonic func. 53.4 52.6 60.3 61.6 42.5
γ = 1.0 (55.7) 61.0 63.8 59.1 7.5
w/o harmonic func. (53.4) 54.1 60.8 60.1 20.3

Table 7: Impact of the weighting function.

WSimilarity and WAnalogy tasks looks different.
We emphasize that harmonic function discussed

in the previous sub-section was still a necessary
condition to obtain the best performance, and bet-
ter performance in the case of ‘β(·)=1’ as well.

5 Conclusion

This paper reconsidered the relationship between
SkipGram and GloVe models in machine learn-
ing viewpoint. We showed that SGNS and GloVe
can be easily merged into a unified form. We
also extracted the factors of the configurations
that are used differently. We empirically inves-
tigated which learning configuration is responsi-
ble for the performance difference often observed
in widely examined word similarity and analogy
tasks. Finally, we found that at least two config-
urations, namely, the weighting function and har-
monic function, had significant impacts on the per-
formance. Additionally, we revealed a relation-
ship between harmonic function and negative sam-
pling. We hope that our theoretical and empirical
analyses will offer a deeper understanding of these
neural word embedding methods6.
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