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Abstract

The inability to model long-distance depen-
dency has been handicapping SMT for years.
Specifically, the context independence as-
sumption makes it hard to capture the depen-
dency between translation rules. In this paper,
we introduce a novel recurrent neural network
based rule sequence model to incorporate arbi-
trary long contextual information during esti-
mating probabilities of rule sequences. More-
over, our model frees the translation model
from keeping huge and redundant grammars,
resulting in more efficient training and de-
coding. Experimental results show that our
method achieves a 0.9 point BLEU gain over
the baseline, and a significant reduction in rule
table size for both phrase-based and hierarchi-
cal phrase-based systems.

1 Introduction

Modeling long-distance dependency has always
been a bottleneck for statistical machine translation
(SMT). While lots of efforts have been made in solv-
ing long-distance reordering (Xiong et al., 2006;
Zens and Ney, 2006; Kumar and Byrne, 2005), long-
span n-gram matching (Charniak et al., 2003; Shen
et al., 2008; Yu et al., 2014), much less attention has
been concentrated on capturing translation rule de-
pendency, which is not explicitly modeled in most
translation systems (Wu et al., 2014).

SMT systems typically model the translation pro-
cess as a sequence of translation steps, each of which
uses a translation rule. These rules are usually ap-
plied independently of each other, which violates the
conventional wisdom that translation should be done
in context (Giménez and Màrquez, 2007). However,
it is not an easy task to capture the rule dependency,
which entails much longer context and more severe
data sparsity. There are two major solutions: the

first one is breaking the rules into bilingual word-
pairs and use a n-gram translation model to incorpo-
rate lexical dependencies that span rule boundaries
(Marino et al., 2006; Durrani et al., 2013). These n-
gram models (also known as tuple sequence model)
could help phrase-based translation models to over-
come the phrasal independence assumption, but they
rely on word alignment to extract bilingual tuples,
which brings in additional alignment error (Wu et
al., 2014). The other direction lies in utilizing the
rule Markov model (Vaswani et al., 2011; Quirk
and Menezes, 2006), which directly explores depen-
dencies in rule derivation history and achieves both
good performance and slimmer translation model in
syntax-based SMT systems. However, the sparsity
of translation rules entails aggressive pruning of the
training data and constrains the model from scaling
to high order grams, significantly limiting the ability
of the model.

In this paper we follow the second line and pro-
pose a novel recurrent neural network based rule
sequence model (RNN-RSM), which utilizes the
representational power of recurrent neural network
(RNN) to capture arbitrary distance of contextual in-
formation in estimating the probability of rule se-
quences, rather than constrained to n-gram local
context limited by Markov assumption. Compared
with previous studies, our contributions are as fol-
lows:

First, we lift the Markov assumption in rule se-
quence model and use RNN to capture arbitrary-
length of contextual information, which is proven to
be more accurate in estimating sequential probabili-
ties (Mikolov et al., 2010).

Second, to alleviate the sparsity of translation
rules, we extend our model to factorized RNN-RSM,
which incorporates both the source and target side
phrase embedding in addition to the translation rule
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history.
Lastly, we apply our model to both phrase-

based and hierarchical phrase-based (HPB) systems
and achieve an average improvement of 0.9 BLEU
points with much slimmer translation models in hy-
pergraph reranking task (Huang, 2008).

2 Rule Sequence Model

We will first brief our rule sequence model with an
example from phrase-based system (Koehn et al.,
2007). Consider the following translation from Chi-
nese to English:

Bùshı́
Bush

yǔ
with

Shālóng
Sharon

jǔxı́ng
hold

le
-ed

huı̀tán
meeting

‘Bush held a meeting with Sharon’

So one possible rule derivation of the above ex-
ample could be:

(0 ) : (s0, “”)
(•1 ) : (s1, “Bush”)

r1

(• •••6) : (s2, “Bush held talks”)
r2

(•••3•••) : (s3, “Bush held talks with Sharon”)
r3

r1: Bùshı́→ Bush
r2: jǔxı́ng le huı̀tán→ held talks
r3: yǔ Shālóng→ with Sharon

Each row is a derivation step, where sn denotes
a hypothesis with a coverage vector capturing the
source language words translated so far, and a • in
the coverage vector indicates the source word at this
position is “covered”. Each hypothesis sn−1 can
be extended into a longer hypothesis sn by a rule
rn translating an uncovered segment. Note that in
phrase-based translation we need to set a distortion
limit to prohibit long distance reordering, so the end-
ing position of last phrase is maintained (e.g., 1 and
6 in the coverage vector).

In our example, translation rules r1, r2, r3 form a
derivation T which leads to a complete translation.
So for rule sequence model, the probability of rn

depends on its derivation history H(rn):

P (rn) = P (rn|H(rn)) (1)

and the probability of a rule derivation T is

P (T ) =
∏
ri∈T

P (ri|H(ri)) (2)

Hidden layer, hn

U

W

delayed copy

hn-1 rn-1 Sn-1 tn-1

Output layer, yn

Input layer, xn

Distribution on 
source phrases

Distribution on 
classes of source phrases

Figure 1: Factorized recurrent neural network with
source and target side phrase embeddings.

So the rule sequence model does not make any con-
text independence assumption and generate a rule by
looking at a context of previous rules.

2.1 Training
The rule sequence model can then be trained on the
path set of rule derivations. To obtain golden deriva-
tions of translation rules for each sentence pair, We
follow Yu et al. (2013) to utilize force decoding to
get golden rule derivations. Specifically, we define
a new forced decoding LM which only accepts two
consecutive words (denote as p, q) in the reference
translation (yi):

Pforced (q | p) =

{
1 if ∃j, s.t. p = yj and q = yj+1

0 otherwise

For each hypothesis, we keep the bourndary words
as its signiture (only right side for phrase-based
model and both sides for HPB). If a boundary word
does not occur in the reference, its language model
score will be set to −∞; if a boundary word occurs
more than once in the reference, the hypothesis is
split into multiple hypotheses, one for each index of
occurance.

According to the definition, we can see that the
rule sequence [r1, r2, r3] in the example could pro-
duce the exact reference translation, which is ideal
for the training of rule sequence model.

3 Recurrent Neural Network based Rule
Sequence Model

In order to capture long-span context, we introduce
recurrent neural network based rule sequence model
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to estimate the probability P (rn|H(rn)). Our RNN-
RSM can potentially capture arbitrary long context
rather than n-1 previous rules limited by Markov
assumption. Following Mikolov et al. (2010), we
adopt the standard RNN architecture: the input layer
encodes previous translation rule using one-hot cod-
ing, the output layer produces a probability distribu-
tion over all translation rules, and the hidden layer
maintains a representation of rule derivation history.
However, the standard implementation has severe
data sparsity problem due to the large size of rule
table couple with the limited training data.

3.1 Factorized RNN-RSM
To solve the sparsity problem, we extend the
RNN-RSM model with factorizing rules in the
input layer, as shown in Figure 1. It con-
sists of an input layer x, a hidden layer h (state
layer), and an output layer y. The connection
weights among layers are denoted by matrixes
U and W respectively. Unlike the RNN-RSM,
which predicts probability P (rn|rn−1, H(rn−1)),
the factorized RNN-RSM predicts probability
P (rn|rn−1, H(rn−1), s̄n−1, t̄n−1) to generate fol-
lowing rule rn, where s̄n−1/t̄n−1 are the source/tar-
get side of rn−1, However, s̄n−1 and t̄n−1 are still
too sparse considering the huge vocabulary size and
the diversity in forming phrases, so here we use re-
cursive auto-encoder (Socher et al., 2011; Li et al.,
2013) to learn phrase embeddings on both source
and target side in an unsupervised mannner, mini-
mizing the reconstruction error.

For those rules that are not contained in the train-
ing data, the factorized RNN-RSM backs off to the
source/target side embedding Esi−1 /Eti−1 . In the
special case that Esi−1 and Eti−1 are dropped, the
factorized RNN-RSM goes back to RNN-RSM. Fi-
nally, the input layer xn is formed by concatenating
the input vectors and hidden layer hn−1 at the pre-
ceding time step, as shown in the following equa-
tion.

xn = [vu
n−1, v

s̄
n−1, v

t̄
n−1, hn−1] (3)

The neurons in the hidden and output layers are
computed as follows:

hn = f(U× xn), yn = g(w× hn) (4)

f(z) =
1

1 + e−z
, g(z) =

ezm∑
k ezk

(5)

3.2 Factorized RNN-RSM on source and target
phrases

The above factorized RNN-RSM is conditioned on
the previous context during computing the probabil-
ity of rule rn. Since rn may still suffer from sparsity,
we further factorize rn into its source side phrase s̄n

and target side phrase t̄n. So the probability formula
could be rewrite as:

P (rn|H(rn)) = P (sn, tn|H(rn))
= P (sn|H(rn))× P (tn|sn, H(rn)) (6)

The first sub-model P (sn, |H(rn)) computes the
probability distribution over source phrases. Then
the second sub-model P (tn|sn, H(rn)) computes
the probability distribution over tn that are trans-
lated from sn. The two sub-models are computed
with the similar recurrent network shown in Figure
1 except adding the source side information sn of
the current rule rn into the input layer. This method
share the same spirit with the RNN-based translation
model (Sundermeyer et al., 2014; Cho et al., 2014),
except that we focus on capturing rule dependencies
which has a much small search space. Noted that
this new factorize model provides richer information
for prediction, and actually is faster to train since the
vocabulary of source/target phrases are much small
than that of the translation rules.

4 Experiments

4.1 Setup
The training corpus consists of 1M sentence pairs
with 25M/21M words of Chinese/English respec-
tively. Our development and test set are NIST 2006
and 2008 (newswire portion) respectively.

We obtained alignments by running GIZA++
(Och and Ney, 2004) and used the SRILM toolkit
(Stolcke, 2002) to train a 4-gram language model
with KN-smoothing on the English side of the train-
ing data. Case-insensitive BLEU (Papineni et al.,
2002) and MERT (Och, 2003) were used for evalua-
tion and tuning.

We test our method on both phrase-based and
hierarchical phrase-based translation models. For
phrase-based system, we use Moses with standard
features (Koehn et al., 2007). While for hierarchical
phrase-based model, we use a in-house implemen-
tation of Hiero (Chiang, 2005). We set phrase-limit
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System
Moses Hiero

dev-set test-set dev-set test-set
Baseline 28.4 27.7 30.4 30.0
+RMM 28.7 28.3 30.7 30.2
+fRNN-RSM (1) 28.9 28.6 30.9 30.6
+fRNN-RSMst (2) 29.3 28.5 31.2 30.7
+(1)+(2) 29.6 28.7 31.4 30.8

Table 1: Main results. RMM is the re-implementation of Vaswani et al. (2011), fRNN-RSM denotes for factorized
RNN-RSM describe in Section 3.1, fRNN-RSMst denotes for RNN-RSM factorized by source/target side in Section
3.2. Results in bold mean that the improvements over “Baseline” are statistically significant (p < 0.05) (Koehn, 2004).

to 5 for the extraction of both phrase-based rule and
SCFG rule, as well as beam size to 100 and distor-
tion limit to 7 in decoding.

Since the rule sequence model belongs to the fam-
ily of non-local feature (Huang, 2008), traditional
testing methods like nbest reranking are not suit-
able for our experiments. So we adopt hypergraph
reranking (Huang and Chiang, 2007; Huang, 2008),
which proves to be effective for integrating nonlo-
cal features into dynamic programming. The de-
coding process is divided into two passes. In the
first pass, only standard features (i.e., standard fea-
tures for phrase-based or HPB model) are used to
produce a hypergraph. In the second pass, we use
the hypergraph reranking algorithm (Huang, 2008)
to find promising translations using additional rule
sequence feature.

For RNN training, we set the hidden layer size
to 512 and classes in the output layer to 256. To
obtain phrase-embedding, we use open source tool
str2vec1 (Li et al., 2013) to train two autoencoders
on the source and target side of rule-table respec-
tively.

4.2 Results

Table 1 presents the main results of our paper. To
show the merits of our RNN-RSM, we also re-
implement Vaswani et al. (2011)’s work, denote as
rule Markov model (RMM). It utilize tri-gram rule
derivation history for prediction, whereas our RNN-
RSM could capture arbitrary length of contextual in-
formation. We can see that RMM provides a mod-
est improvement over the baseline, 0.6/0.2 points
over Moses/Hiero, thanks to the positive guidance

1https://github.com/pengli09/str2vec

System
w/o monotone Full
Moses Hiero Moses Hiero

Baseline 27.4 29.8 27.7 30.0
+RMM 27.6 29.9 28.3 30.2
+fRNN-RSM 28.0 30.4 28.6 30.6
+fRNN-RSMst 28.2 30.6 28.5 30.7

Table 2: BLEU score comparison on different rule-set,
“w/o monotone” denotes we filter out monotone com-
posed rules in both rule table and our RNN-RSM, full
denotes we use the total rule-set.

of short-span rule dependency. On the other hand,
our factorized RNN-RSM with phrase embeddings
(fRNN-RSM) provides a more significant BLEU
score improvement (0.9 for Moses, 0.6 for Hiero),
which exemplifies that the long-span rule depen-
dency captured by RNN could provides additional
boost in translation quality. At the same time, fac-
torized RNN-RSM on source and target phrases
(fRNN-RSMst) alleviate the data sparse problem
in RNN training, resulting in slightly better per-
formance. Finally, when we combine both factor-
ized model, we get the best performance at 28.7 for
Moses and 30.8 for Hiero, both significantly better
than baseline systems.

Also, we conduct an interesting experiment to see
if our fRNN-RSM could somehow replace the role
of composed rules (rules that can be formed out of
smaller rules in the grammar) and guides more fine-
grained rule-set to produce better translation results.
We re-implement He et al. (2009)’s work to filter
out monotone composed rules for both Hiero and
Moses. We are able to filter out a large number of
monotone composed rules, about 50% rules for Hi-
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ero and 31% for Moses. The results are shown in
Table 2. Interestingly the performance of slimmer
translation model with fRNN-RSM exceeds baseline
with full rule-table, and catches up with the orig-
inal fRNN-RSM. The reason is two-folded: first,
deleting monotone composed rules doesn’t effect
the overall coverage of the rule-set, making limited
harm to the system. Second, with less rules, the data
sparse problem of RNN training is further alleviated,
resulting in a better fRNN-RSM for probability pre-
diction.

5 Related Work

Besides the work of Vaswani et al. (2011) discussed
in Section 1, there are several other works using a
rule bigram or trigram model in machine translation,
Ding and Palmer (2005) use n-gram rule Markov
model in the dependency treelet model, Liu and
Gildea (2008) applies the same method in a tree-to-
string model. Our work is different from theirs in
that we lift the Markov assumption and use recur-
rent neural network to capture much longer contex-
tual information to help probability prediction.

Our work is also in the same spirit with tuple se-
quence models (Marino et al., 2006; Durrani et al.,
2013; Hui Zhang, 2013; Wu et al., 2014), which
break the translation sequence into bilingual tuples
and use a Markov model to capture the dependency
of tuples. Comparing to them, we take a more di-
rect approach to use translation rule dependency to
guide translation process, rather than rely on tuples
which will be significant affected by word alignment
errors.

Outside of machine translation, the idea of weak-
ening independence assumption by modeling the
derivation history is also found in parsing (Johnson,
1998), where rule probabilities are conditioned on
parent and grand-parent nonterminals. Inspired by
it, we successfully find a solution for the translation
field.

6 Conclusion

In this paper, we have presented a novel recurrent
neural network based rule sequence model to esti-
mate the probability of translation rule sequences.
One of the major advantages of our model is its po-
tential to capture long-span dependency compared

with n-gram Markov models. In addition, our factor-
ized model with phrase embedding could further al-
leviate the data sparse problem in RNN training. Fi-
nally we conduct experiments on both phrase-based
and hierarchical phrase-based models and get an av-
erage improvement of 0.9 BLEU points over the
baseline. In the future we will investigate stronger
network structure such as LSTM to further improve
the prediction power of our model.
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