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Abstract

While recent years have seen a surge of in-
terest in automated essay grading, includ-
ing work on grading essays with respect
to particular dimensions such as prompt
adherence, coherence, and technical qual-
ity, there has been relatively little work
on grading the essay dimension of argu-
ment strength, which is arguably the most
important aspect of argumentative essays.
We introduce a new corpus of argumen-
tative student essays annotated with argu-
ment strength scores and propose a su-
pervised, feature-rich approach to auto-
matically scoring the essays along this
dimension. Our approach significantly
outperforms a baseline that relies solely
on heuristically applied sentence argument
function labels by up to 16.1%.

1 Introduction

Automated essay scoring, the task of employing
computer technology to evaluate and score writ-
ten text, is one of the most important educational
applications of natural language processing (NLP)
(see Shermis and Burstein (2003) and Shermis et
al. (2010) for an overview of the state of the art
in this task). A major weakness of many ex-
isting scoring engines such as the Intelligent Es-
say AssessorTM(Landauer et al., 2003) is that they
adopt a holistic scoring scheme, which summa-
rizes the quality of an essay with a single score and
thus provides very limited feedback to the writer.
In particular, it is not clear which dimension of
an essay (e.g., style, coherence, relevance) a score
should be attributed to. Recent work addresses this
problem by scoring a particular dimension of es-
say quality such as coherence (Miltsakaki and Ku-
kich, 2004), technical errors, relevance to prompt
(Higgins et al., 2004; Persing and Ng, 2014), or-
ganization (Persing et al., 2010), and thesis clarity

(Persing and Ng, 2013). Essay grading software
that provides feedback along multiple dimensions
of essay quality such as E-rater/Criterion (Attali
and Burstein, 2006) has also begun to emerge.

Our goal in this paper is to develop a com-
putational model for scoring the essay dimension
of argument strength, which is arguably the most
important aspect of argumentative essays. Argu-
ment strength refers to the strength of the argu-
ment an essay makes for its thesis. An essay with
a high argument strength score presents a strong
argument for its thesis and would convince most
readers. While there has been work on design-
ing argument schemes (e.g., Burstein et al. (2003),
Song et al. (2014), Stab and Gurevych (2014a))
for annotating arguments manually (e.g., Song et
al. (2014), Stab and Gurevych (2014b)) and auto-
matically (e.g., Falakmasir et al. (2014), Song et
al. (2014)) in student essays, little work has been
done on scoring the argument strength of student
essays. It is worth mentioning that some work has
investigated the use of automatically determined
argument labels for heuristic (Ong et al., 2014)
and learning-based (Song et al., 2014) essay scor-
ing, but their focus is holistic essay scoring, not
argument strength essay scoring.

In sum, our contributions in this paper are two-
fold. First, we develop a scoring model for the ar-
gument strength dimension on student essays us-
ing a feature-rich approach. Second, in order to
stimulate further research on this task, we make
our data set consisting of argument strength anno-
tations of 1000 essays publicly available. Since
progress in argument strength modeling is hin-
dered in part by the lack of a publicly annotated
corpus, we believe that our data set will be a valu-
able resource to the NLP community.

2 Corpus Information

We use as our corpus the 4.5 million word Interna-
tional Corpus of Learner English (ICLE) (Granger
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Topic Languages Essays
Most university degrees are the-
oretical and do not prepare stu-
dents for the real world. They are
therefore of very little value.

13 131

The prison system is outdated.
No civilized society should pun-
ish its criminals: it should reha-
bilitate them.

11 80

In his novel Animal Farm,
George Orwell wrote “All men
are equal but some are more
equal than others.” How true is
this today?

10 64

Table 1: Some examples of writing topics.

et al., 2009), which consists of more than 6000
essays on a variety of different topics written by
university undergraduates from 16 countries and
16 native languages who are learners of English
as a Foreign Language. 91% of the ICLE texts
are written in response to prompts that trigger ar-
gumentative essays. We select 10 such prompts,
and from the subset of argumentative essays writ-
ten in response to them, we select 1000 essays to
annotate for training and testing of our essay ar-
gument strength scoring system. Table 1 shows
three of the 10 topics selected for annotation. Fif-
teen native languages are represented in the set of
annotated essays.

3 Corpus Annotation

We ask human annotators to score each of the
1000 argumentative essays along the argument
strength dimension. Our annotators were selected
from over 30 applicants who were familiarized
with the scoring rubric and given sample essays
to score. The six who were most consistent with
the expected scores were given additional essays
to annotate. Annotators evaluated the argument
strength of each essay using a numerical score
from one to four at half-point increments (see Ta-
ble 2 for a description of each score).1 This con-
trasts with previous work on essay scoring, where
the corpus is annotated with a binary decision
(i.e., good or bad) for a given scoring dimension
(e.g., Higgins et al. (2004)). Hence, our annota-
tion scheme not only provides a finer-grained dis-
tinction of argument strength (which can be im-
portant in practice), but also makes the prediction
task more challenging.

1See our website at http://www.hlt.utdallas.
edu/˜persingq/ICLE/ for the complete list of argu-
ment strength annotations.

Score Description of Argument Strength
4 essay makes a strong argument for its thesis

and would convince most readers
3 essay makes a decent argument for its thesis

and could convince some readers
2 essay makes a weak argument for its thesis or

sometimes even argues against it
1 essay does not make an argument or it is often

unclear what the argument is

Table 2: Descriptions of the meaning of scores.

To ensure consistency in annotation, we ran-
domly select 846 essays to have graded by mul-
tiple annotators. Though annotators exactly agree
on the argument strength score of an essay only
26% of the time, the scores they apply fall within
0.5 points in 67% of essays and within 1.0 point in
89% of essays. For the sake of our experiments,
whenever the two annotators disagree on an es-
say’s argument strength score, we assign the es-
say the average the two scores rounded down to
the nearest half point. Table 3 shows the number
of essays that receive each of the seven scores for
argument strength.

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
essays 2 21 116 342 372 132 15

Table 3: Distribution of argument strength scores.

4 Score Prediction

We cast the task of predicting an essay’s argument
strength score as a regression problem. Using re-
gression captures the fact that some pairs of scores
are more similar than others (e.g., an essay with
an argument strength score of 2.5 is more similar
to an essay with a score of 3.0 than it is to one
with a score of 1.0). A classification system, by
contrast, may sometimes believe that the scores
1.0 and 4.0 are most likely for a particular essay,
even though these scores are at opposite ends of
the score range. In the rest of this section, we de-
scribe how we train and apply our regressor.
Training the regressor. Each essay in the train-
ing set is represented as an instance whose label
is the essay’s gold score (one of the values shown
in Table 3), with a set of baseline features (Sec-
tion 5) and up to seven other feature types we pro-
pose (Section 6). After creating training instances,
we train a linear regressor with regularization pa-
rameter c for scoring test essays using the linear
SVM regressor implemented in the LIBSVM soft-
ware package (Chang and Lin, 2001). All SVM-
specific learning parameters are set to their default
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values except c, which we tune to maximize per-
formance on held-out validation data.2

Applying the regressor. After training the re-
gressor, we use it to score the test set essays. Test
instances are created in the same way as the train-
ing instances. The regressor may assign an essay
any score in the range of 1.0−4.0.

5 Baseline Systems

In this section, we describe two baseline systems
for predicting essays’ argument strength scores.

5.1 Baseline 1: Most Frequent Baseline

Since there is no existing system specifically for
scoring argument strength, we begin by designing
a simple baseline. When examining the score dis-
tribution shown in Table 3, we notice that, while
there exist at least a few essays having each of the
seven possible scores, the essays are most densely
clustered around scores 2.5 and 3.0. A system that
always predicts one of these two scores will very
frequently be right. For this reason, we develop
a most frequent baseline. Given a training set,
Baseline 1 counts the number of essays assigned
to each of the seven scores. From these counts, it
determines which score is most frequent and as-
signs this most frequent score to each test essay.

5.2 Baseline 2: Learning-based Ong et al.

Our second baseline is a learning-based version of
Ong et al.’s (2014) system. Recall from the intro-
duction that Ong et al. presented a rule-based ap-
proach to predict the holistic score of an argumen-
tative essay. Their approach was composed of two
steps. First, they constructed eight heuristic rules
for automatically labeling each of the sentences
in their corpus with exactly one of the following
argument labels: OPPOSES, SUPPORTS, CITA-
TION, CLAIM, HYPOTHESIS, CURRENT STUDY,
or NONE. After that, they employed these sen-
tence labels to construct five heuristic rules to
holistically score a student essay.

We create Baseline 2 as follows, employing the
methods described in Section 4 for training, pa-
rameter tuning, and testing. We employ Ong et
al.’s method to tag each sentence of our essays
with an argument label, but modify their method
to accommodate differences between their and our
corpus. In particular, our more informal corpus

2For parameter tuning, we employ the following c values:
100 101, 102, 103, 104, 105, or 106.

# Rule
1 Sentences that begin with a comparison dis-

course connective or contain any string prefixes
from “conflict” or “oppose” are tagged OP-
POSES.

2 Sentences that begin with a contingency con-
nective are tagged SUPPORTS.

3 Sentences containing any string prefixes from
“suggest”, “evidence”, “shows”, “Essentially”,
or “indicate” are tagged CLAIM.

4 Sentences in the first, second, or last paragraph
that contain string prefixes from “hypothes”,
or “predict”, but do not contain string prefixes
from “conflict” or “oppose” are tagged HY-
POTHESIS.

5 Sentences containing the word “should” that
contain no contingency connectives or string
prefixes from “conflict” or “oppose” are also
tagged HYPOTHESIS.

6 If the previous sentence was tagged hypothesis
and this sentence begins with an expansion con-
nective, it is also tagged HYPOTHESIS.

7 Do not apply a label to this sentence.

Table 4: Sentence labeling rules.

does not contain CURRENT STUDY or CITATION

sentences, so we removed portions of rules that
attempt to identify these labels (e.g. portions of
rules that search for a four-digit number, as would
appear as the year in a citation). Our resulting rule
set is shown in Table 4. If more than one of these
rules applies to a sentence, we tag it with the label
from the earliest rule that applies.

After labeling all the sentences in our corpus,
we then convert three of their five heuristic scor-
ing rules into features for training a regressor.3

The resulting three features describe (1) whether
an essay contains at least one sentence labeled HY-
POTHESIS, (2) whether it contains at least one sen-
tence labeled OPPOSES, and (3) the sum of CLAIM

sentences and SUPPORTS sentences divided by the
number of paragraphs in the essay. If the value of
the last feature exceeds 1, we instead assign it a
value of 1. These features make sense because,
for example, we would expect essays containing
lots of SUPPORTS sentences to offer stronger ar-
guments.

6 Our Approach

Our approach augments the feature set available to
Baseline 2 with seven types of novel features.
1. POS N-grams (POS) Word n-grams, though
commonly used as features for training text clas-
sifiers, are typically not used in automated essay

3We do not apply the remaining two of their heuristic
scoring rules because they deal solely with current studies
and citations.
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grading. The reason is that any list of word n-gram
features automatically compiled from a given set
of training essays would be contaminated with
prompt-specific n-grams that may make the result-
ing regressor generalize less well to essays written
for new prompts.

To generalize our feature set in a way that does
not risk introducing prompt-dependent features,
we introduce POS n-gram features. Specifically,
we construct one feature from each sequence of
1−5 part-of-speech tags appearing in our corpus.
In order to obtain one of these features’ values for
a particular essay, we automatically label each es-
say with POS tags using the Stanford CoreNLP
system (Manning et al., 2014), then count the
number of times the POS tag sequence occurs in
the essay. An example of a useful feature of this
type is “CC NN ,”, as it is able to capture when
a student writes either “for instance,” or “for ex-
ample,”. We normalize each essay’s set of POS
n-gram features to unit length.

2. Semantic Frames (SFR) While POS n-grams
provide syntactic generalizations of word n-grams,
FrameNet-style semantic role labels provide se-
mantic generalizations. For each essay in our data
set, we employ SEMAFOR (Das et al., 2010) to
identify each semantic frame occurring in the es-
say as well as each frame element that participates
in it. For example, a semantic frame may describe
an event that occurs in a sentence, and the event’s
frame elements may be the people or objects that
participate in the event. For a more concrete exam-
ple, consider the sentence “I said that I do not be-
lieve that it is a good idea”. This sentence contains
a Statement frame because a statement is made
in it. One of the frame elements participating in
the frame is the Speaker “I”. From this frame,
we would extract a feature pairing the frame to-
gether with its frame element to get the feature
“Statement-Speaker-I”. We would expect this fea-
ture to be useful for argument strength scoring be-
cause we noticed that essays that focus excessively
on the writer’s personal opinions and experiences
tended to receive lower argument strength scores.

As with POS n-grams, we normalize each es-
say’s set of Semantic Frame features to unit length.

3. Transitional Phrases (TRP) We hypothesize
that a more cohesive essay, being easier for a
reader to follow, is more persuasive, and thus
makes a stronger argument. For this reason, it
would be worthwhile to introduce features that

measure how cohesive an essay is. Consequently,
we create features based on the 149 transitional
phrases compiled by Study Guides and Strate-
gies4. Study Guides and Strategies collected these
transitions into lists of phrases that are useful for
different tasks (e.g. a list of transitional phrases for
restating points such as “in essence” or “in short”).
There are 14 such lists, which we use to general-
ize transitional features. Particularly, we construct
a feature for each of the 14 phrase type lists. For
each essay, we assign the feature a value indicat-
ing the average number of transitions from the list
that occur in the essay per sentence. Despite be-
ing phrase-based, transitional phrases features are
designed to capture only prompt-independent in-
formation, which as previously mentioned is im-
portant in essay grading.
4. Coreference (COR) As mentioned in our dis-
cussion of transitional phrases, a strong argument
must be cohesive so that the reader can under-
stand what is being argued. While the transi-
tional phrases already capture one aspect of this,
they cannot capture when transitions are made via
repeated mentions of the same entities in differ-
ent sentences. We therefore introduce a set of 19
coreference features that capture information such
as the fraction of an essay’s sentences that mention
entities introduced in the prompt, and the average
number of total mentions per sentence.5 Calculat-
ing these feature values, of course, requires that
the text be annotated with coreference informa-
tion. We automatically coreference-annotate the
essays using the Stanford CoreNLP system.
5. Prompt Agreement (PRA) An essay’s
prompt is always either a single statement, or can
be split up into multiple statements with which a
writer may AGREE STRONGLY, AGREE SOME-
WHAT, be NEUTRAL, DISAGREE SOMEWHAT,
DISAGREE STRONGLY, NOT ADDRESS, or ex-
plicitly have NO OPINION on. We believe in-
formation regarding which of these categories a
writer’s opinion falls into has some bearing on the
strength of her argument because, for example, a
writer who explicitly mentions having no opinion
has probably not made a persuasive argument.

For this reason, we annotate a subset of 830 of
our ICLE essays with these agreement labels. We
then train a multiclass maximum entropy classifier

4http://www.studygs.net/wrtstr6.htm
5See our website at http://www.hlt.utdallas.

edu/˜persingq/ICLE/ for a complete list of corefer-
ence features.
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using MALLET (McCallum, 2002) for identifying
which one of these seven categories an author’s
opinion falls into. The feature set we use for this
task includes POS n-gram and semantic frame fea-
tures as described earlier in this section, lemma-
tized word 1-3 grams, the keyword and prompt ad-
herence keyword features we described in Persing
and Ng (2013) and Persing and Ng (2014), respec-
tively, and a feature indicating which statement in
the prompt we are attempting to classify the au-
thor’s agreement level with respect to.

Our classifier’s training set in this case is the
subset of prompt agreement annotated essays that
fall within the training set of our 1000 essay ar-
gument strength annotated data. We then apply
the trained classifier to our entire 1000 essay set
in order to obtain predictions from which we can
then construct features for argument strength scor-
ing. For each prediction, we construct a feature
indicating which of the seven classes the classifier
believes is most likely, as well as seven additional
features indicating the probability the classifier as-
sociates with each of the seven classes.

We produce additional related annotations on
this 830 essay set in cases when the annotated
opinion was neither AGREE STRONGLY nor DIS-
AGREE STRONGLY, as the reason the annotator
chose one of the remaining five classes may some-
times offer insight into the writer’s argument. The
classes of reasons we annotate include cases when
the writer: (1) offered CONFLICTING OPINIONS,
(2) EXPLICITLY STATED an agreement level, (3)
gave only a PARTIAL RESPONSE to the prompt,
(4) argued a SUBTLER POINT not capturable by
extreme opinions, (5) did not make it clear that
the WRITER’S POSITION matched the one she ar-
gued, (6) only BRIEFLY DISCUSSED the topic,
(7) CONFUSINGLY PHRASED her argument, or (8)
wrote something whose RELEVANCE to the topic
was not clear. We believe that knowing which rea-
son(s) apply to an argument may be useful for ar-
gument strength scoring because, for example, the
CONFLICTING OPINIONS class indicates that the
author wrote a confused argument, which proba-
bly deserves a lower argument strength score.

We train eight binary maximum entropy classi-
fiers, one for each of these reasons, using the same
training data and feature set we use for agreement
level prediction. We then use the trained classi-
fiers to make predictions for these eight reasons on
all 1000 essays. Finally, we generate features for

our argument strength regressor from these predic-
tions by constructing two features from each of the
eight reasons. The first binary feature is turned on
whenever the maximum entropy classifier believes
that the reason applies (i.e., when it assigns the
reason a probability of over 0.5). The second fea-
ture’s value is the probability the classifier assigns
for this reason.

6. Argument Component Predictions (ACP)
Many of our features thus far do not result from
an attempt to build a deep understanding of the
structure of the arguments within our essays. To
introduce such an understanding into our system,
we follow Stab and Gurevych (2014a), who col-
lected and annotated a corpus of 90 persuasive es-
says (not from the ICLE corpus) with the under-
standing that the arguments contained therein con-
sist of three types of argument components. In
one essay, these argument components typically
include a MAJOR CLAIM, several lesser CLAIMs
which usually support or attack the major claim,
and PREMISEs which usually underpin the valid-
ity of a claim or major claim.

Stab and Gurevych (2014b) trained a system to
identify these three types of argument components
within their corpus given the components’ bound-
aries. Since our corpus does not contain annotated
argument components, we modify their approach
in order to simultaneously identify argument com-
ponents and their boundaries.

We begin by implementing a maximum entropy
version of their system using MALLET for per-
forming the argument component identification
task. We feed our system the same structural and
lexical features they described. We then augment
the system in the following ways.

First, since our corpus is not annotated with ar-
gument component boundaries, we construct a set
of low precision, high recall heuristics for iden-
tifying the locations in each sentence where an
argument component’s boundaries might occur.
The majority of these rules depend primarily on
a syntactic parse tree we automatically generated
for the sentence using the Stanford CoreNLP sys-
tem. Since a large majority of annotated argument
components are substrings of a simple declarative
clause (an S node in the parse tree), we begin by
identifying each S node in the sentence’s tree.

Given one of these clauses, we collect a list of
left and right boundaries where an argument com-
ponent may begin or end. The rules we used to
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(a) Potential left boundary locations
# Rule
1 Exactly where the S node begins.
2 After an initial explicit connective, or if the connec-

tive is immediately followed by a comma, after the
comma.

3 After nth comma that is an immediate child of the S
node.

4 After nth comma.

(b) Potential right boundary locations
# Rule
5 Exactly where the S node ends, or if S ends in a

punctuation, immediately before the punctuation.
6 If the S node ends in a (possibly nested) SBAR node,

immediately before the nth shallowest SBAR.6

7 If the S node ends in a (possibly nested) PP node,
immediately before the nth shallowest PP.

Table 5: Rules for extracting candidate argument
component boundary locations.

find these boundaries are summarized in Table 5.
Given an S node, we use our rules to construct

up to l × r argument component candidate in-
stances to feed into our system by combining each
left boundary with each right boundary that oc-
curs after it, where l is the number of potential left
boundaries our rules found, and r is the number of
right boundaries they found.

The second way we augment the system is by
adding a boundary rule feature type. Whenever
we generate an argument component candidate in-
stance, we augment its normal feature set with
two binary features indicating which heuristic rule
was used to find the candidate’s left boundary, and
which rule was used to find its right boundary. If
two rules can be used to find the same left or right
boundary position, the first rule listed in the table
is the one used to create the boundary rule feature.
This is why, for example, the table contains mul-
tiple rules that can find boundaries at comma lo-
cations. We would expect some types of commas
(e.g., ones following an explicit connective) to be
more significant than others.

A last point that requires additional explanation
is that several of the rules contain the word “nth”.
This means that, for example, if a sentence con-
tains multiple commas, we will generate multiple
left boundary positions for it using rule 4, and the
left boundary rule feature associated with each po-
sition will be different (e.g., there is a unique fea-

6The S node may end in an SBAR node which itself has an
SBAR node as its last child, and so on. In this case, the S node
could be said to end with any of these “nested” SBARS, so
we use the position before each (nth) one as a right boundary.

ture for the first comma, and for the the second
comma, etc.).

The last augmentation we make to the system
is that we apply a NONE label to all argument
component candidates whose boundaries do not
exactly match those of a gold standard argument
component. While Stab and Gurevych also did
this, their list of such argument component candi-
dates consisted solely of sentences containing no
argument components at all. We could not do this,
however, since our corpus is not annotated with ar-
gument components and we therefore do not know
which sentences these would be.

We train our system on all the instances we gen-
erated from the 90 essay corpus and apply it to la-
bel all the instances we generated in the same way
from our 1000 essay ICLE corpus. As a result, we
end up with a set of automatically generated ar-
gument component annotations on our 1000 essay
corpus. We use these annotations to generate five
additional features for our argument strength scor-
ing SVM regressor. These features’ values are the
number of major claims in the essay, the number
of claims in the essay, the number of premises in
the essay, the fraction of paragraphs that contain
either a claim or a major claim, and the fraction
of paragraphs that contain at least one argument
component of any kind.

7. Argument Errors (ARE) We manually iden-
tified three common problems essays might have
that tend to result in weaker arguments, and thus
lower argument strength scores. We heuristically
construct three features, one for each of these
problems, to indicate to the learner when we be-
lieve an essay has one of these problems.

It is difficult to make a reasonably strong argu-
ment in an essay that is too short. For this reason,
we construct a feature that encodes whether the es-
say has 15 or fewer sentences, as only about 7% of
our essays are this short.

In the Stab and Gurevych corpus, only about
5% of paragraphs have no claims or major claims
in them. We believe that an essay that contains
too many of these claim or major claim-less para-
graphs may have an argument that is badly struc-
tured, as it is typical for a paragraph to contain
one or two (major) claim(s). For this reason, we
construct a feature that encodes whether more than
half of the essay’s paragraphs contain no claims or
major claims, as indicated by the previously gen-
erated automatic annotations.
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Similarly, only 5% of the Stab and Gurevych es-
says contain no argument components at all. We
believe that an essay that contains too many of
these component-less paragraphs is likely to have
taken too much space discussing issues that are not
relevant to the main argument of the essay. For
this reason, we construct a feature that encodes
whether more than one of the essay’s paragraphs
contain no components, as indicated by the previ-
ously generated automatic annotations.

7 Evaluation

In this section, we evaluate our system for argu-
ment strength scoring. All the results we report
are obtained via five-fold cross-validation experi-
ments. In each experiment, we use 60% of our la-
beled essays for model training, another 20% for
parameter tuning and feature selection, and the fi-
nal 20% for testing. These correspond to the train-
ing set, held-out validation data, and test set men-
tioned in Section 4.

7.1 Scoring Metrics
We employ four evaluation metrics. As we will
see below, S1, S2, and S3 are error metrics, so
lower scores on them imply better performance.
In contrast, PC is a correlation metric, so higher
correlation implies better performance.

The simplest metric, S1, measures the fre-
quency at which a system predicts the wrong score
out of the seven possible scores. Hence, a system
that predicts the right score only 25% of the time
would receive an S1 score of 0.75.

The S2 metric measures the average distance
between a system’s predicted score and the actual
score. This metric reflects the idea that a system
that predicts scores close to the annotator-assigned
scores should be preferred over a system whose
predictions are further off, even if both systems
estimate the correct score at the same frequency.

The S3 metric measures the average square of
the distance between a system’s score predictions
and the annotator-assigned scores. The intuition
behind this metric is that not only should we prefer
a system whose predictions are close to the anno-
tator scores, but we should also prefer one whose
predictions are not too frequently very far away
from the annotated scores. The three error metric
scores are given by:

1
N

∑
Aj 6=E′

j

1,
1
N

N∑
j=1

|Aj − Ej |, 1
N

N∑
j=1

(Aj − Ej)2

System S1 S2 S3 PC

Baseline 1 .668 .428 .321 .000
Baseline 2 .652 .418 .267 .061
Our System .618 .392 .244 .212

Table 6: Five-fold cross-validation results for ar-
gument strength scoring.

where Aj , Ej , and E′
j are the annotator assigned,

system predicted, and rounded system predicted
scores7 respectively for essay j, and N is the num-
ber of essays.

The last metric, PC , computes Pearson’s cor-
relation coefficient between a system’s predicted
scores and the annotator-assigned scores. PC
ranges from −1 to 1. A positive (negative) PC
implies that the two sets of predictions are posi-
tively (negatively) correlated.

7.2 Results and Discussion

Five-fold cross-validation results on argument
strength score prediction are shown in Table 6.
The first two rows show our baseline systems’ per-
formances. The best baseline system (Baseline 2),
which recall is a learning-based version of Ong
et al.’s (2014) system, predicts the wrong score
65.2% of the time. Its predictions are off by an
average of .418 points, the average squared error
of its predictions is .267, and its average Pear-
son correlation coefficient with the gold argument
strength score across the five folds is .061.

Results of our system are shown on the third
row of Table 6. Rather than using all of the
available features (i.e., Baseline 2’s features and
the novel features described in Section 6), our
system uses only the feature subset selected by
the backward elimination feature selection algo-
rithm (Blum and Langley, 1997) that achieves the
best performance on the validation data (see Sec-
tion 7.3 for details). As we can see, our system
predicts the wrong score only 61.8% of the time,
predicts scores that are off by an average of .392
points, the average squared error of its predictions
is .244, and its average Pearson correlation coeffi-
cient with the gold scores is .212. These numbers
correspond to relative error reductions8 of 5.2%,

7We round all predictions to 1.0 or 4.0 if they fall outside
the 1.0−4.0 range and round S1 predictions to the nearest
half point.

8These numbers are calculated B−O
B−P

where B is the base-
line system’s score, O is our system’s score, and P is a per-
fect score. Perfect scores for error measures and PC are 0
and 1 respectively.

549



6.2%, 8.6%, and 16.1% over Baseline 2 for S1, S2,
S3, and PC, respectively, the last three of which
are significant improvements9. The magnitudes of
these improvements suggest that, while our system
yields improvements over the best baseline by all
four measures, its greatest contribution is that its
predicted scores are best-correlated with the gold
standard argument strength scores.

7.3 Feature Ablation

To gain insight into how much impact each of the
feature types has on our system, we perform fea-
ture ablation experiments in which we remove the
feature types from our system one-by-one.

We show the results of the ablation experiments
on the held-out validation data as measured by the
four scoring metrics in Table 7. The top line of
each subtable shows what a system that uses all
available features’s score would be if we removed
just one of the feature types. So to see how our
system performs by the PC metric if we remove
only prompt agreement (PRA) features, we would
look at the first row of results of Table 7(d) under
the column headed by PRA. The number here tells
us that the resulting system’s PC score is .303.
Since our system that uses all feature types obtains
S1, S2, S3, and PC scores of .521, .366, .218,
and .341 on the validation data respectively, the
removal of PRA features costs the complete sys-
tem .038 PC points, and thus we can infer that the
inclusion of PRA features has a beneficial effect.

From row 1 of Table 7(a), we can see that re-
moving the Baseline 2 feature set (BAS) yields a
system with the best S1 score in the presence of
the remaining feature types in this row. For this
reason, we permanently remove the BAS features
from the system before we generate the results on
line 2. We iteratively remove the feature type that
yields a system with the best performance in this
way until we get to the last line, where only one
feature type is used to generate each result.

Since the feature type whose removal yields the
best system is always the rightmost entry in a line,
the order of column headings indicates the rela-
tive importance of the feature types, with the left-
most feature types being most important to per-
formance and the rightmost feature types being
least important in the presence of the other feature
types. The score corresponding to the best system
is boldfaced for emphasis, indicating that all fea-

9All significance tests are paired t-tests with p < 0.05.

(a) Results using the S1 metric
SFR ACP TRP PRA POS COR ARE BAS
.534 .594 .530 .524 .522 .532 .529 .521
.530 .554 .526 .529 .526 .528 .525
.534 .555 .525 .531 .528 .522
.543 .558 .536 .530 .527
.565 .561 .536 .529
.563 .547 .539
.592 .550

(b) Results using the S2 metric
POS PRA ACP TRP BAS SFR COR ARE
.370 .369 .375 .367 .367 .366 .366 .365
.369 .369 .375 .366 .366 .365 .365
.370 .371 .372 .367 .366 .365
.374 .374 .376 .368 .366
.377 .375 .374 .368
.381 .377 .376
.385 .382

(c) Results using the S3 metric
POS PRA ACP TRP BAS COR ARE SFR
.221 .220 .225 .219 .218 .217 .217 .211
.220 .219 .221 .214 .212 .211 .211
.218 .218 .220 .212 .211 .209
.221 .216 .218 .212 .210
.224 .217 .218 .212
.228 .220 .219
.229 .225

(d) Results using the PC metric
POS ACP PRA TRP BAS ARE COR SFR
.302 .270 .303 .326 .324 .347 .347 .356
.316 .300 .327 .344 .361 .366 .371
.346 .331 .341 .356 .367 .378
.325 .331 .345 .362 .375
.297 .331 .339 .360
.280 .320 .321
.281 .281

Table 7: Feature ablation results. In each subtable, the

first row shows how our system would perform on the vali-
dation set essays if each feature type was removed. We then

remove the least important feature type, and show in the next

row how the adjusted system would perform without each re-

maining type.

ture types appearing to its left are included in the
best system.10

It is interesting to note that while the relative
importance of different feature types does not re-
main exactly the same if we measure performance
in different ways, we can see that some feature
types tend to be more important than others in a
majority of the four scoring metrics.

From these tables, it is clear that POS n-grams

10The reason the performances shown in these tables ap-
pear so much better than those shown previously is that in
these tables we tune parameters and display results on the
validation set in order to make it clearer why we chose to re-
move each feature type. In Table 6, by contrast, we tune pa-
rameters on the validation set, but display results using those
parameters on the test set.
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S1 S2 S3 PC
Gold .25 .50 .75 .25 .50 .75 .25 .50 .75 .25 .50 .75
1.0 2.90 2.90 2.90 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74
1.5 2.69 2.78 2.89 2.36 2.67 2.78 2.52 2.63 2.71 2.52 2.63 2.81
2.0 2.61 2.72 2.85 2.54 2.69 2.79 2.60 2.69 2.78 2.60 2.70 2.80
2.5 2.64 2.71 2.85 2.65 2.75 2.86 2.66 2.75 2.85 2.69 2.79 2.89
3.0 2.73 2.84 2.92 2.71 2.81 2.91 2.70 2.80 2.90 2.72 2.83 2.90
3.5 2.74 2.85 2.97 2.78 2.89 3.02 2.79 2.90 3.00 2.81 2.90 2.98
4.0 2.75 2.87 3.10 2.76 2.85 3.09 2.76 2.83 3.08 2.81 2.86 3.19

Table 8: Distribution of regressor scores for our system.

(POS), prompt agreement features (PRA), and ar-
gument component predictions (ACP) are the most
generally important feature types in roughly that
order. They all appear in the leftmost three po-
sitions under the tables for metrics S2, S3, and
PC , the three metrics by which our system sig-
nificantly outperforms Baseline 2. Furthermore,
removing any of them tends to have a larger neg-
ative impact on our system than removing any of
the other feature types.

Transitional phrase features (TRP) and Base-
line 2 features (BAS), by contrast, are of more
middling importance. While both appear in the
best feature sets for the aforementioned metrics
(i.e., they appear to the left of the boldfaced entry
in the corresponding ablation tables), the impact
of their removal is relatively less than that of POS,
PRA, or ACP features.

Finally, while the remaining three feature types
might at first glance seem unimportant to argu-
ment strength scoring, it is useful to note that
they all appear in the best performing feature set
as measured by at least one of the four scoring
metrics. Indeed, semantic frame features (SFR)
appear to be the most important feature type as
measured by the S1 metric, despite being one of
the least useful feature types as measured by the
other performance metrics. From this we learn
that when designing an argument strength scoring
system, it is important to understand what the ulti-
mate goal is, as the choice of performance metric
can have a large impact on what type of system
will seem ideal.

7.4 Analysis of Predicted Scores
To more closely examine the behavior of our sys-
tem, in Table 8 we chart the distributions of scores
it predicts for essays having each gold standard
score. As an example of how to read this table,
consider the number 2.60 appearing in row 2.0 in
the .25 column of the S3 region. This means that
25% of the time, when our system with param-
eters tuned for optimizing S3 (including the S3

feature set as selected in Table 7(c)) is presented
with a test essay having a gold standard score of
2.0, it predicts that the essay has a score less than
or equal to 2.60.

From this table, we see that our system has a
bias toward predicting more frequent scores as the
smallest entry in the table is 2.36 and the largest
entry is 3.19, and as we saw in Table 3, 71.4% of
essays have gold scores in this range. Neverthe-
less, our system does not rely entirely on bias, as
evidenced by the fact that each column in the table
has a tendency for its scores to ascend as the gold
standard score increases, implying that our system
has some success at predicting lower scores for es-
says with lower gold standard argument strength
scores and higher scores for essays with higher
gold standard argument strength scores. The ma-
jor exception to this rule is line 1.0, but this is to
be expected since there are only two essays hav-
ing this gold score, so the sample from which the
numbers on this line are calculated is very small.

8 Conclusion

We proposed a feature-rich approach to the new
problem of predicting argument strength scores on
student essays. In an evaluation on 1000 argumen-
tative essays selected from the ICLE corpus, our
system significantly outperformed a baseline sys-
tem that relies solely on features built from heuris-
tically labeled sentence argument function labels
by up to 16.1%. To stimulate further research on
this task, we make all of our annotations publicly
available.
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