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Abstract

Selectional preferences (SPs) are widely
used in NLP as a rich source of semantic
information. While SPs have been tradi-
tionally induced from textual data, human
lexical acquisition is known to rely on both
linguistic and perceptual experience. We
present the first SP learning method that si-
multaneously draws knowledge from text,
images and videos, using image and video
descriptions to obtain visual features. Our
results show that it outperforms linguistic
and visual models in isolation, as well as
the existing SP induction approaches.

1 Introduction

Selectional preferences (SPs) are the semantic con-
straints that a predicate places onto its arguments.
This means that certain classes of entities are more
likely to fill the predicate’s argument slot than oth-
ers. For instance, while the sentences “The au-
thors wrote a new paper.” and “The cat is eating
your sausage!” sound natural and describe plausi-
ble real-life situations, the sentences “The carrot
ate the keys.” and “The law sang a driveway.” ap-
pear implausible and difficult to interpret, as the
arguments do not satisfy the verbs’ common pref-
erences. SPs provide generalisations about word
meaning and use and find a wide range of appli-
cations in natural language processing (NLP), in-
cluding word sense disambiguation (Resnik, 1997;
McCarthy and Carroll, 2003; Wagner et al., 2009),
resolving ambiguous syntactic attachments (Hindle
and Rooth, 1993), semantic role labelling (Gildea
and Jurafsky, 2002; Zapirain et al., 2010), natural
language inference (Zanzotto et al., 2006; Pantel
et al., 2007), and figurative language processing

(Fass, 1991; Mason, 2004; Shutova et al., 2013; Li
et al., 2013). Automatic acquisition of SPs from
linguistic data has thus become an active area of
research. The community has investigated a range
of techniques to tackle data sparsity and to per-
form generalisation from observed arguments to
their underlying types, including the use of Word-
Net synsets as SP classes (Resnik, 1993; Li and
Abe, 1998; Clark and Weir, 1999; Abney and Light,
1999; Ciaramita and Johnson, 2000), word cluster-
ing (Rooth et al., 1999; Bergsma et al., 2008; Sun
and Korhonen, 2009), distributional similarity met-
rics (Erk, 2007; Peirsman and Padó, 2010), latent
variable models (Ó Séaghdha, 2010; Ritter et al.,
2010), and neural networks (Van de Cruys, 2014).

Little research, however, has been concerned
with the sources of knowledge that underlie the
learning of SPs. There is ample evidence in cogni-
tive and neurolinguistics that our concept learning
and semantic representation are grounded in per-
ception and action (Barsalou, 1999; Glenberg and
Kaschak, 2002; Barsalou, 2008; Aziz-Zadeh and
Damasio, 2008). This suggests that word mean-
ing and relational knowledge are acquired not only
from linguistic input but also from our experiences
in the physical world. Multi-modal models of word
meaning have thus enjoyed a growing interest in se-
mantics (Bruni et al., 2014), outperforming purely
text-based models in tasks such as similarity es-
timation (Bruni et al., 2014; Kiela et al., 2014),
predicting compositionality (Roller and Schulte
im Walde, 2013), and concept categorization (Sil-
berer and Lapata, 2014). However, to date these
approaches relied on low-level image features such
as color histograms or SIFT keypoints to repre-
sent the meaning of isolated words. To the best
of our knowledge, there has not yet been a multi-
modal semantic approach performing extraction of
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predicate-argument relations from visual data. In
this paper, we propose the first SP model integrat-
ing information about predicate-argument interac-
tions from text, images, and videos. We expect
it to outperform purely text-based models of SPs,
which suffer from two problems: topic bias and
figurative uses of words. Such bias stems from the
fact that we typically write about abstract topics
and events, resulting in high coverage of abstract
senses of words and comparatively lower coverage
of the original physical senses (Shutova, 2011). For
instance, the verb cut is used predominantly in the
domains of economics and finance and its most fre-
quent direct objects are cost and price, according
to the British National Corpus (BNC) (Burnard,
2007). Predicate-argument distributions acquired
from text thus tend to be skewed in favour of ab-
stract domains and figurative uses, inadequately
reflecting our daily experiences with cutting, which
guide human acquisition of meaning. Integrating
predicate-argument relations observed in the physi-
cal world (in the form of image and video descrip-
tions) with the more abstract text-based relations
is likely to yield a more realistic semantic model,
with real prospects of improving the performance
of NLP applications that rely on SPs.

We use the BNC as an approximation of linguis-
tic knowledge and a large collection of tagged im-
ages and videos from Flickr (www.flickr.com)
as an approximation of perceptual knowledge. The
human-annotated labels that accompany media on
Flickr enable us to acquire predicate-argument co-
occurrence information. Our experiments focus on
verb preferences for their subjects and direct ob-
jects. In summary, our method (1) performs word
sense disambiguation and part-of-speech (PoS) tag-
ging of Flickr tag sequences to extract verb-noun
co-occurrence; (2) clusters nouns to induce SP
classes using linguistic and visual features; (3)
quantifies the strength of preference of a verb for
a given class by interpolating linguistic and visual
SP distributions. We investigate the impact of per-
ceptual information at different levels – from none
(purely text-based model) to 100% (purely visual
model). We evaluate our model directly against a
dataset of human plausibility judgements of verb-
noun pairs, as well as in the context of a semantic
task: metaphor interpretation. Our results show
that the interpolated model combining linguistic
and visual relations outperforms the purely linguis-
tic model in both evaluation settings.

2 Related work

2.1 Selectional preference induction
The widespread interest in automatic acquisition of
SPs was triggered by the work of Resnik (1993),
who treated SPs as probability distributions over all
potential arguments of a predicate, rather than a sin-
gle argument class assigned to the predicate. The
original study used WordNet to define SP classes
and to map the words in the corpus to those classes.
Since then, the field has moved toward automatic
induction of SP classes from corpus data. Rooth et
al. (1999) presented a probabilistic latent variable
model of verb preferences. In their approach, verb-
argument pairs are generated from a latent variable,
which represents a cluster of verb-argument inter-
actions. The latent variable distribution and the
probabilities that a latent variable generates the
verb and the argument are learned from the data
using Expectation Maximization (EM). The latent
variables enable the model to recognise previously
unseen verb-argument pairs. Ó Séaghdha (2010)
and Ritter et al. (2010) similarly model SPs within a
latent variable framework, but use Latent Dirichlet
Allocation (LDA) to learn the probability distri-
butions, for single-argument and multi-argument
preferences respectively.

Padó et al. (2007) and Erk (2007) used simi-
larity metrics to approximate selectional prefer-
ence classes. Their underlying hypothesis is that
a predicate-argument combination (p, a) is felici-
tous if the predicate p is frequently observed in the
data with the arguments a′ similar to a. The sys-
tems compute similarities between distributional
representations of arguments in a vector space.

Bergsma et al. (2008) trained an SVM classifier
to discriminate between felicitous and infelicitous
verb-argument pairs. Their training data consisted
of observed verb-argument pairs (positive exam-
ples) with unobserved, randomly-generated ones
(negative examples). They classified nominal ar-
guments of verbs, using their verb co-occurrence
probabilities and information about their semantic
classes as features. Bergsma and Goebel (2011) ex-
tended this method by incorporating image-driven
noun features. They extract color and SIFT key-
point features from images found for a particular
noun via Google image searches and add them to
the feature vectors to classify nouns as felicitous
or infelicitous arguments of a given verb. This
method is the closest in spirit to ours and the only
one so far to investigate the relevance of visual fea-
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tures to lexical preference learning. However, our
work casts the problem in a different framework:
rather than relying on low-level visual properties of
nouns in isolation, we explicitly model interactions
of predicates and arguments within an image or a
video frame.

Van de Cruys (2014) recently presented a deep
learning approach to SP acquisition. He trained
a neural network to discriminate between felic-
itous and infelicitous arguments using the data
constructed of positive (observed) and negative
(randomly-generated) examples for training. The
network weights were optimized by requiring the
model to assign a higher score to an observed pair
than to the unobserved one by a given margin.

2.2 Multi-modal methods in semantics

Previous work has used multimodal data to de-
termine distributional similarity or to learn multi-
modal embeddings that project multiple modalities
into the same vector space. Some studies rely on
extensions of LDA to obtain correlations between
words and visual features (Feng and Lapata, 2010;
Roller and Schulte im Walde, 2013). Bruni et al.
(2012) integrated visual features into distributional
similarity models using simple vector concatena-
tion. Instead of generic visual features, Silberer et
al. (2013) relied on supervised learning to train 412
higher-level visual attribute classifiers.

Applications of multimodal embeddings include
zero-shot object detection, i.e. recognizing objects
in images without training data for the object class
(Socher et al., 2013; Frome et al., 2013; Lazaridou
et al., 2014), and automatic generation of image
captions (Kulkarni et al., 2013), video descriptions
(Rohrbach et al., 2013), or tags (Srivastava et al.,
2014). Other applications of multimodal data in-
clude language modeling (Kiros et al., 2014) and
knowledge mining from images (Chen et al., 2013;
Divvala et al., 2014). Young et al. (2014) apply sim-
plification rules to image captions, showing that the
resulting hierarchy of mappings between natural
language expressions and images can be used for
entailment tasks.

3 Experimental data

Textual data. We extract linguistic features for
our model from the BNC. In particular, we parse
the corpus using the RASP parser (Briscoe et al.,
2006) and extract subject–verb and verb–object re-
lations from its dependency output. These relations

are then used as features for clustering to obtain SP
classes, as well as to quantify the strength of asso-
ciation between a particular verb and a particular
argument class.

Visual data. For the visual features of our model,
we mine the Yahoo! Webscope Flickr-100M dataset
(Shamma, 2014). Flickr-100M contains 99.3 mil-
lion images and 0.7 million videos with language
tags annotated by users, enabling us to generalise
SPs at a large scale. The tags reflect how humans
describe objects and actions from a visual perspec-
tive. We first stem the tags and remove words that
are absent in WordNet (typically named entities
and misspellings), then identify their PoS based
on their visual context and extract verb–noun co-
occurrences.

4 Identifying visual verb-noun
co-occurrence

In the Flickr-100M dataset, tags are assigned to im-
ages and videos in the form of sets of words, rather
than grammatically coherent sentences. However,
the roles that individual words play are still dis-
cernible from their visual context, as manifested by
the other words in a given set. In order to identify
verbs and nouns co-occurring in the same images,
we propose a list sense disambiguation method that
first maps each word to a set of possible WordNet
senses (accompanied by PoS information) and then
performs a joint optimization on the space of candi-
date word senses, such that their overall similarity
is maximized. This amounts to assigning those
senses and PoS tags to the words in the set that best
fit together.

For a given word i and one of its candidate Word-
Net senses j, we consider an assignment variable
xij and compute a sense frequency-based prior for
it as Pij = 1

1+R , where R is the WordNet rank
of the sense. We then compute a similarity score
Sij,i′j′ between all pairs of sense choices for two
words i,i′ and their respective candidate senses j,j′.
For these, we rely on WordNet’s taxonomic path-
based similarities (Pedersen et al., 2004) in the case
of noun-noun sense pairs, the Adapted Lesk sim-
ilarity measure for adjective-adjective pairs, and
finally, WordNet verb-groups and VerbNet class
membership (Kipper-Schuler, 2005) for verb-verb
pairs. Note that even parts of speech that are dis-
regarded later on can still be helpful at this stage,
as we aim at a joint optimization over all words.
After the similarities have been obtained for all rel-
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evant sense pairs, we maximize the coherence of
the senses of the words in the set as an Integer Lin-
ear Program, using the Gurobi Optimizer (Gurobi
Optimization, 2014) and solving

maximize∑
i
Pijxij +

∑
ij

∑
i′j′
Sij,i′j′Bij,i′j′

subject to∑
j xij ≤ 1 ∀i, xij ∈ {0, 1} ∀i, j,

Bij,i′j′ ≤ xij , Bij,i′j′ ≤ xi′j′ ,
Bij,i′j′ ∈ {0, 1} ∀i, j, i′j′.

The binary variables Bij,i′j′ are 1 iff xij = 1 and
xi′j′ = 1, indicating that both senses were simulta-
neously chosen. The optimizer disambiguates the
input words by selecting sense tuples x1j , x2j , . . . ,
from which we can directly obtain the correspond-
ing PoS information. Verb-noun co-occurrence
information is then extracted from the PoS-tagged
sets.

5 Selectional preference model

5.1 Acquisition of argument classes

To address the issue of data sparsity, we generalise
selectional preferences over argument classes, as
opposed to individual arguments. We obtain SP
classes by means of spectral clustering of nouns
with lexico-syntactic features, which has been
shown effective in previous lexical classification
tasks (Brew and Schulte im Walde, 2002; Sun and
Korhonen, 2009).

Spectral clustering partitions the data, relying on
a similarity matrix that records similarities between
all pairs of data points. We use Jensen-Shannon
divergence to measure the similarity between fea-
ture vectors for two nouns, wi and wj , defined as
follows:

dJS(wi, wj) =
1
2
dKL(wi||m) +

1
2
dKL(wj ||m),

(1)
where dKL is the Kullback-Leibler divergence, and
m is the average of wi and wj . We construct the
similarity matrix S computing similarities Sij as
Sij = exp(−dJS(wi, wj)). The matrix S then en-
codes a similarity graph G (over our nouns), where
Sij are the adjacency weights. The clustering prob-
lem can then be defined as identifying the optimal
partition, or cut, of the graph into clusters, such
that the intra-cluster weights are high and the inter-
cluster weights are low. We use the multiway nor-
malized cut (MNCut) algorithm of Meila and Shi
(2001) for this purpose. The algorithm transforms

S into a stochastic matrix P containing transition
probabilities between the vertices in the graph as

P = D−1S, (2)

where the degree matrix D is a diagonal matrix
with Dii =

∑N
j=1 Sij . It then computes the K

leading eigenvectors of P , where K is the desired
number of clusters. The graph is partitioned by
finding approximately equal elements in the eigen-
vectors using a simpler clustering algorithm, such
as k-means. Meila and Shi (2001) have shown that
the partition I derived in this way minimizes the
MNCut criterion:

MNCut(I) =
K∑

k=1

(1− P (Ik → Ik|Ik)), (3)

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we run the algorithm mul-
tiple times and select the partition that minimizes
the cluster distortion, i.e. distances to cluster cen-
troid.

We cluster nouns using linguistic and visual fea-
tures in two independent experiments.

Clustering with linguistic features: We first clus-
ter the 2,000 most frequent nouns in the BNC, us-
ing their grammatical relations as features. The
features consist of verb lemmas appearing in the
subject, direct object and indirect object relations
with the given nouns in the RASP-parsed BNC,
indexed by relation type. The feature vectors are
first constructed from the corpus counts, and sub-
sequently normalized by the sum of the feature
values.

Clustering with visual features: We also clus-
ter the 2,000 most frequent nouns in the Flickr
data. Since our goal is to create argument classes
for verb preferences, we extract co-occurrence fea-
tures that map to verb-noun relations from PoS-
disambiguated image tags. We use the verb lem-
mas co-occurring with the noun in the same images
and videos as features for clustering. The feature
values are again normalised by their sum.

SP classes: Example clusters produced using lin-
guistic and visual features are shown in Figures 1
and 2. Our cluster analysis reveals that the image-
derived clusters tend to capture scene-like relations
(e.g. beach and ocean; guitar and concert), as
opposed to types of entities, yielded by the lin-
guistic features and better suited to generalise over
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desire hostility anxiety passion doubt fear curiosity enthusi-
asm impulse instinct emotion feeling suspicion
official officer inspector journalist detective constable police
policeman reporter
book statement account draft guide advertisement document
report article letter

Figure 1: Clusters obtained using linguistic fea-
tures

pilot aircraft plane airline landing flight wing arrival departure
airport
concert festival music guitar alternative band instrument audi-
ence event performance rock benjamin
cost benefit crisis debt credit customer consumer

Figure 2: Clusters obtained using visual features

predicate-argument structure. In addition, the im-
age features tend to be sparse for abstract concepts,
reducing both the quality and the coverage of ab-
stract clusters. We thus use the noun clusters de-
rived with linguistic features as an approximation
of SP classes.

5.2 Quantifying selectional preferences
Once the SP classes have been obtained, we need
to quantify the strength of association of a given
verb with each of the classes. We adopt an informa-
tion theoretic measure proposed by Resnik (1993)
for this purpose. Resnik first measures selectional
preference strength (SPS) of a verb in terms of
Kullback-Leibler divergence between the distribu-
tion of noun classes occurring as arguments of this
verb, p(c|v), and the prior distribution of the noun
classes, p(c).

SPSR(v) =
∑

c

p(c|v) log
p(c|v)
p(c)

, (4)

where R is the grammatical relation for which SPs
are computed. SPS measures how strongly the
predicate constrains its arguments. Selectional as-
sociation of the verb with a particular argument
class is then defined as a relative contribution of
that argument class to the overall SPS of the verb.

AssR(v, c) =
1

SPSR(v)
p(c|v) log

p(c|v)
p(c)

(5)

We use this measure to quantify verb SPs based
on linguistic and visual co-occurrence information.
We first extract verb-subject and verb-direct object
relations from the RASP-parsed BNC, map the ar-
gument heads to SP classes and quantify selectional
association of a given verb with each SP class, thus
acquiring its base preferences. Since visual verb-
noun co-occurrences do not contain information

about grammatical relations, we rely on linguistic
data to provide a set of base arguments of the verb
for a given grammatical relation. We then interpo-
late the verb-argument probabilities from linguistic
and visual models for the base arguments of the
verb, thus preserving information about grammati-
cal relations.

5.3 Linguistic and visual model interpolation
We investigate two model interpolation techniques:
simple linear interpolation and predicate-driven lin-
ear interpolation.

Linear interpolation combines information from
component models by computing a weighted aver-
age of their probabilities. The interpolated probabil-
ity of an event e is derived as pLI(e) =

∑
i λipi(e),

where pi(e) is the probability of e in the model i
and λi is the interpolation weight defined such that∑

i λi = 1; and λi ∈ [0, 1]. In our experiments, we
interpolate the probabilities p(c) and p(c|v) in the
linguistic (LM) and visual (VM) models, as follows:

pLI(c) = λLMpLM(c) + λVMpVM(c) (6)

pLI(c|v) = λLMpLM(c|v) + λVMpVM(c|v) (7)

We experiment with a number of parameter settings
for λLM and λVM.

Predicate-driven linear interpolation derives
predicate-specific interpolation weights directly
from the data, as opposed to pre-setting them uni-
versally for all verbs. For each predicate v, we com-
pute the interpolation weights based on its promi-
nence in the respective corpus, as follows:

λi(v) =
reli(v)∑
k relk(v)

, (8)

where rel is the relevance function of model i for
verb v, computed as its relative frequency in the
respective corpus: reli(v) = fi(v)∑

V fi(v) . The interpo-
lation weights for LM and VM are then computed
as

λLM(v) =
relLM(v)

relLM(v) + relVM(v)
(9)

λVM(v) =
relVM(v)

relLM(v) + relVM(v)
. (10)

The motivation for this approach comes from the
fact that not all verbs are represented equally well
in linguistic and visual data. For instance, while
concrete verbs, such as run, push or throw, are
more likely to be prominent in visual data, abstract
verbs, such as understand or speculate, are best
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represented in text. Relative linguistic and visual
frequencies of a verb provide a way to estimate the
relevance of linguistic and visual features to its SP
learning.

6 Direct evaluation and data analysis

We evaluate the predicate-argument scores as-
signed by our models against a dataset of hu-
man plausibility judgements of verb-direct object
pairs collected by Keller and Lapata (2003). Their
dataset is balanced with respect to the frequency
of verb-argument relations, as well as their plausi-
bility and implausibility, thus creating a realistic
SP evaluation task. Keller and Lapata selected 30
predicates and matched each of them to three ar-
guments from different co-occurrence frequency
bands according to their BNC counts, e.g. divert
attention (high frequency), divert water (medium)
and divert fruit (low). This constituted their dataset
of Seen verb-noun pairs, 90 in total. Each of the
predicates was then also paired with three randomly
selected arguments with which it did not occur in
the BNC, creating the Unseen dataset. The pairs in
both datasets were then rated for their plausibility
by 27 human subjects, and their judgements were
aggregated into a gold standard. We compare the
verb-argument scores generated by our linguistic
(LSP), visual (VSP) and interpolated (ISP) SP mod-
els against these two datasets in terms of Pearson
correlation coefficient, r, and Spearman rank cor-
relation coefficient, ρ. The selectional association
score of the cluster to which a given noun belongs
is taken to represent the preference score of the
verb for this noun. If a noun is not present in our
argument clusters, we match it to its nearest clus-
ter, as determined by its distributional similarity
to the cluster centroid in terms of Jensen-Shannon
divergence.

We first compare LSP, VSP and ISP with static
and predicate-driven interpolation weights. The
results, presented in Table 1, demonstrate that
the interpolated model outperforms both LSP and
VSP used on their own. The best performance is
attained with the static interpolation weights of
λLM = 0.8 (r = 0.540; ρ = 0.728) and λLM = 0.9
(r = 0.548; ρ = 0.699). This suggests that while
linguistic input plays a crucial role in SP induction
(by providing both semantic and syntactic informa-
tion), visual features further enhance the quality
of SPs, as we expected. Figure 3 shows LSP- and
VSP-acquired direct object preferences of the verb

Seen Unseen
r ρ r ρ

VSP 0.180 0.126 0.118 0.132
ISP: λLM = 0.1 0.279 0.532 0.220 0.371
ISP: λLM = 0.2 0.349 0.556 0.278 0.411
ISP: λLM = 0.3 0.385 0.558 0.305 0.423
ISP: λLM = 0.4 0.410 0.571 0.320 0.428
ISP: λLM = 0.5 0.448 0.579 0.329 0.430
ISP: λLM = 0.6 0.461 0.591 0.330 0.431
ISP: λLM = 0.7 0.523 0.713 0.335 0.431
ISP: λLM = 0.8 0.540 0.728 0.339 0.430
ISP: λLM = 0.9 0.548 0.699 0.342 0.429
ISP: Predicate-driven 0.476 0.597 0.391 0.551
LSP 0.512 0.688 0.412 0.559

Table 1: Model comparison on the plausibility data
of Keller and Lapata (2003)

LSP: (1) 0.309 expenditure cost risk expense emission budget
spending; (2) 0.201 dividend price rate premium rent rat-
ing salary wages; (3) 0.088 employment investment growth
supplies sale import export production [..]
ISP predicate-driven λLM = 0.65
(1) 0.346 expenditure cost risk expense emission budget
spending; (2) 0.211 dividend price rate premium rent rat-
ing salary wages; (3) 0.126 tail collar strand skirt trousers
hair curtain sleeve
VSP: (1) 0.224 tail collar strand skirt trousers hair curtain
sleeve; (2) 0.098 expenditure cost risk expense emission bud-
get spending; (3) 0.090 management delivery maintenance
transport service housing [..]

Figure 3: Top three direct object classes for cut
and their association scores, assigned by different
models

cut, as well as the effects of merging the features
in the interpolated model – the verbs’ experiential
arguments (e.g. hair or fabric) are emphasized by
the visual features.

However, the model based on visual features
alone performs poorly on the dataset of Keller and
Lapata (2003). This is partly explained by the fact
that a number of verbs in this dataset are abstract
verbs, whose visual representations in the Flickr
data are sparse. In addition, VSP (as other visual
models used in isolation from text) is not syntax-
aware and is unable to discriminate between differ-
ent types of semantic relations. VSP thus acquires
sets of verb-argument relations that are closer in
nature to scene descriptions and semantic frames
than to lexico-syntactic paradigms. Figure 4 shows
the differences between linguistic and visual ar-
guments of the verb kill ranked by LSP and VSP.
While LSP produces mainly semantic objects of kill,
VSP output contains other types of arguments, such
as weapon (instrument) and death (consequence).

Taking the argument classes produced by the
linguistic model as a basis and then re-ranking
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LSP: (1) 0.523 girl other woman child person people; (2)
0.164 fleet soldier knight force rebel guard troops crew army
pilot; (3) 0.133 sister daughter parent relative lover cousin
friend wife mother husband brother father; (4) 0.048 being
species sheep animal creature horse baby human fish male
lamb bird rabbit [..]; (5) 0.045 victim bull teenager prisoner
hero gang enemy rider offender youth killer thief [..]
VSP: (1) 0.180 defeat fall death tragedy loss collapse decline
[..]; (2) 0.141 girl other woman child person people; (3) 0.128
abuse suicide killing offence murder breach crime; (4) 0.113
handle weapon horn knife blade stick sword [..]; (5) 0.095
victim bull teenager prisoner hero gang enemy rider offender
youth killer thief [..]

Figure 4: Top five arguments of kill and their asso-
ciation scores, assigned by LSP and VSP

(1) 0.442 drink coffee champagne pint wine beer; (2) 0.182
mixture dose substance drug milk cream alcohol chemical
[..]; (3) 0.091 girl other woman child person people; (4) 0.053
sister daughter parent relative lover cousin friend wife mother
husband brother father; (5) 0.050 drop tear sweat paint blood
water juice

Figure 5: Error analysis: Mixed subjects and direct
objects of drink, assigned by the predicate-driven
ISP

them to incorporate visual statistics helps to avoid
the above problem for the interpolated models,
whose output corresponds to grammatical relations.
However, static interpolation weights (emphasiz-
ing linguistic features over the visual ones for all
verbs equally) outperformed the predicate-driven
interpolation technique, attaining correlations of
r = 0.548 and r = 0.476 respectively. This is
mainly due to the fact that some verbs are over-
represented in the visual data (e.g. the predicate-
driven interpolation weight for the verb drink is
λLM = 0.08). As a result, candidate argument
classes (selected based on syntactically-parsed lin-
guistic input) are ranked predominantly based on
visual statistics. This makes it possible to empha-
size incorrectly parsed arguments (such as subject
relations in the direct object SP distribution and
vice versa). The predicate-driven ISP output for
direct object SPs of drink, for instance, contains
a mixture of subject and direct object classes, as
shown in Figure 5. Using a static model with a
high λLM weight helps to avoid such errors and,
therefore, leads to a better performance.

In order to investigate the composition of the
visual and linguistic datasets, we assess the average
level of concreteness of the verbs and nouns present
in the datasets. We use the concreteness ratings
from the MRC Psycholinguistic Database (Wilson,
1988) for this purpose. In this database, nouns and

Figure 6: WordNet top level class distributions for
verbs in the visual and textual corpora

Seen Unseen
r ρ r ρ

Rooth et al. (1999)* 0.455 0.487 0.479 0.520
Padó et al. (2007)* 0.484 0.490 0.398 0.430
O’Seaghdha (2010) 0.520 0.548 0.564 0.605
VSP 0.180 0.126 0.118 0.132
ISP (best) 0.548 0.699 0.342 0.429
LSP 0.512 0.688 0.412 0.559

Table 2: Comparison to other SP induction meth-
ods. * Results reported in O’Seaghdha (2010).

verbs are rated for concreteness on a scale from
100 (highly abstract) to 700 (highly concrete). We
map the verbs and nouns in our textual and visual
corpora to their MRC concreteness scores. We then
calculate a dataset-wide concreteness score as an
average of the concreteness scores of individual
verbs and nouns weighted by their frequency in
the respective corpus. The average concreteness
scores in the visual dataset were 506.4 (nouns) and
498.1 (verbs). As expected, they are higher than the
respective scores in the textual data: 433.1 (nouns)
and 363.4 (verbs). In order to compare the types
of actions that are common in each of the datasets,
we map the verbs to their corresponding top level
classes in WordNet. Figure 6 shows the comparison
of prominent verb classes in visual and textual data.
One can see from the Figure that the visual dataset
is well suited for representing motion, perception
and contact, while abstract verbs related to e.g.
communication, cognition, possession or change
are more common in textual data.

We also compare the performance of our models
to existing SP induction methods: the EM-based
clustering method of Rooth et al. (1999), the vec-
tor space similarity-based method of Padó et al.
(2007) and the LDA topic modelling approach of
Ó Séaghdha (2010)1. The best ISP configuration

1Since Rooth et al.’s (1999) and Padó et al.’s (2007) models
were not originally evaluated on the same dataset, we use the
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(λLM = 0.9) outperforms all of these methods, as
well as our own LSP, on the Seen dataset, con-
firming the positive contribution of visual features.
However, it achieves less success on the Unseen
data, where the methods of Ó Séaghdha (2010)
and Rooth et al. (1999) are leading. This result
speaks in favour of latent variable models for acqui-
sition of SP estimates for rarely attested predicate-
argument pairs. In turn, this suggests that integrat-
ing our ISP model (that currently outperforms oth-
ers on more common pairs) with such techniques
is likely to improve SP prediction across frequency
bands.

7 Task-based evaluation

In order to investigate the applicability of perceptu-
ally grounded SPs in wider NLP, we evaluate them
in the context of an external semantic task – that of
metaphor interpretation. Since metaphor is based
on transferring imagery and knowledge across do-
mains – typically from more familiar domains of
physical experiences to the sphere of vague and
elusive abstract thought – metaphor interpretation
provides an ideal framework for testing perceptu-
ally grounded SPs. Our experiments rely on the
metaphor interpretation method of Shutova (2010),
in which text-derived SPs are a central component
of the system. We replace the SP component with
our LSP and ISP (λLM = 0.8) models and com-
pare their performance in the context of metaphor
interpretation.

Shutova (2010) defined metaphor interpretation
as a paraphrasing task, where literal paraphrases
for metaphorical expressions are derived from cor-
pus data using a set of statistical measures. For
instance, their system interprets the metaphor “a
carelessly leaked report” as “a carelessly disclosed
report”. Focusing on metaphorical verbs in subject
and direct object constructions, Shutova first ap-
plies a maximum likelihood model to extract and
rank candidate paraphrases for the verb given the
context, as follows:

P (i, w1, ..., wN ) =
∏N

n=1 f(wn, i)
(f(i))N−1 ·∑k f(ik)

, (11)

where f(i) is the frequency of the paraphrase on
its own and f(wn, i) the co-occurrence frequency
of the paraphrase with the context word wn. This

results for their re-implementation reported by O’Seaghdha
(2010), who conducted a comprehensive evaluation of SP
models on the plausibility data of Keller and Lapata (2003).

model favours paraphrases that match the given
context best. These candidates are then filtered
based on the presence of shared features with the
metaphorical verb, as defined by their location and
distance in the WordNet hierarchy. All the can-
didates that have a common hypernym with the
metaphorical verb within three levels of the Word-
Net hierarchy are selected. This results in a set of
paraphrases retaining the meaning of the metaphor-
ical verb. However, some of them are still figura-
tively used. Shutova further applies an SP model
to discriminate between figurative and literal para-
phrases, treating a strong selectional preference fit
as a likely indicator of literalness. The candidates
are re-ranked by the SP model, emphasizing the
verbs whose preferences the noun in the context
matches best. We use LSP and ISP scores to per-
form this re-ranking step.

We evaluate the performance of our models on
this task using the metaphor paraphrasing gold stan-
dard of Shutova (2010). The dataset consists of 52
verb metaphors and their human-produced literal
paraphrases. Following Shutova, we evaluate the
performance in terms of mean average precision
(MAP), which measures the ranking quality of GS
paraphrases across the dataset. MAP is defined as
follows:

MAP =
1
M

M∑
j=1

1
Nj

Nj∑
i=1

Pji,

where M is the number of metaphorical expres-
sions, Nj is the number of correct paraphrases for
the metaphorical expression j, Pji is the precision
at each correct paraphrase (the number of correct
paraphrases among the top i ranks). As compared
to the gold standard, ISP attains a MAP score of
0.65, outperforming both the LSP (MAP = 0.62)
and the original system of Shutova (2010) (MAP
= 0.62), demonstrating the positive contribution of
visual features.

8 Conclusion

We have presented the first SP induction method
that simultaneously draws knowledge from text,
images and videos. Our experiments show that it
outperforms linguistic and visual models in iso-
lation, as well as the previous approaches to SP
learning. We believe that this model has a wide
applicability in NLP, where many systems already
rely on automatically induced SPs. It can also
benefit image caption generation systems, which
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typically focus on objects rather than actions, by
providing information about predicate-argument
structure.

In the future, it would be interesting to derive
the information about predicate-argument relations
from low-level visual features directly. However, to
our knowledge, reliably mapping images to actions
(i.e. verbs) at a large-scale is still a challenging
task. Human-annotated image and video descrip-
tions allow us to investigate what types of verb–
noun relations are in principle present in the visual
data and the ways in which they are different from
the ones found in text. Our results show that visual
data is better suited for capturing physical proper-
ties of concepts as well as containing relations not
explicitly described in text.

The presented interpolation techniques are also
applicable outside multi-modal semantics. For in-
stance, they can be generalised to acquire SPs from
unbalanced corpora of different sizes (e.g. for lan-
guages lacking balanced corpora) or to perform
domain adaptation of SPs. In the future, we would
like to apply SP interpolation to multilingual SP
learning, i.e. integrating data from multiple lan-
guages for more accurate SP induction and project-
ing universal semantic relations to low-resource
languages. It is also interesting to investigate SP
learning at the level of semantic predicates (e.g.
automatically inducing FrameNet-style frames),
where combining the visual and linguistic knowl-
edge is likely to outperform text-based models on
their own.
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